Introduction to Tensor Ranks and Tensor Invariants

Maxim van den Berg

University of Amsterdam, Ruhr-University Bochum
Tensor Ranks and Tensor Invariants Seminar — April 11 ${ }^{\text {th }} 2024$

Outline

What is a tensor?
Outer product \rightarrow
Tensor basis
Restriction

Tensors in the wild
Matrix multiplication
Quantum entanglement Combinatorics

Group actions on tensors

Diagonal action
Permutation action
(Anti)symmetric tensors

Tensors as multidimensional arrays

Starting point - Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

$$
M=\sum_{i=1}^{r} v_{i} \otimes w_{i}^{\top}=\left[\begin{array}{c}
! \\
v_{1} \\
1
\end{array}\right]^{\left[-w_{1}-\right]}+\cdots+\left[\begin{array}{c}
\mid \\
v_{r} \\
\mid
\end{array}\right]^{\left[-w_{r}-\right]}=[
$$

for vectors $v_{i} \in \mathbb{F}^{n}, w_{i} \in \mathbb{F}^{m}$. Examples: $M=\sum_{i=1}^{n} \sum_{j=1}^{m} M_{i, j} e_{i} e_{j}^{\top}$, SVD when $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$.
Tensors as multidimensional arrays

First examples - The W and diagonal tensors

Tensors as multidimensional arrays

$$
\left.T=\sum_{i=1}^{r} v_{i} \otimes w_{i} \otimes u_{i}=\frac{\left[\left[\left[\begin{array}{c}
\mid \\
v_{1} \\
\mid
\end{array}\right]\right.\right.}{\left[\frac{\left.\mu_{1}-\right\rfloor}{\left.-w_{1}-\right]}\right.}+\cdots+\begin{array}{c}
\mid \\
v_{r} \\
\mid
\end{array}\right]
$$

Abstract tensors

Let V, W, U be finite dimensional vector spaces with respective bases $\left\{v_{i}\right\}_{i},\left\{w_{j}\right\}_{j},\left\{u_{k}\right\}_{k}$.

Definition - Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a tensor vector space $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$
\left\{v_{i} \otimes w_{j} \otimes u_{k}\right\}_{i, j, k}
$$

together with a map $V \times W \times U:(v, w, u) \mapsto v \otimes w \otimes u$ that is multilinear:

- Multilinearity I: $\left(v+v^{\prime}\right) \otimes w \otimes u=v \otimes w \otimes u+v^{\prime} \otimes w \otimes u$
- Multilinearity II: $(\alpha v) \otimes w \otimes u=\alpha(v \otimes w \otimes u)$ for all $\alpha \in \mathbb{F}$.
and similarly for the other components.
It is easy to check the outer product satisfies this!

Kronecker product

You could also define:
Another example - Kronecker product
Given column vectors $v \in V, w \in W$. Define their Kronecker product by

$$
v \boxtimes w=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \boxtimes w:=\left[\begin{array}{c}
a_{1} w \\
- \\
a_{2} w \\
- \\
\vdots \\
- \\
a_{n} w
\end{array}\right] \in V \boxtimes W
$$

i.e. replacing each entry of v with a scaled copy of w, resulting in one very tall vector.

This also sasisfies the abstract definition!

How to transform tensors - Linear operations

Take a 3-tensor $T=\sum_{i} v_{i} \otimes w_{i} \otimes u_{i} \in V \otimes W \otimes U$. (note: not basis elements anymore)
Let $A: V \rightarrow V^{\prime}, \quad B: W \rightarrow W^{\prime}, \quad C: U \rightarrow U^{\prime}$ be linear maps.

Definition - Applying linear maps

Define $A \otimes B \otimes C: V \otimes W \otimes U \rightarrow V^{\prime} \otimes W^{\prime} \otimes U^{\prime}$ by

$$
\begin{array}{ll}
(A \otimes B \otimes C)(v \otimes w \otimes u) & :=(A v) \otimes(B w) \otimes(C u) \\
(A \otimes B \otimes C) T & :=\sum_{i} A v_{i} \otimes B w_{i} \otimes C u_{i}
\end{array}
$$

Example: $\langle 3\rangle:=\sum_{i=1}^{3} e_{i} \otimes e_{i} \otimes e_{i} \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$. Then

$$
\begin{aligned}
& \left.\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1
\end{array}\right)\right]\right)\langle 3\rangle=\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left(e_{1} \otimes e_{1} \otimes e_{1}\right) \\
& +\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left(e_{2} \otimes e_{2} \otimes e_{2}\right) \\
& +\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left(e_{3} \otimes e_{3} \otimes e_{3}\right) \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\mathrm{W}
\end{aligned}
$$

Restriction

Definition - Applying linear maps

Let $A: V \rightarrow V^{\prime}, \quad B: W \rightarrow W^{\prime}, \quad C: U \rightarrow U^{\prime}$ be linear maps. Then

$$
(A \otimes B \otimes C) \sum_{i} v_{i} \otimes w_{i} \otimes u_{i}=\sum_{i} A v_{i} \otimes B w_{i} \otimes C u_{i}
$$

Take 3-tensors $T \in V \otimes W \otimes U$ and $S \in V^{\prime} \otimes W^{\prime} \otimes U^{\prime}$

Definition - Restriction

We say T restricts to S, and write $T \geq S$, whenever there exists linear maps A, B, C such that

$$
(A \otimes B \otimes C) T=S
$$

Example: the previous example shows $\langle 3\rangle \geq \mathrm{W}$.
Remark: Restriction on matrices (2-tensors) is left-right multiplication, since

$$
(A \otimes B)(v \otimes w)=A v \otimes B w=A v(B w)^{\top}=A\left(v w^{\top}\right) B^{\top} .
$$

Matrix multiplication and Bilinear maps

$$
\mathrm{MM}_{n}: \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \rightarrow \mathbb{F}^{n \times n}
$$

Standard algorithm: $\mathcal{O}\left(n^{3}\right)$. Best bounds: $\mathcal{O}\left(n^{\omega}\right)$ with $\omega \in[2,2.371552]$.
Central question - Matrix multiplication
How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?
Consider bilinear maps $V \times W \rightarrow U$, with $\left\{v_{i}\right\}_{i},\left\{w_{j}\right\}_{j}$ and $\left\{u_{k}\right\}_{k}$ bases. Claim:

Proposition - Bilinear map/Tensor equivalence

$\{$ bilinear maps $V \times W \rightarrow U\} \xrightarrow{\sim} V^{*} \otimes W^{*} \otimes U: \quad f \mapsto \sum_{i, j, k} t_{i, j, k} v_{i}^{*} \otimes w_{j}^{*} \otimes u_{k}$

- Bilinearity gives $f(v, w)=f\left(\sum_{i}\left(v_{i}^{*} v\right) v_{i}, \sum_{j}\left(w_{j}^{*} w\right) w_{i}\right)=\sum_{i, j}\left(v_{i}^{*} v\right)\left(w_{j}^{*} w\right) f\left(v_{i}, w_{i}\right)$
- Then we write $f\left(v_{i}, w_{i}\right)=\sum_{k}(\underbrace{u_{k}^{*} f\left(v_{i}, w_{i}\right)}_{=: t_{i, j k} \in \mathbb{F}}) u_{k} \Longrightarrow f(v, w)=\sum_{i, j, k} t_{i, j, k}\left(v_{i}^{*} v\right)\left(w_{j}^{*} w\right) u_{k}$

Matrix multiplication as a tensor

$$
\mathrm{MM}_{n} \in\left(\mathbb{F}^{n \times n}\right)^{*} \otimes\left(\mathbb{F}^{n \times n}\right)^{*} \otimes \mathbb{F}^{n \times n}
$$

Take double indices $\left(i, i^{\prime}\right),\left(j, j^{\prime}\right),\left(k, k^{\prime}\right)$, and the standard matrix basis $E_{i, i^{\prime}}:=e_{i} e_{i^{\prime}}^{\top}$.

$(1,1):\left(\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\right.$,

$$
\mathrm{MM}_{n}\left(E_{i, i^{\prime}}, E_{j, j^{\prime}}\right)=E_{i, i^{\prime}} E_{j, j^{\prime}}=e_{i}\left(e_{i^{\prime}}^{\top} e_{j}\right) e_{j^{\prime}}^{\top}= \begin{cases}E_{i, j^{\prime}} & \text { if } i^{\prime}=j \\ 0 & \text { else }\end{cases}
$$

Example $(n=2): M_{2}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=M_{2}\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$
So

$$
\begin{align*}
t_{\left(i, i^{\prime}\right),\left(j, j^{\prime}\right),\left(k, k^{\prime}\right)} & :=E_{k, k^{\prime}}^{*}\left(\mathrm{MM}_{n}\left(E_{i, i^{\prime}}, E_{j, j^{\prime}}\right)\right) \tag{2,1}\\
& = \begin{cases}1 & \text { if } i=k, i^{\prime}=j, j^{\prime}=k^{\prime} \\
0 & \text { else }\end{cases} \tag{2,2}
\end{align*}
$$

$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\left.\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\right)$

Bilinear complexity

Question: How many multiplications do we need? \Longleftrightarrow What is the tensor rank of MM_{n} ? Idea: Compare with a bilinear map for which we know.
Define the diagonal bilinear map / tensor as

$$
f_{r}(x, y):=\left[\begin{array}{c}
x_{1} y_{1} \\
\vdots \\
x_{r} y_{r}
\end{array}\right]=\sum_{i=1}^{r} x_{i} y_{i} e_{i} \quad \longleftrightarrow \quad\langle r\rangle:=\sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes e_{i} \quad \in \mathbb{F}^{r} \otimes \mathbb{F}^{r} \otimes \mathbb{F}^{r}
$$

Fact: if we have a restriction $\mathrm{MM}_{n} \leq\langle r\rangle$, then MM_{n} needs $\leq r$ multiplications.

Definition - Tensor rank

Given a 3-tensor T, we define its (tensor) rank as

$$
\mathrm{R}(T):=\min \{r \mid T \leq\langle r\rangle\},
$$

i.e. the size of the smallest diagonal tensor that restricts to T.

Outlook - Tensor rank and matrix multiplication

Definition - Tensor rank

Given a 3-tensor T, we define its (tensor) rank as

$$
\mathrm{R}(T):=\min \{r \mid T \leq\langle r\rangle\}
$$

Central question - Tensor rank of matrix multiplication

What is $R\left(M M_{n}\right)$?

Example - Naive MM 2 and [Strassen 1969]
Naive algorithm: $\mathrm{MM}_{2} \leq\langle 8\rangle \quad$ Strassen: $\mathrm{R}\left(\mathrm{MM}_{2}\right)=7$
This is just the beginning of the story. In this seminar we will/might see:

- A session on tensor rank
- A session on border bank
- Asymptotic aspects
- Student topic: Schönhage's τ-theorem

Quantum states

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^{n}.
- We define a multi-partite quantum systems as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$.
- We define a quantum state as an element T of a quantum system with $\|T\|_{2}=1$.

Example - Three qubits

A qubit is the system \mathbb{C}^{2}. Examples of states: $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $|+\rangle:=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ (superposition). Three parties can each have a qubit. Their shared system is $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$. Examples of states:

Quantum states - Intuition

Example - Three qubits

A qubit is the system \mathbb{C}^{2}. Examples of states: $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $|+\rangle:=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ (superposition). Three parties can each have a qubit. Their shared system is $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$. Examples of states:

Intuition:

- Three parties Alice, Bob and Charlie share state $\langle 2\rangle / \sqrt{2}$. They can "interact" only with their qubit.
- Alice "measures": the state collapses to outcome e_{1} or e_{2}.
- If Alice outcomes is e_{1}. Then Bob's and Charlie's qubits are now in state e_{1} too. This phenomenon is entanglement.

Entanglement

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over \mathbb{C}.

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2\rangle / \sqrt{2}$ and $\mathrm{W} / \sqrt{3}$.

Central question - Quantum entanglement
Can we classify the different types of entanglement?
Can we classify the equivalence classes and their relations under restriction?

- Intuition: Entanglement cannot increase under local operations.
- In its most general form, this is restriction.
- Physical interpretation: SLOCC (Stochastic Local Operations and Classical Communication) transformations.

Definition - Equivalence classes under restriction

We write $T \sim S$ whenever there are restrictions $T \geq S$ and $T \leq S$.

Example - The W state and the diagonal state of order 3

- We know $\langle 3\rangle \geq$ W. Claim: $\langle 3\rangle \nsim \mathrm{W}$, as $\langle 3\rangle \notin \mathrm{W}$. We use a restriction monotone.
- We say: $\langle 3\rangle / \sqrt{3}$ contains strictly more entanglement than $\mathrm{W} / \sqrt{3}$.

Definition - Restriction monotone

We say a function f : $\{3$-tensors $\} \rightarrow \mathbb{R}$ is monotone when $S \leq T \Longrightarrow f(S) \leq f(T)$.

Theorem - Flattening ranks

Given $T \in V \otimes W \otimes U$ we can consider T as a matrix $M_{T} \in V \otimes(W \otimes U)$, and compute matrix rank. We call this the 1st flattening rank R_{1}. Then R_{1}, R_{2}, R_{3} are restriction monotones.

Proof: Restriction $(A \otimes B \otimes C) T$ becomes left-right matrix multiplication $(A) M_{T}(B \boxtimes C)^{*}$.

$$
\begin{aligned}
& R_{1}(W)=\operatorname{rank}\left(e_{1} \otimes\left(e_{1} \boxtimes e_{2}\right)+e_{1} \otimes\left(e_{2} \boxtimes e_{1}\right)+e_{2} \otimes\left(e_{1} \boxtimes e_{1}\right)\right) \\
& =\operatorname{rank}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right)=\operatorname{rank}\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=2 \\
& R_{1}(\langle 3\rangle)=\operatorname{rank}\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0
\end{array}\right]=3
\end{aligned}
$$

Example - The W state and the diagonal state of order 2

- Claim: $\langle 2\rangle \nsim \mathrm{W}$. In fact: $\langle 2\rangle \nsubseteq \mathrm{W}$ and $\langle 2\rangle \nsupseteq \mathrm{W}$. We will use an invariant.
- Both tensors live in $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$: equivalence implies restriction with invertible matrices.
- Thus: $\langle 2\rangle / \sqrt{2}$ has a genuinly different type of entanglement than $W / \sqrt{3}$.

Definition - Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \rightarrow \mathbb{R}$ is an semi-invariant when $f(T)=0 \Longleftrightarrow f((A \otimes B \otimes C) T)=0$ for all invertible $(A, B, C) \in \mathrm{GL}(V) \times \mathrm{GL}(W) \times \mathrm{GL}(U)$.

Proposition - Hyperdeterminant/3-tangle

There exists an semi-invariant f for $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ with $f(\langle 2\rangle) \neq 0=f(\mathrm{~W})$. It is called the hyperdeterminant or 3-tangle.

Proof. We might see this as part of a student topic :)

Outlook - Quantum entanglement, monotones and invariants

Central question - Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition - Restriction monotone

We say a function f : $\{3$-tensors $\} \rightarrow \mathbb{R}$ is monotone when $S \leq T \Longrightarrow f(S) \leq f(T)$.

Definition - Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \rightarrow \mathbb{R}$ is an semi-invariant when

$$
f((A \otimes B \otimes C) T)=0 \Longleftrightarrow f(T)=0 \text { for all invertible }(A, B, C) \in \mathrm{GL}(V) \times \mathrm{GL}(W) \times \mathrm{GL}(U)
$$

Again just the beginning of the story. In this seminar we will/might see:

- Schur-Weyl duality, covariants
- The quantum functionals
- More monotones, (semi-)invariants
- Student topic: classification of classes in $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$

The cap set problem

Definition - Cap sets

Let $\mathbb{F}=\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$.
A 3-term progression in \mathbb{F}^{n} is a sequence $(a, a+b, a+2 b) \in \mathbb{F}^{n} \times \mathbb{F}^{n} \times \mathbb{F}^{n}$. $\mathcal{A} \subset \mathbb{F}^{n}$ is called a cap set when no 3 distinct elements of \mathcal{A} form a 3-term progression. Example $(n=2): \mathcal{A}=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is a cap set, $\mathcal{A}^{\prime}=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ is not.

Motivating problem - Maximum size of cap sets

What is the maximum size of a cap set in terms of n ?
Or: does there exists a $C<3$ such that the size is $\mathcal{O}\left(C^{n}\right)$?

- A bound $\mathcal{O}\left(3^{n} / n\right)$ was known since 1995, by Alon and Dubiner.
- Whether an exponential improvement over 3^{n} was possible became a big open problem.
- Settled with 2.756^{n} in 2016 by Ellenberg \& Gijswijt, based on work by Croot, Lev \& Pach.
- We can reformulate this result in terms of tensors!

The cap set tensor

Definition - The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^{n}=\mathbb{F}_{3}^{n}$ label standard basis elements $e_{a} \in \mathbb{F}^{3^{n}}$. We define the cap set tensor as

$$
T_{\text {capset }, n}:=\sum_{\substack{a, b, c \in \mathbb{F}^{n} \\(a, b, c) \text { a 3-term progression }}} e_{a} \otimes e_{b} \otimes e_{c} \in \mathbb{F}^{3^{n}} \otimes \mathbb{F}^{3^{n}} \otimes \mathbb{F}^{3^{n}}
$$

Intuition: The cap set tensor encodes all 3-term progressions.

$$
\begin{aligned}
T_{\text {capset }, 1} & :=\langle 3\rangle+\sum_{(i, j, k)} \sum_{\text {a permutation of }(0,1,2)} e_{i} \otimes e_{j} \otimes e_{k} \\
& =\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
\end{aligned}
$$

Subrank

Claim: A cap set $\mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{F}^{n}$ gives rise to a restriction $T_{\text {capset, } n} \geq\langle m\rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.
Restricting $T_{\text {capset }, n}$ to indices $a, b, c \in \mathcal{A} \subset \mathbb{F}^{n}$ gives 1 if and only if $a=b=c$.

Example: $\mathcal{A}=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$

$$
(A \otimes A \otimes A) T_{\text {capset }, 2}=\langle 3\rangle
$$

Definition - Subrank

Given a 3-tensor T, we define its subrank as

$$
\mathrm{Q}(T):=\max \{q \mid\langle q\rangle \leq T\},
$$

Outlook - Combinatorics

Definition - Subrank

Given a 3-tensor T, we define its subrank as

$$
\mathrm{Q}(T):=\max \{q \mid\langle q\rangle \leq T\},
$$

Central question - Subrank of $T_{\text {capset, } n}$

What is $\mathrm{Q}\left(T_{\text {capset }, n}\right)$?

- The maximum size of a cap set in \mathbb{F}^{n} is bounded by

$$
\mathrm{Q}\left(T_{\text {capset }, n}\right) \leq \operatorname{slicerank}\left(T_{\text {capset }, n}\right) \approx 2.756^{n}
$$

- Originally proven via an equivalent formulation using polynomials $\mathbb{F}^{n} \times \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}$.
- There are many more problems! Other fields than \mathbb{F}_{3}, other arithmetic progressions, etc.

Once again again the beginning of the story. In this seminar we will/might see:

- A session on subrank
- More upper bounds for subrank
- A general asymptotic formulation
- Student topic: slice rank

Rank and subrank

Definition - Subrank

Given a 3-tensor T, we define its subrank as

$$
\mathrm{Q}(T):=\max \{q \mid\langle q\rangle \leq T\},
$$

Definition - Rank

Given a 3-tensor T, we define its rank as

$$
\mathrm{R}(T):=\min \{r \mid T \leq\langle r\rangle\}
$$

- $\mathrm{Q}(T) \leq \mathrm{R}(T)$.

Proof: Use a flattening rank to show $\langle q\rangle \not \leq\langle r\rangle$ if $q>r$. \square

- $\mathrm{Q}(T) \neq \mathrm{R}(T)$, since $\langle 1\rangle \leq \mathrm{W} \leq\langle 3\rangle$ is the best we can do.

Proof idea: Use the hyperdeterminant to show $W \not \subset\langle 2\rangle$ and $\langle 2\rangle \not \approx W$.

- For matrices, $\mathrm{Q}(M)=\operatorname{rank}(M)=\mathrm{R}(M)$!

Proof: Restriction with $(A \otimes B)$ is left-right multiplication $A M B^{*}$. Set $r:=\operatorname{rank}(M)$. Use Gaussian elimination to map M to I_{r}. Use $M=\sum_{i=1}^{r} v_{i} \otimes w_{i}$ to map I_{r} to M.

Takeaway - The tensor world

The tensor world is a lot more complicated \& interesting than the matrix world! We use ranks (rank, subrank, slice rank, ...), monotones, invariants, etc.

Group actions

Recall the definition of invariants. $\mathrm{GL}(V) \times \mathrm{GL}(W) \times \mathrm{GL}(U)$ is a group \rightarrow representation theory!

Definition - Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \rightarrow \mathbb{R}$ is an semi-invariant when
$f((A \otimes B \otimes C) T)=0 \Longleftrightarrow f(T)=0$ for all invertible $(A, B, C) \in \mathrm{GL}(V) \times \mathrm{GL}(W) \times \mathrm{GL}(U)$.
Next week: Schur-Weyl duality. Two group representations will be essential:

Definition - The diagonal action

Let $T \in V^{\otimes n}$. Then $g \in \operatorname{GL}(V)$ acts on T as

$$
g \cdot T=(\underbrace{g \otimes \cdots \otimes g}_{n \text { times }}) T
$$

$$
\text { where } \quad V^{\otimes n}:=\underbrace{V \otimes \cdots \otimes V}_{n \text { times }}
$$

Definition - The permutation action

Let $T \in V^{\otimes n}$. Then $\pi \in S_{n}$ acts on T by permuting the tensor factors. So as

$$
\pi \cdot T=\sum_{i} v_{i, \pi^{-1}(1)} \otimes \cdots \otimes v_{i, \pi^{-1}(n)}
$$

and

$$
T=\sum_{i} v_{i, 1} \otimes \cdots \otimes v_{i, n}
$$

Symmetric tensors

Definition - Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T=T$ for all $\pi \in S_{n}$.
Most tensors are not symmetric, e.g. $e_{1} \otimes e_{1} \otimes e_{2}$, as applying (13) gives $e_{2} \otimes e_{1} \otimes e_{1}$. Examples:

$$
\langle r\rangle:=\sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes \cdots \otimes e_{i}
$$

$$
T_{\text {capset }, 1}:=\quad \sum_{h c \in \mathbb{F}_{1}}
$$

$$
\begin{gathered}
a, b, c \in \mathbb{F}_{3} \\
(a, b, c) \text { a } 3 \text {-term progression }
\end{gathered}
$$

Definition - Symmetrization

Given $T \in V^{\otimes n}$, define its symmetrization as $\frac{1}{n!} \sum_{\pi \in S_{n}} \pi \cdot T$.
Facts: - The set of symmetric tensors in $V^{\otimes n}$ form a vector space.

- Symmetrization acts as a linear projector onto this subspace.
- The diagonal action of $G L(V)$ leaves this subspace invariant.

Antisymmetric tensors

Definition - Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T=\operatorname{sgn}(\pi) T$ for all $\pi \in S_{n}$.
Examples:
$e_{1} \otimes e_{2}-e_{2} \otimes e_{1}$
$e_{1} \otimes e_{2} \otimes e_{3}-e_{1} \otimes e_{3} \otimes e_{2}+e_{2} \otimes e_{3} \otimes e_{1}-e_{2} \otimes e_{1} \otimes e_{3}+e_{3} \otimes e_{1} \otimes e_{2}-e_{3} \otimes e_{2} \otimes e_{1}$

Definition - Antisymmetrization \& wedge product

Given $T \in V^{\otimes n}$, define its antisymmetrization as $\frac{1}{n!} \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \pi \cdot T$.
Given $v_{1}, \ldots, v_{n} \in V$, define their wedge product as

$$
v_{1} \wedge \cdots \wedge v_{n}:=\frac{1}{n!} \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \pi \cdot\left(v_{1} \otimes \cdots \otimes v_{n}\right) \in V^{\otimes n}
$$

Facts: - The set of antisymmetric tensors in $V^{\otimes n}$ form a vector space.

- Antisymmetrization acts as a linear projector onto this subspace.
- $v_{1} \wedge \cdots \wedge v_{n}=0 \Longleftrightarrow\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly dependent. (hint: consider first $v_{i}=v_{j}$)

Slides will be available at the webpage: qi.rub.de/tensors_ss24.

That's it for today. Thanks!

