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Recap and plan for today

® Tensorrank: Tec U@V W

r ueU
R(T):min r:T:ZUi®Vf®W,‘Z V,'EV
i=1 w; € W

® What do we do today?
® Tensor rank is not (lower) semicontinuous;
® Border rank and secant varieties;
® | ower bounds for border rank;
® Degeneration of tensors;

® Asymptotic rank is determined by border rank.
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Semicontinuity of matrix rank

Recall: The tensor rank of a tensor of order two is its rank as a matrix.
Lemma. The set
or={M:U" = V| rankM)<r} CU®V
is closed (in the Euclidean topology of U ® V).
Proof. Consider the map
U Vv —c"
M ( all size (r + 1) minors ) .

of M (in some fixed basis)

This map is continuous because it is given by an N-uple of polynomials (here
N = (dim U) (dim V) )

r+1 r+1

The set o, is the preimage of {0} so it is closed. O
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Non-semicontinuity of tensor rank

A classical example (essentially due to Sylvester — 1852). Consider
w=11)®[0) ®[0) + |0) ® |1) ® |0) + |0) ® |0) ® |1).
Last week, we saw that R(Jjw)) = 3.

However )
. 1
w = lim g(|0)+5|1))®3—g|0>®3 .

e—0

So w = lim.0 Tc with R(T.) = 2 when ¢ # 0.

This shows that the set
o, ={TeUVeW:R(T)<r}

is NOT closed in general.
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Border rank and secant varieties
Let o, = o2 be the closure of the set of tensors of rank at most r.

The border rank of a tensor T is
R(T)=min{reN: T € o,}.

Note: R(T) < R(T). We just saw R(Jw)) < 2.

Important Fact: The set o, is an algebraic variety: it is the zero set of a
collection of polynomial equations on U ® V ® W. [Chevalley's Theorem]

For instance, in the case of matrices, o, is the zero set of the collection of
minors of size r + 1.

The variety o1 = {uv@w:u e U,v e V,w € W} is called Segre variety of
rank one tensors.

The variety o, is the r-th secant variety of the Segre variety.
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Lower bounds for border rank

Given T e U® V @ W, how to determine R(T).
® Upper bounds
® We try to give explicit expressions.
® We do not have a systematic way to do it.

® Maybe surprisingly: many good ways to tweak numerical methods.

® | ower bounds

® We look for equations and use them as obstructions:
For FEC[U® V ® W]

Flo,=0and F(T)#0 = R(T)>r.

® The secant variety o C U ® V ® W is a variety invariant for the action of
GL(U) x GL(V) x GL(W)

® Highest weight vectors methods (Christian’s talk)

® Flattening methods
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Flattening methods

A flattening of U® V ® W is a linear maps
Flat : U® V ® W — Hom(&, F)
for two vector spaces &, F.

We use flattenings to translate membership in o, into membership into a set of
low rank matrices.

Let ro = max{rank(Flat(T)): T € o1}.

Proposition. [Landsberg-Ottaviani]
Let TeU Vo W.

If T € o then rank(Flat(T)) < r- ro.
Equivalently, if rank(Flat(T)) > R, then R(T) > R/ro.
Proof. If R(T) < r, then the statement is clear by linearity.

But on the matrix side, rank(Flat(T)) < ror is a closed condition, so it also
holds at the limit.
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Flattening methods: standard flattenings

Atensor T € U® V ® W, defines a linear map
Ty:U" - VeW

ar— a(T)
via contraction on the first factor. Similarly Ty, Tw.
Claim. If T=u® v ® w, then rank(Ty) =ro = 1.
Indeed: image(Ty) = {a(u) - v w:a € U'} = span(v ® w).
Consequence. R(T) > rank(Ty).
Example. We show R(l;) = r where

L=h)eh)l)+ - +|nNe|nelry € UsVeW.

We have
Tu((kly) = k) @ k)

therefore image(Ty) = span(|1,1),,...,|r, r)y, ), which has dimension r.
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Flattening methods: Koszul flattenings

Let Te U® V ® W. Let Flat(T) be the composition
UeWw EW v we W £ Ve Aw
where skew(ws ® w2) = 2(w1 ®@ w2 — w2 @ wa).

Claim. If T = u® v ® w, then rank(Flat(T)) = ro = dim W — 1.

Indeed
a®@w —

a(v) - vawew —
a(v) - vewew —w e w)

The image is (canonically) isomorphic to span(v) @ W /span(w).
It has dimension equal to dim W — 1.

9/16



An Example

Let dmU =dimV =dmW =3. So ro = 2.
Let T=[L1L 1w +12,2,2) yuw + 13,3 3) pow + 11,2, 3) yuy-
We show R(T) > 4 by showing rank(Flat(T)) > 7.

fi=23 (|, @), 2

skew

1 Dvw @ ) w = ".>v ® l">w )y —

iy @ (i ) ww — Uy ) ww)-
Get 4 linearly independent elements in image(Flat(T)).

R . T, id
If i =1: <1‘U®‘J>WM

skew

(|1: 1>VW + ‘273>vw) ® |J>W —

|1>v ® (‘17j>WW - |Jv 1>WW) + |2>v ® (|3’j>WW - U» 3>WW)

Get 3 more linearly independent elements in image(Flat(T)).
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More general flattenings

Young flattenings built on other representations of GL x GL x GL.
We can use representation theory to compute ranks of the flattenings.

Standard flattenings give all equations of o, for r = 1,2.
[classical] 4+ [Landsberg-Manivel]

Koszul flattenings give all equations of o, for r = 3.
[Strassen] + [Q]]

Barriers:
no flattening gives equations for r > 6n if dim U = dim V =dim W = n.
[Galazka] + [Efremenko-Garg-Oliveira-Wigderson]

Other methods for lower bounds:
Apolarity, border apolarity, border substitution.

[larrobino] + [Buczyrniska-Buczyniski] 4+ [Landsberg-Michatek]
They go further, but we do not really know how far.

11/16



Degeneration of tensors

Given two tensors T,S® U® V ® W, we say that T restricts to S if there
exist linear maps

A:U—=U B:V-V C:W->Ww

such that
(A B® C)(T)=S.

We say that T degenerates to S if there exist linear maps
Ae): U= U, B():V—=V, ClE):W-—=W
depending polynomially on a formal variable ¢ such that
(A(e) @ B(e) ® C(e)(T) = €S, + ™S00 + - - - +€°S.
with § = S,.

We have
T restricts to S = T degenerates to S.

Geometrically: A degeneration is a limit of restrictions along a curve a degree e.
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Degeneration of tensors - cont'd

Example. Consider
A(e) = B(e) = C(e) : C* — C?
|0) — [0) + €[1)
1) — —[0)
As 2 x 2 matrices
A(e)=B(e)=C(e) = (1 3)
Recall the second unit tensor:
I, =10)®|0)®|0)+ |1) ® 1) ® |1).

Then
A(e) ® B(e) ® C(e)(la) = ew + €251 + £°S,
Therefore 1, degenerates to w.

Theorem.
R(T) < r if and only if I, degenerates to T.
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Border rank and asymptotic rank

Recall the notion of asymptotic rank of a tensor:
R(T) = lim [R(TE*V)YN, R(T) = lim [R(T®)]*/".
~ N— oo ~ N— oo

Theorem. [Bini-Capovani-Lotti-Romani 1979, Bini 1980]
R(T) =R(T)

Proposition.
If T=I1im(A(e) ® B(e) ® C(g))I; with deg A(¢), deg B(e),deg C(e) < e, then

R(THM) < rV(3eN +1).
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Proposition.

If T=Iim(A(e) ® B(e) ® C(g))I, with deg A(e), deg B(e),deg C(c) < e, (as
functions of ¢), then

R(T®N) < rV(3eN + 1).
Proof.
Let T. = (A(e) ® B(e) ® C(€))!,. This is a curve of degree (at most) 3e (in ¢)
in the space of tensors.

Interpolation:
3e + 1 generic points on a curve of degree 3e have the same span as the whole
curve. In particular, they span T.

For e # 0, R(T.) < r. Expressing T as linear combination of 3e + 1 tensors on

the curve yields
R(T) < r(3e+1).

This is the statement for N = 1.
Now:

TV = lim(A(e)™" @ B(e)™ @ C(e)™™)(1,)*".
Recall PN = 1.
Also, if A(¢) has degree at most e, then A(e)®" has degree at most e/.
Repeat the argument above.
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Theorem. B
Let R(T) = limyoo [R(TEM]YY, R(T) = limy— oo [R(THM)]*/V. Then

R(T) =R(T).

Proof. B
Since R(T) < R(T), we have R(T) <R(T).

Define rx = R(T™¥). We show R(T) < r,l(/K.
We have

R(T) < [R(THM)IVN <

< [R((T®K)|ZIN/K)]1/N <

<[/ Bex i + DIVY = /" (Bex i + 1)V,
As N — oo, we obtain R(T) < r;l/K.

We conclude B
R(T) < lim ri/* =R(T).
~ K—oo ~
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