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Tensors as multidimensional arrays
Starting point — Matrices
Let F be a field. We can write a matrix M ∈ Fn×m as

M =
r∑

i=1
vi ⊗ w⊤

i =


∣∣
v1∣∣

[ w1 ]

+ · · · +

∣∣
vr∣∣

[ wr ]

=

 
for vectors vi ∈ Fn,wi ∈ Fm. Examples: M =

∑n
i=1

∑m
j=1 Mi,j eie⊤j , SVD when F ∈ {R,C}.

Tensors as multidimensional arrays

T =
r∑

i=1
vi ⊗ wi ⊗ ui =

[
u1

]

 |v1
|


[ w1 ]

+ · · · +
[

ur
]

 |vr
|


[ wr ]
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First examples — The W and diagonal tensors
Tensors as multidimensional arrays

T =
r∑

i=1
vi ⊗ wi ⊗ ui =

[
u1

]

 |v1
|


[ w1 ]

+ · · · +
[

ur
]

 |vr
|


[ wr ]

W := e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1

=
[ 1

0
]
⊗
[ 1

0
]
⊗

[ 0
1
]

+
[ 1

0
]
⊗
[ 0

1
]
⊗
[ 1

0
]

+
[ 0

1
]
⊗

[ 1
0
]
⊗
[ 1

0
]

=

([
0 0
0 0

]
,

[
1 0
0 0

])
+

([
0 1
0 0

]
,

[
0 0
0 0

])
+

([
0 0
1 0

]
,

[
0 0
0 0

])
=

([
0 1
1 0

]
,

[
1 0
0 0

])
〈2〉 := e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 =

([
1 0
0 0

]
,

[
0 0
0 1

])
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Abstract tensors

Let V,W,U be finite dimensional vector spaces with respective bases {vi}i, {wj}j, {uk}k.

Definition — Abstract 3-tensor space (Straightforward to generalize to k-tensors)
We define a tensor vector space V⊗W⊗ U as the linear span of the (abstract) elements

{vi ⊗ wj ⊗ uk}i,j,k

together with a map V×W× U : (v,w, u) 7→ v⊗ w⊗ u that is multilinear:
• Multilinearity I: (v + v ′)⊗ w⊗ u = v⊗ w⊗ u + v ′ ⊗ w⊗ u
• Multilinearity II: (αv)⊗ w⊗ u = α(v⊗ w⊗ u) for all α ∈ F.

and similarly for the other components.

It is easy to check the outer product satisfies this!
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Kronecker product

You could also define:
Another example — Kronecker product
Given column vectors v ∈ V, w ∈W. Define their Kronecker product by

v ⊠ w =


a1
a2
...

an

⊠ w :=



a1w
—

a2w
—
...

—
anw


∈ V ⊠ W

i.e. replacing each entry of v with a scaled copy of w, resulting in one very tall vector.

This also sasisfies the abstract definition!
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How to transform tensors — Linear operations
Take a 3-tensor T =

∑
i vi ⊗ wi ⊗ ui ∈ V⊗W⊗ U. (note: not basis elements anymore)

Let A : V→ V ′, B : W→W ′, C : U→ U ′ be linear maps.
Definition — Applying linear maps
Define A⊗ B⊗ C : V⊗W⊗ U → V ′ ⊗W ′ ⊗ U ′ by

(A⊗ B⊗ C)(v⊗ w⊗ u) := (Av)⊗ (Bw)⊗ (Cu)
(A⊗ B⊗ C)T :=

∑
i

Avi ⊗ Bwi ⊗ Cui

Example: 〈3〉 :=
∑3

i=1 ei ⊗ ei ⊗ ei ∈ C3 ⊗ C3 ⊗ C3. Then( [ 0 1 1
1 0 0

]
⊗
[ 1 0 1

0 1 0
]
⊗
[ 1 1 0

0 0 1
] )
〈3〉 =

( [ 0 1 1
1 0 0

]
⊗
[ 1 0 1

0 1 0
]
⊗
[ 1 1 0

0 0 1
] )

(e1 ⊗ e1 ⊗ e1)

+
( [ 0 1 1

1 0 0
]
⊗
[ 1 0 1

0 1 0
]
⊗
[ 1 1 0

0 0 1
] )

(e2 ⊗ e2 ⊗ e2)

+
( [ 0 1 1

1 0 0
]
⊗
[ 1 0 1

0 1 0
]
⊗
[ 1 1 0

0 0 1
] )

(e3 ⊗ e3 ⊗ e3)

=
[ 0

1
]
⊗
[ 1

0
]
⊗
[ 1

0
]
+

[ 1
0
]
⊗
[ 0

1
]
⊗

[ 1
0
]
+

[ 1
0
]
⊗

[ 1
0
]
⊗
[ 0

1
]
= W
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Restriction
Definition — Applying linear maps
Let A : V→ V ′, B : W→W ′, C : U→ U ′ be linear maps. Then

(A⊗ B⊗ C)
∑

i
vi ⊗ wi ⊗ ui =

∑
i

Avi ⊗ Bwi ⊗ Cui

Take 3-tensors T ∈ V⊗W⊗ U and S ∈ V ′ ⊗W ′ ⊗ U ′

Definition — Restriction
We say T restricts to S, and write T ≥ S, whenever there exists linear maps A,B,C such that

(A⊗ B⊗ C)T = S

Example: the previous example shows 〈3〉 ≥W.
Remark: Restriction on matrices (2-tensors) is left-right multiplication, since

(A⊗ B)(v ⊗ w) = Av ⊗ Bw = Av (Bw)⊤ = A(vw⊤)B⊤.
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Matrix multiplication and Bilinear maps
MMn : Fn×n × Fn×n → Fn×n

Standard algorithm: O(n3). Best bounds: O(nω) with ω ∈ [2, 2.371552].

Central question — Matrix multiplication
How many multiplications (between inputs) are needed to do n× n matrix multiplication?

Consider bilinear maps V×W→ U, with {vi}i, {wj}j and {uk}k bases. Claim:

Proposition — Bilinear map/Tensor equivalence{
bilinear maps V×W→ U

} ∼−→ V∗ ⊗W∗ ⊗ U : f 7→
∑
i,j,k

ti,j,k v∗i ⊗ w∗
j ⊗ uk

• Bilinearity gives f (v,w) = f
(∑

i
(v∗i v)vi,

∑
j
(w∗

j w)wi
)
=

∑
i,j

(v∗i v)(w∗
j w) f (vi,wi )

• Then we write f (vi,wi ) =
∑

k

(
u∗

k f (vi,wi )︸ ︷︷ ︸
=: ti,j,k ∈ F

)
uk =⇒ f (v,w) =

∑
i,j,k

ti,j,k (v∗i v)(w∗
j w) uk
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Matrix multiplication as a tensor
MMn ∈ (Fn×n)∗ ⊗ (Fn×n)∗ ⊗ Fn×n

Take double indices (i, i ′), (j, j ′), (k, k ′),
and the standard matrix basis Ei,i ′ := eie⊤i ′ . i

i ′

1
= E3,2

MMn
(
Ei,i ′ ,Ej,j ′

)
= Ei,i ′Ej,j ′ = ei

(
e⊤i ′ ej

)
e⊤j ′ =

{
Ei,j ′ if i ′ = j
0 else

Example (n = 2): MM2
( [ 1 0

0 0
]
,
[ 0 1

0 0
] )

=
[ 0 1

0 0
]
= MM2

( [ 0 1
0 0

]
,
[ 0 0

0 1
] )

So
t(i,i ′),(j,j ′),(k,k ′) := E∗

k,k′

(
MMn

(
Ei,i ′ ,Ej,j ′

))
=

{
1 if i = k, i ′ = j, j ′ = k ′

0 else

(k, k ′) slice

(1, 1) :




1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

(1, 2) :


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

(2, 1) :


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 ,

(2, 2) :


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1
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Bilinear complexity
Question: How many multiplications do we need? ⇐⇒ What is the tensor rank of MMn?
Idea: Compare with a bilinear map for which we know.
Define the diagonal bilinear map / tensor as

fr (x, y) :=


x1y1

...
xryr

 =
r∑

i=1
xi yi ei ←→ 〈r〉 :=

r∑
i=1

ei ⊗ ei ⊗ ei ∈ Fr ⊗ Fr ⊗ Fr

Fact: if we have a restriction MMn ≤ 〈r〉, then MMn needs ≤ r multiplications.

Definition — Tensor rank
Given a 3-tensor T, we define its (tensor) rank as

R(T ) := min{ r | T ≤ 〈r〉},
i.e. the size of the smallest diagonal tensor that restricts to T.
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Outlook — Tensor rank and matrix multiplication

Definition — Tensor rank
Given a 3-tensor T, we define its (tensor) rank as

R(T ) := min{ r | T ≤ 〈r〉}

Central question — Tensor rank of matrix multiplication

What is R(MMn)?

Example — Naive MM2 and [Strassen 1969]
Naive algorithm: MM2 ≤ 〈8〉 Strassen: R(MM2) = 7

This is just the beginning of the story. In this seminar we will/might see:
• A session on tensor rank
• A session on border bank

• Asymptotic aspects
• Student topic: Schönhage’s τ -theorem
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Quantum states
Definition — Quantum multipartite systems and states
• We define a (single-partite) quantum system as a Hilbert space Cn.
• We define a multi-partite quantum systems as the tensor product of such systems.

E.g. a quantum system with three parties is given by Cn1 ⊗ Cn2 ⊗ Cn3 .
• We define a quantum state as an element T of a quantum system with ‖T ‖2 = 1.

Example — Three qubits
A qubit is the system C2. Examples of states:

[ 1
0
]
,
[ 0

1
]

and |+〉 := 1√
2
[ 1

1
]

(superposition).
Three parties can each have a qubit. Their shared system is C2 ⊗C2 ⊗C2. Examples of states:

|+〉 ⊗ |+〉 ⊗ |+〉 〈2〉√
2
=

1√
2
(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2)

W√
3
=

1√
3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1)
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Quantum states — Intuition

Example — Three qubits
A qubit is the system C2. Examples of states:

[ 1
0
]
,
[ 0

1
]

and |+〉 := 1√
2
[ 1

1
]

(superposition).
Three parties can each have a qubit. Their shared system is C2 ⊗C2 ⊗C2. Examples of states:

|+〉 ⊗ |+〉 ⊗ |+〉 〈2〉√
2
=

1√
2
(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2)

W√
3
=

1√
3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1)

Intuition:
• Three parties Alice, Bob and Charlie share state 〈2〉 /

√
2.

They can “interact” only with their qubit.
• Alice “measures”: the state collapses to outcome e1 or e2.
• If Alice outcomes is e1. Then Bob’s and Charlie’s qubits are

now in state e1 too. This phenomenon is entanglement. Alice Charlie

Bob

C2 C2

C2
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Entanglement
Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over C.

• Entanglement is a vital resource for many quantum computing applications.
• Different types are possible. Example: 〈2〉 /

√
2 and W/

√
3.

Central question — Quantum entanglement
Can we classify the different types of entanglement?

Can we classify the equivalence classes and their relations under restriction?

• Intuition: Entanglement cannot increase under local operations.
• In its most general form, this is restriction.
• Physical interpretation: SLOCC (Stochastic Local Operations and Classical

Communication) transformations.
Definition — Equivalence classes under restriction
We write T ∼ S whenever there are restrictions T ≥ S and T ≤ S.
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Example — The W state and the diagonal state of order 3
• We know 〈3〉 ≥W. Claim: 〈3〉 ≁ W, as 〈3〉 ≰ W. We use a restriction monotone.
• We say: 〈3〉 /

√
3 contains strictly more entanglement than W/

√
3.

Definition — Restriction monotone
We say a function f : {3-tensors} → R is monotone when S ≤ T =⇒ f (S) ≤ f (T ).

Theorem — Flattening ranks
Given T ∈ V⊗W⊗ U we can consider T as a matrix MT ∈ V⊗ (W⊗ U), and compute matrix
rank. We call this the 1st flattening rank R1. Then R1,R2,R3 are restriction monotones.

Proof: Restriction (A⊗ B⊗ C)T becomes left-right matrix multiplication (A)MT(B ⊠ C)∗. □
R1(W) = rank

(
e1 ⊗ (e1 ⊠ e2) + e1 ⊗ (e2 ⊠ e1) + e2 ⊗ (e1 ⊠ e1)

)
= rank

([ 1
0
]
⊗
[ 0

1
0
0

]
+
[ 1

0
]
⊗
[ 0

0
1
0

]
+
[ 0

1
]
⊗

[ 1
0
0
0

])
= rank

[ 0 1 1 0
1 0 0 0

]
= 2

R1(〈3〉) = rank
[ 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

]
= 3
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Example — The W state and the diagonal state of order 2

• Claim: 〈2〉 ≁ W. In fact: 〈2〉 ≰ W and 〈2〉 ≱ W. We will use an invariant.
• Both tensors live in C2 ⊗ C2 ⊗ C2: equivalence implies restriction with invertible matrices.
• Thus: 〈2〉 /

√
2 has a genuinly different type of entanglement than W/

√
3.

Definition — Restriction semi-invariant
We say a function f : V⊗W⊗ U→ R is an semi-invariant when
f (T ) = 0 ⇐⇒ f

(
(A⊗ B⊗ C)T

)
= 0 for all invertible (A,B,C) ∈ GL(V)× GL(W)× GL(U).

Proposition — Hyperdeterminant/3-tangle
There exists an semi-invariant f for C2 ⊗ C2 ⊗ C2 with f (〈2〉) 6= 0 = f (W). It is called the
hyperdeterminant or 3-tangle.

Proof. We might see this as part of a student topic :)
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Outlook — Quantum entanglement, monotones and invariants

Central question — Quantum entanglement
Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition — Restriction monotone
We say a function f : {3-tensors} → R is monotone when S ≤ T =⇒ f (S) ≤ f (T ).

Definition — Restriction semi-invariant
We say a function f : V⊗W⊗ U→ R is an semi-invariant when
f
(
(A⊗ B⊗ C)T

)
= 0 ⇐⇒ f (T ) = 0 for all invertible (A,B,C) ∈ GL(V)× GL(W)× GL(U).

Again just the beginning of the story. In this seminar we will/might see:
• Schur–Weyl duality, covariants
• The quantum functionals

• More monotones, (semi-)invariants
• Student topic: classification of classes in C2 ⊗ C2 ⊗ C2
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The cap set problem

Definition — Cap sets
Let F = F3 = Z/3Z.
A 3-term progression in Fn is a sequence (a, a + b, a + 2b) ∈ Fn × Fn × Fn.
A ⊂ Fn is called a cap set when no 3 distinct elements of A form a 3-term progression.

Example (n = 2): A =
{ [ 0

0
]
,
[ 1

2
]
,
[ 1

1
] }

is a cap set, A′ =
{ [ 0

0
]
,
[ 1

2
]
,
[ 2

1
] }

is not.

Motivating problem — Maximum size of cap sets
What is the maximum size of a cap set in terms of n?

Or: does there exists a C < 3 such that the size is O(Cn)?

• A bound O(3n/n) was known since 1995, by Alon and Dubiner.
• Whether an exponential improvement over 3n was possible became a big open problem.
• Settled with 2.756n in 2016 by Ellenberg & Gijswijt, based on work by Croot, Lev & Pach.
• We can reformulate this result in terms of tensors!

Maxim van den Berg Introduction to tensor ranks and tensor invariants



Intro Part I: What is a tensor? Part II: Matrix multiplication Quantum entanglement Combinatorics (Sub)rank Part III: Group actions on tensors

The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)
Let a ∈ Fn = Fn

3 label standard basis elements ea ∈ F3n . We define the cap set tensor as

Tcapset,n :=
∑

a,b,c∈Fn

(a,b,c) a 3-term progression

ea ⊗ eb ⊗ ec ∈ F3n
⊗ F3n

⊗ F3n

Intuition: The cap set tensor encodes all 3-term progressions.

F
n

|
Fn

|

Fn
Tcapset,1 := 〈3〉+

∑
(i,j,k) a permutation of (0,1,2)

ei ⊗ ej ⊗ ek

=


1 0 0

0 0 1
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 ,

0 1 0
1 0 0
0 0 1
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Subrank
Claim: A cap set A = {a1, . . . , am} ⊂ Fn gives rise to a restriction Tcapset,n ≥ 〈m〉.

Intuition: The cap set tensor encodes all 3-term progressions.

Restricting Tcapset,n to indices a, b, c ∈ A ⊂ Fn gives
1 if and only if a = b = c.

F
n

|
Fn

|

Fn

Example: A =
{ [ 0

0
]
,
[ 1

2
]
,
[ 1

1
] }

(A⊗ A⊗ A)Tcapset,2 = 〈3〉 A =

0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0


Definition — Subrank
Given a 3-tensor T, we define its subrank as

Q(T ) := max{ q | 〈q〉 ≤ T},

Central question — Subrank of Tcapset,n

What is Q(Tcapset,n)?
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Outlook — Combinatorics

Definition — Subrank
Given a 3-tensor T, we define its subrank as

Q(T ) := max{ q | 〈q〉 ≤ T},

Central question — Subrank of Tcapset,n

What is Q(Tcapset,n)?

• The maximum size of a cap set in Fn is bounded by
Q(Tcapset,n) ≤ slicerank(Tcapset,n) ≈ 2.756n

• Originally proven via an equivalent formulation using polynomials Fn × Fn × Fn → F.
• There are many more problems! Other fields than F3, other arithmetic progressions, etc.

Once again again the beginning of the story. In this seminar we will/might see:
• A session on subrank
• More upper bounds for subrank

• A general asymptotic formulation
• Student topic: slice rank
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Rank and subrank
Definition — Subrank
Given a 3-tensor T, we define its subrank as

Q(T ) := max{ q | 〈q〉 ≤ T},

Definition — Rank
Given a 3-tensor T, we define its rank as

R(T ) := min{ r | T ≤ 〈r〉}

• Q(T) ≤ R(T).
Proof: Use a flattening rank to show 〈q〉 ≰ 〈r〉 if q > r. □

• Q(T) 6= R(T), since 〈1〉 ≤W ≤ 〈3〉 is the best we can do.
Proof idea: Use the hyperdeterminant to show W ≰ 〈2〉 and 〈2〉 ≰ W.

• For matrices, Q(M) = rank(M) = R(M)!
Proof: Restriction with (A⊗ B) is left-right multiplication AMB∗. Set r := rank(M).
Use Gaussian elimination to map M to Ir. Use M =

∑r
i=1 vi ⊗ wi to map Ir to M. □

Takeaway — The tensor world
The tensor world is a lot more complicated & interesting than the matrix world!

We use ranks (rank, subrank, slice rank, . . .), monotones, invariants, etc.
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Group actions
Recall the definition of invariants. GL(V)×GL(W)×GL(U) is a group → representation theory!

Definition — Restriction semi-invariant
We say a function f : V⊗W⊗ U→ R is an semi-invariant when
f
(
(A⊗ B⊗ C)T

)
= 0 ⇐⇒ f (T ) = 0 for all invertible (A,B,C) ∈ GL(V)× GL(W)× GL(U).

Next week: Schur–Weyl duality. Two group representations will be essential:

Definition — The diagonal action
Let T ∈ V ⊗n. Then g ∈ GL(V) acts on T as

g · T = (g⊗ · · · ⊗ g︸ ︷︷ ︸
n times

)T

Definition — The permutation action
Let T ∈ V ⊗n. Then π ∈ Sn acts on T by
permuting the tensor factors. So as

π · T =
∑

i
vi,π−1(1) ⊗ · · · ⊗ vi,π−1(n)

where V ⊗n := V⊗ · · · ⊗ V︸ ︷︷ ︸
n times

and T =
∑

i
vi,1 ⊗ · · · ⊗ vi,n
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Symmetric tensors
Definition — Symmetric tensors
We call a tensor T ∈ V ⊗n symmetric when π · T = T for all π ∈ Sn.

Most tensors are not symmetric, e.g. e1 ⊗ e1 ⊗ e2, as applying (13) gives e2 ⊗ e1 ⊗ e1.
Examples:

v⊗ · · · ⊗ v 〈r〉 :=
r∑

i=1
ei ⊗ ei ⊗ · · · ⊗ ei

Tcapset,1 :=
∑

a,b,c∈F3
(a,b,c) a 3-term progression

ea ⊗ eb ⊗ ec = 〈3〉+
∑
π∈S3

π · (e1 ⊗ e2 ⊗ e3)

Definition — Symmetrization
Given T ∈ V ⊗n, define its symmetrization as 1

n!
∑

π∈Sn
π · T.

Facts: • The set of symmetric tensors in V ⊗n form a vector space.
• Symmetrization acts as a linear projector onto this subspace.
• The diagonal action of GL(V) leaves this subspace invariant.
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Antisymmetric tensors
Definition — Antisymmetric tensors
We call a tensor T ∈ V ⊗n antisymmetric when π · T = sgn(π)T for all π ∈ Sn.

Examples: e1 ⊗ e2 − e2 ⊗ e1

e1 ⊗ e2 ⊗ e3 − e1 ⊗ e3 ⊗ e2 + e2 ⊗ e3 ⊗ e1 − e2 ⊗ e1 ⊗ e3 + e3 ⊗ e1 ⊗ e2 − e3 ⊗ e2 ⊗ e1

Definition — Antisymmetrization & wedge product
Given T ∈ V ⊗n, define its antisymmetrization as 1

n!
∑

π∈Sn
sgn(π) π · T.

Given v1, . . . , vn ∈ V, define their wedge product as

v1 ∧ · · · ∧ vn :=
1
n!

∑
π∈Sn

sgn(π) π · (v1 ⊗ · · · ⊗ vn) ∈ V ⊗n

Facts: • The set of antisymmetric tensors in V ⊗n form a vector space.
• Antisymmetrization acts as a linear projector onto this subspace.
• v1 ∧ · · · ∧ vn = 0 ⇐⇒ {v1, . . . , vn} are linearly dependent. (hint: consider first vi = vj)
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Slides will be available at the webpage: qi.rub.de/tensors_ss24.

That’s it for today. Thanks!
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