Geometric rank of tensors

Pierpaola Santarsiero
pierpaola.santarsiero@unibo.it

Different notions of rank

For a tensor $T \in \mathbb{F}^{n_{1} \times n_{2} \times n_{3}}$ there are many notions of rank

- tensor rank: $R(T)=\min \left\{r \mid T \leq I_{r}\right\}$
- flattening rank: e.g. $\operatorname{rk}\left(\mathbb{F}^{n_{1} *} \rightarrow \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}}\right)$
- border rank: $\underline{R}(T)=\min \left\{r \mid T \in \sigma_{r}\right\}$
- subrank: $Q(T)=\min \left\{r \mid I_{r} \leq T\right\}$
- ...

Today we will focus on another notion:

> the geometric rank

Setting of today

Work over algebraically closed \mathbb{F} ，e．g． $\mathbb{F}=\mathbb{C}$ ．
Variety：the common zero set of a bunch of polynomial equations $\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n} \mid p_{1}(x)=\cdots=p_{\ell}(x)=0\right\}$

We already saw some examples of varieties in the previous lectures．．．

Dimension

Natural concept:

$\operatorname{dim} 0$ dim 1

dim 2

Delicate concept: For an affine variety $X \subset \mathbb{F}^{N}$, the dimension of X is
$\operatorname{dim} X=$ the length of a maximal chain of irreducible subvarieties of X.

The codimension of $X \subset \mathbb{F}^{N}$ is codim $X=N-\operatorname{dim} X$.

Things to know about dimension

－for a linear space you already know how to compute dimensions from linear algebra
－if $X=\bigcup_{i} Y_{i}$ then $\operatorname{dim} X=\max \operatorname{dim} Y_{i}$
－if $Y \subseteq X$ then $\operatorname{dim} Y \leq \operatorname{dim} X$
－the dimension is additive for cartesian products
－A variety defined by as the common zero locus of just one equation $X=\{f=0\} \subset \mathbb{F}^{N}$ is an hypersurface and $\operatorname{dim} X=N-1$ ．

An example

Let $X=\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1} y_{1}=0, x_{1} y_{2}+y_{2} x_{1}=0\right\} \subset \mathbb{F}^{2} \times \mathbb{F}^{2}$.
We need to solve the system

$$
\left\{\begin{array} { l }
{ x _ { 1 } y _ { 1 } = 0 , } \\
{ x _ { 1 } y _ { 2 } + y _ { 1 } x _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=0 \text { or } y_{1}=0 \\
x_{1} y_{2}+y_{1} x_{2}=0
\end{array}\right.\right.
$$

- if $x_{1}=0$ then eq. 2 becomes $y_{1} x_{2}=0$. This gives
- $\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=0, y_{1}=0\right\}=\mathbb{F}^{1} \times \mathbb{F}^{1}$ or
- $\left\{\left((0,0),\left(y_{1}, y_{2}\right)\right)\right\}=\{0\} \times \mathbb{F}^{2}$.

In both cases we have 2 parameters of freedom, so the dimension of both components is 2

- if $y_{1}=0$ then the solutions are $\left\{y_{1}=x_{1}=0\right\}=\mathbb{F}^{1} \times \mathbb{F}^{1}$ and $\left\{y_{1}=0, y_{2}=0\right\}=\mathbb{F}^{2} \times\{0\}$. Again dim 2.
Hence, $X=\left\{x_{1}=x_{2}=0\right\} \cup\left\{y_{1}=y_{2}=0\right\} \cup\left\{x_{1}=y_{1}=0\right\}$, $\operatorname{dim} X=2$ and $\operatorname{codim} X=4-2=2$.

The geometric rank of a tensor

Kopparty-Moskowitz-Zuiddam 2022
Let $T=\left(t_{i, j, k}\right) \in \mathbb{F}^{n_{1}} \otimes \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}}$. Fix the $3^{\text {rd }}$ factor and take $A_{1}=\left(t_{i, j, 1}\right), \ldots, A_{n_{3}}\left(t_{i, j, n_{3}}\right) \in \mathbb{F}^{n_{1}} \otimes \mathbb{F}^{n_{2}}$.

The geometric rank of T is
$\operatorname{GR}(T):=\operatorname{codim}\left\{(x, y) \in \mathbb{F}^{n_{1}} \times \mathbb{F}^{n_{2}} \mid x^{T} A_{1} y=\cdots=x^{T} A_{n_{3}} y=0\right\}$.
The codimension of the solutions of a system of quadratic equations:

Example

Consider the W-state

$$
\begin{aligned}
T & =e_{2} \otimes e_{1} \otimes e_{1}+e_{1} \otimes e_{2} \otimes e_{1}+e_{1} \otimes e_{1} \otimes e_{2} \in \mathbb{F}^{2 \times 2 \times 2} \\
& =\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right) .
\end{aligned}
$$

To compute $\operatorname{GR}(T)$ we need to consider $x^{T} A_{1} y=0$ and $x^{T} A_{2} y=0$, i.e.

$$
\begin{aligned}
\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\binom{y_{1}}{y_{2}} & =0 \text { and }\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\binom{y_{1}}{y_{2}}=0 \\
x_{1} y_{2}+x_{2} y_{1} & =0 \text { and } x_{1} y_{1}=0
\end{aligned}
$$

In the previous example we computed $\operatorname{codim}\left\{(x, y) \mid x_{1} y_{2}+x_{2} y_{1}=x_{1} y_{1}=0.\right\}=2=\mathrm{GR}(T)$.

Let us look at the definition again

Let $T=\left(t_{i, j, k}\right) \in \mathbb{F}^{n_{1}} \otimes \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}}$. Fix the $3^{\text {rd }}$ factor and take $A_{1}=\left(t_{i, j, 1}\right), \ldots, A_{n_{3}}\left(t_{i, j, n_{3}}\right) \in \mathbb{F}^{n_{1}} \otimes \mathbb{F}^{n_{2}}$.
$\operatorname{GR}(T):=\operatorname{codim}\left\{(x, y) \in \mathbb{F}^{n_{1}} \times \mathbb{F}^{n_{2}} \mid x^{T} A_{1} y=\cdots=x^{T} A_{n_{3}} y=0\right\}$.
Fix the $1^{\text {st }}$ factor and take slices $B_{1}=\left(t_{1, j, k}\right), \ldots, B_{n_{1}}=\left(t_{n_{1}, j, k}\right)$.
We can look at

$$
\operatorname{codim}\left\{(x, y) \in \mathbb{F}^{n_{2}} \times \mathbb{F}^{n_{3}} \mid x^{T} B_{1} y=\cdots=x^{T} B_{n_{1}} y=0\right\}
$$

Do they have the same codimension?

Is GR well defined?

To answer this question，it is convenient to look at $T \in \mathbb{F}^{n_{1} \times n_{2} \times n_{3}}$ also as a multilinear map

$$
\begin{gathered}
T: \mathbb{F}^{n_{1}} \times \mathbb{F}^{n_{2}} \times \mathbb{F}^{n_{3}} \rightarrow \mathbb{F} \\
(x, y, z) \mapsto \sum_{i, j, k} t_{i, j, k} x_{i} y_{j} z_{k}
\end{gathered}
$$

In this way we can rephrase the geometric rank as

$$
\begin{aligned}
\operatorname{GR}(T) & =\operatorname{codim}\left\{(x, y) \in \mathbb{F}^{n_{1}} \times \mathbb{F}^{n_{2}} \mid T(x, y, z)=0 \forall z\right\} \\
& =\operatorname{codim}\left\{(x, y) \in \mathbb{F}^{n_{1}} \times \mathbb{F}^{n_{2}} \mid T(x, y, \cdot)=0\right\}
\end{aligned}
$$

where $T(x, y, \cdot)$ is the vector containing the slices．

Notice that
$\left\{(x, y) \mid x^{T} A_{i} y=0\right.$ for all $\left.i\right\}=\underset{x \in \mathbb{F}^{n_{1}}}{X}\left\{y \in \mathbb{F}^{n_{2}} \mid x^{T} A_{i} y=0\right.$ for all $\left.i\right\}$.
Moreover, for fixed x we have
$\operatorname{dim}\left\{y \in \mathbb{F}^{n_{2}} \mid x^{T} A_{i} y=0\right.$ for all $\left.i\right\}=\operatorname{dim} \operatorname{ker}\left[\begin{array}{c}x^{T} A_{1} \\ \vdots \\ x^{T} A_{n_{3}}\end{array}\right]=$ corank Big M.
What is this big matrix? Call it $T(x, \cdot, \cdot)$.
Define $W_{i}=\left\{x \in \mathbb{F}^{n_{1}} \mid \operatorname{corank} T(x, \cdot, \cdot)=i\right\}$ and notice that the W_{i} are a partition of $\mathbb{F}^{n_{1}}$. So $\left\{(x, y) \mid x^{T} A_{i} y=0\right.$ for all $\left.i\right\}$ equals

$$
\bigcup_{i}\left\{(x, y) \in W_{i} \times \mathbb{F}^{n_{2}} \mid x^{T} A_{1} y=\cdots=x^{T} A_{n_{3}} y=0\right\}
$$

Hence, $\operatorname{dim}\left\{(x, y) \mid x^{T} A_{i} y=0\right.$ for all $\left.i\right\}=\max _{i}\left\{\operatorname{dim} W_{i}+i\right\}$.

$$
W_{i}=\left\{x \in \mathbb{F}^{n_{1}} \mid \operatorname{corank} T(x, \cdot, \cdot)=i\right\}
$$

Now, since we are looking for codimension, we have

$$
\begin{aligned}
\operatorname{GR}(T) & =\operatorname{codim}\{(x, y) \mid T(x, y, \cdot)=0\} \\
& =n_{1}+n_{2}-\max _{i}\left\{\operatorname{dim} W_{i}+i\right\} \\
& =\min _{i}\left\{n_{1}+n_{2}-\left(\operatorname{dim} W_{i}+i\right)\right\} \\
& =\min _{i}\left\{n_{1}-\operatorname{dim}\left\{x \mid \operatorname{rk} T(x, \cdot \cdot \cdot)=n_{2}-i\right\}+n_{2}-i\right\} \\
& =\min _{j}\{\operatorname{codim}\{x \mid \operatorname{rk} T(x, \cdot, \cdot)=j\}+j\} .
\end{aligned}
$$

It only depends on x ! So if we start with $\operatorname{codim}\{(x, z) \mid T(x, \cdot, z)=0\}$ we get the same!
\Longrightarrow GR well defined!

On the big matrix

We were looking at

$$
\begin{aligned}
{\left[\begin{array}{c}
x^{T} A_{1} \\
\vdots \\
x^{T} A_{n_{3}}
\end{array}\right] } & =\left[\begin{array}{ccc}
\sum_{i} t_{i, 1,1} x_{i} & \ldots & \sum_{i} t_{i, n_{2}, 1} x_{i} \\
\vdots & & \vdots \\
\sum_{i} t_{i, 1, n_{3}} x_{i} & \ldots & \sum_{i} t_{i, n_{2}, n_{3}} x_{i}
\end{array}\right] \\
& =\left[\begin{array}{lll}
x^{\top} B_{1} & \ldots & x^{\top} B_{n_{2}}
\end{array}\right],
\end{aligned}
$$

where $A_{r}=\left(t_{i, j, r}\right)$ and $B_{s}=\left(t_{i, s, j}\right)$.
That is why we were simply calling it $T(x, \cdot, \cdot)$.

GR for many factors

The geometric rank can be defined for an arbitrary number of factors. For $T \in \mathbb{F}^{n_{1} \times \cdots \times n_{k}}, \operatorname{GR}(T)$ is the codimension of $\left\{\left(x_{1}, \ldots, x_{k-1}\right) \in \mathbb{F}^{n_{1}} \times \cdots \times \mathbb{F}^{n_{k-1}} \mid T\left(x_{1}, \ldots, x_{k-1}, x_{k}\right)=0 \forall x_{k}\right\}$.

What happens in the case of matrices?

In all notions seen so far $(R(T), Q(T) \ldots)$ when restricting to the case of matrices, all these notions correspond to the well known rank of matrices rk.

Does this happens also for GR?
Take $T=\left(t_{i, j}\right) \in \mathbb{F}^{m} \times \mathbb{F}^{n}$. We have

$$
\begin{aligned}
\operatorname{GR}(T) & =\operatorname{codim}\{(x, y) \mid \forall x T(x, y)=0\} \\
& =n-\operatorname{dim}\left\{y \in \mathbb{F}^{n} \mid \sum_{j} t_{1, j} y_{j}=\cdots=\sum_{j} t_{m, j} y_{j}=0\right\} \\
& =n-\operatorname{dim}\{y \mid T y=0\}=n-\operatorname{dim} \operatorname{ker} T=\operatorname{rk} T
\end{aligned}
$$

Properties of GR

- if $S \leq T$ then $\operatorname{GR}(S) \leq \operatorname{GR}(T)$
- first prove that $(A, I, I) \cdot T$ has GR less or equal than $\mathrm{GR}(T)$, then chain with $(I, B, I) \cdot T$ and $(I, I, C) \cdot T$.
- $\operatorname{GR}(S \oplus T)=\operatorname{GR}(S)+\operatorname{GR}(T)$, for $S \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}, T \in \mathbb{F}^{n_{1} \times n_{2} \times n_{3}}$
- If S and T have slices $A_{1}, \ldots, A_{m_{3}}$ and $B_{1}, \ldots, B_{n_{3}}$ then $S \oplus T$ has slices $A_{i} \oplus 0$ and $0 \oplus B_{j}$ and the variables do not interact with each others.
- sub additive element wise
- Since $S+T \leq S \oplus T$ and $\operatorname{GR}(S \oplus T)=\operatorname{GR}(S)+\operatorname{GR}(T)$.
- GR is not submultiplicative under kronecker product (e.g. $M_{n n n}$)

Example M_{222}

We already saw that $M_{222} \sim M_{211} \boxtimes M_{121} \boxtimes M_{112}$ ．
It is easy to prove that $\operatorname{GR}\left(M_{112}\right)=\operatorname{GR}\left(M_{121}\right)=\operatorname{GR}\left(M_{211}\right)=1$ ：

$$
M_{112}=e_{1} \otimes\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right) \text { only one slice } \Longrightarrow \mathrm{GR}=1
$$

Let us compute now GR of $M_{2,2,2}$

$$
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
$$

We need to find the dimension of

$$
\left\{x_{1} y_{1}+x_{2} y_{3}=x_{1} y_{2}+x_{2} y_{4}=x_{3} y_{1}+x_{4} y_{3}=x_{3} y_{2}+x_{4} y_{4}=0\right\} .
$$

This is given by 3 pieces each having dimension 5
$\Longrightarrow \operatorname{GR}\left(M_{2,2,2}\right)=3$.

$\operatorname{GR}\left(I_{r}\right)$

Recall that $I_{r}=\sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes e_{i} \in \mathbb{F}^{r \times r \times r}$ and let us compute $\operatorname{GR}\left(I_{r}\right)$.

For $r=1$ we have to look at $\{x y=0\}=\{x=0\} \cup\{y=0\}$. So $\operatorname{dim}\{(x, y) \in \mathbb{F} \times \mathbb{F} \mid x y=0\}=1$, therefore $\operatorname{GR}\left(I_{1}\right)=2-1=1$.

In general we have $\operatorname{GR}\left(I_{r}\right)=r$.
Indeed, $I_{r}=\oplus^{r} I_{1}$ and we have additivity under direct sum, So $\mathrm{GR}\left(I_{r}\right)=r \mathrm{GR}\left(I_{1}\right)=r$.

You can also directly compute that $\left\{(x, y) \mid x_{1} y_{1}=\cdots=x_{r} y_{r}=0\right\}$ has dimension r and so $\operatorname{GR}\left(I_{r}\right)=2 r-r=r$.

Comparing GR with other ranks

We want to prove that

$$
Q(T) \leq \operatorname{GR}(T) \leq S R(T)
$$

- Assume $Q(T)=s$, so $I_{s} \leq T$. We just computed that $\mathrm{GR}\left(I_{s}\right)=s$ and we know that GR is monotone under restriction: $\operatorname{GR}\left(I_{s}\right) \leq \operatorname{GR}(T)$. So

$$
Q(T)=s=\operatorname{GR}\left(I_{s}\right) \leq \operatorname{GR}(T)
$$

- First, notice that if $S R(T)=1$ then $\operatorname{GR}(T)=1$. Hence $\operatorname{codim}\left\{(x, y) \mid x^{T} A x=0\right\}=n_{2}+n_{3}-\left(n_{2}+n_{3}-1\right)=1=$ $\operatorname{GR}(T)$. Assume $S R(T)=r$, so $T=\sum_{i}^{r} T_{i}$ where each T_{i} has slice rank 1 . So $\mathrm{GR}\left(T_{i}\right)=1$ for all i. We conclude by element wise subadditivity.

Application to hypergraphs

Undirected uniform hypergraph $H:=(V, E)$

$$
V=\{1, \ldots, n\} \text { and } E \subset 2^{V} \text { such that } \# e=3 \quad \forall e \in E
$$

We associate to H a tensor $T=\left(t_{i, j, k}\right) \in \mathbb{F}^{n \times n \times n}$ as follows:

$$
t_{i, j, k}:= \begin{cases}1 & \text { if }\{i, j, k\} \in E \text { or } i=j=k \\ 0 & \text { otherwise }\end{cases}
$$

The independence number of H is $\alpha:=\#$ largest set of vertices containing no edges of H.
The value α can be bounded by

- subrank (hard to compute)
- geometric rank (easy to compute).

Some more applications

For $T \in \mathbb{F}^{n \times n \times n}$, the border subrank is defined as

$$
\underline{Q}=\max r \text { such that } I_{r} \in \overline{G L_{n} \times G L_{n} \times G L_{n} \cdot T}
$$

and

$$
\operatorname{GR}(T) \geq \underline{Q}(T)
$$

As a consequence, the authors prove that $\underline{Q}\left(M_{n, n, n}\right)=\left\lceil 3 / 4 n^{2}\right\rceil$.

Some references on the topic

S．Kopparty，G Moshkovitz，J Zuiddam：Geometric rank of tensors and subrank of matrix multiplication．Discrete Analysis， 2023.

A more geometric perspectivre
－R Geng and J M Landsberg．On the geometry of geometric rank．Algebra and Number Theory，16（5）：1141－1160， 2022.
－R Geng．Geometric rank and linear determinantal varieties． European Journal of Mathematics 9.2 （2023）： 23.

Let us focus on symmetric tensors

An important class of tensors $\mathbb{F}^{n \times n \times n}$ is the one of symmetric tensors.
A tensor $T=\left(t_{i, j, k}\right) \in \mathbb{F}^{n \times n \times n}$ is symmetric if

$$
t_{i, j, k}=t_{\sigma(i), \sigma(j), \sigma(k)}, \text { for all } \sigma \in \mathfrak{S}_{3} .
$$

Symmetric tensors actually form a vector space that is usually denoted as

$$
\operatorname{Sym}^{3} \mathbb{F}^{n}=\left\{T \in \mathbb{F}^{n \times n \times n} \mid T \text { is symmetric }\right\} .
$$

- The W-state $T=e_{2} \otimes e_{1} \otimes e_{1}+e_{1} \otimes e_{2} \otimes e_{1}+e_{1} \otimes e_{1} \otimes e_{2}$ is symmetric.

Symmetric rank

All notions of tensors seen so far can be adapted for the particular case of symmetric tensors. For $T \in \mathrm{Sym}^{3} \mathbb{F}^{n}$ we can look at

$$
R(\cdot)=\min \left\{r \mid T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}\right\} \quad \text { tensor rank }
$$

but also at

$$
R_{\text {sym }}(\cdot):=\min \left\{r \mid T=\sum_{i=1}^{r} v_{i} \otimes v_{i} \otimes v_{i}\right\} \quad \text { Waring rank }
$$

We have

$$
R \leq R_{\text {sym }} .
$$

Understanding when equality holds is the well-known Comon's problem.

Symmetric geometric rank

Also for the geometric rank we can consider its symmetrization. Recall that for $T \in \operatorname{Sym}^{3} \mathbb{F}^{n}$,

$$
\operatorname{GR}(T)=\operatorname{codim}\left\{(x, y) \in \mathbb{F}^{n} \times \mathbb{F}^{n} \mid x^{T} A_{1} y=\cdots=x^{T} A_{n} y=0\right\}
$$

$$
x^{T} A_{i} y \rightsquigarrow x^{T} A_{i} x
$$

Denote by $A_{1} \ldots, A_{n}$ the slices of $T \in \operatorname{Sym}^{3}\left(\mathbb{F}^{n}\right)$. The symmetric geometric rank of T is

$$
\operatorname{SGR}(T):=\operatorname{codim}\left\{x \in \mathbb{F}^{n} \mid x^{T} A_{1} x=\cdots=x^{T} A_{n} x=0\right\}
$$

Symmetric geometric rank I

For $T \in \operatorname{Sym}^{3}\left(\mathbb{F}^{n}\right), A_{i}$ slice of T

$$
\operatorname{SGR}(T):=\operatorname{codim}\left\{x \in \mathbb{F}^{n} \mid x^{T} A_{1} x=\cdots=x^{T} A_{n} x=0\right\}
$$ not very revealing...

But hey, symmetric tensors are homogeneous polynomials!

$$
\begin{aligned}
\operatorname{Sym}^{3} \mathbb{F}^{n} & \sim \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(3)} \\
T=\left(t_{i, j, k}\right) & \mapsto \sum t_{i, j, k} x_{i} x_{j} x_{k}=: F .
\end{aligned}
$$

Moreover,

$$
x^{T} A_{i} x \cong \frac{\partial F}{\partial x_{i}}
$$

Example

 for $x^{\top} A_{i x} \cong \frac{\partial F}{\partial x_{i}}$$$
\begin{aligned}
& T=e_{1} \otimes e_{1} \otimes e_{2}+e_{1} \otimes e_{2} \otimes e_{1}+e_{2} \otimes e_{1} \otimes e_{1}, \text { or equivalently } \\
& F=x_{1} x_{1} x_{2}+x_{1} x_{2} x_{1}+x_{2} x_{1} x_{1}=3 x_{1}^{2} x_{2} .
\end{aligned}
$$

$$
\begin{aligned}
T & =e_{1} \otimes\left(e_{2} \otimes e_{1}+e_{1} \otimes e_{2}\right) & & +e_{2} \otimes e_{1} \otimes e_{1} \\
& =e_{1} \otimes A_{1} & & +e_{2} \otimes A_{2} \\
& =e_{1} \otimes\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & & +e_{2} \otimes\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
\frac{\partial F}{\partial x_{1}} & =6 x_{1} x_{2}=3 \cdot x^{T} A_{1} x & & \frac{\partial F}{\partial x_{2}}=3 x_{1}^{2}=3 \cdot x^{T} A_{2} x
\end{aligned}
$$

$x^{T} A_{i} x$ is equal to $\frac{\partial F}{\partial x_{i}}$ up to a non zero scalar.

Symmetric geometric rank II

Let F be the homogeneous polynomial associated to T,

$$
\begin{aligned}
\operatorname{SGR}(T) & :=\operatorname{codim}\left\{x \in \mathbb{F}^{n} \mid x^{T} A_{1} x=\cdots=x^{T} A_{n} x=0\right\} \\
& =\operatorname{codim}\left\{x \in \mathbb{F}^{n} \left\lvert\, \frac{\partial F}{\partial x_{1}}=\cdots=\frac{\partial F}{\partial x_{n}}=0\right.\right\} .
\end{aligned}
$$

Symmetric geometric rank II

Let F be the homogeneous polynomial associated to T,

$$
\begin{aligned}
\operatorname{SGR}(T) & :=\operatorname{codim}\left\{x \in \mathbb{F}^{n} \mid x^{T} A_{1} x=\cdots=x^{T} A_{n} x=0\right\} \\
& =\operatorname{codim}\left\{x \in \mathbb{F}^{n} \left\lvert\, \frac{\partial F}{\partial x_{1}}=\cdots=\frac{\partial F}{\partial x_{n}}=0\right.\right\}
\end{aligned}
$$

Recall:

- The zero locus $X_{F}=\{F=0\} \subset \mathbb{F}^{n}$ of F is an hypersurface.
- A point $p \in \mathbb{F}^{n}$ is singular for X_{F} if $F(p)=0$ and $\frac{\mathrm{d} F(p)}{\mathrm{d} x_{i}}=0$ for all i.
- The singular locus of X_{F} is $\operatorname{Sing}(F)=\left\{\frac{\mathrm{d} F}{\mathrm{~d} x_{0}}=\cdots=\frac{\mathrm{d} F}{\mathrm{~d} x_{n}}=0\right\}$.

Symmetric geometric rank II

Let F be the homogeneous polynomial associated to T,

$$
\begin{aligned}
\operatorname{SGR}(T) & :=\operatorname{codim}\left\{x \in \mathbb{F}^{n} \mid x^{T} A_{1} x=\cdots=x^{\top} A_{n} x=0\right\} \\
& =\operatorname{codim}\left\{x \in \mathbb{F}^{n} \left\lvert\, \frac{\partial F}{\partial x_{1}}=\cdots=\frac{\partial F}{\partial x_{n}}=0\right.\right\}
\end{aligned}
$$

$$
\operatorname{SGR}(T):=\operatorname{codim}_{\mathbb{F}^{n}}(\operatorname{Sing}(F))
$$

Already well defined!
Already generalizable to an arbitrary number of factors.

Relation between GR and SGR

For a $T \in \operatorname{SymF}^{3} \subset \mathbb{F}^{n \times n \times n}$ we have

$$
\operatorname{SGR}(T) \leq \operatorname{GR}(T)
$$

Inclusion can be strict!Take
$T=e_{1} \otimes e_{1} \otimes e_{2}+e_{1} \otimes e_{2} \otimes e_{1}+e_{2} \otimes e_{1} \otimes e_{1}=3 x_{1}^{2} x_{2}=F$.

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

For GR solve $\left\{\begin{array}{l}x^{T} A_{1} y=x_{1} y_{2}+x_{2} y_{1}=0 \\ x^{T} A_{2} y=x_{1} y_{1}=0\end{array} \quad \Longrightarrow \operatorname{GR}(T)=2\right.$.
For SGR solve $\left\{\begin{array}{l}x^{T} A_{1} x=2 x_{1} x_{2}=0 \\ x^{T} A_{2} x=x_{1}^{2}=0\end{array} \quad \Longrightarrow \operatorname{SGR}(T)=1\right.$.
Reference: J Lindberg, P Santarsiero: The symmetric geometric rank of symmetric tensors. arXiv preprint, arXiv:2303.17537, 2023.

Questions？

Thank you for the attention！

