Border Rank equations and geometry

Fulvio Gesmundo

Recap and plan for today

- Tensor rank: $T \in U \otimes V \otimes W$

$$
\mathrm{R}(T)=\min \left\{r: T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}: \begin{array}{l}
u_{i} \in U \\
v_{i} \in V \\
w_{i} \in W
\end{array}\right\} .
$$

- What do we do today?
- Tensor rank is not (lower) semicontinuous;
- Border rank and secant varieties;
- Lower bounds for border rank;
- Degeneration of tensors;
- Asymptotic rank is determined by border rank.

Semicontinuity of matrix rank

Recall: The tensor rank of a tensor of order two is its rank as a matrix.
Lemma. The set

$$
\sigma_{r}=\left\{M: U^{*} \rightarrow V \mid \operatorname{rank}(M) \leq r\right\} \subseteq U \otimes V
$$

is closed (in the Euclidean topology of $U \otimes V$).
Proof. Consider the map

$$
\begin{aligned}
U \otimes V & \rightarrow \mathbb{C}^{N} \\
M & \mapsto\binom{\text { all size }(r+1) \text { minors }}{\text { of } M(\text { in some fixed basis) }} .
\end{aligned}
$$

This map is continuous because it is given by an N-uple of polynomials (here $\left.N=\binom{\operatorname{dim} U}{r+1}\binom{\operatorname{dim} V}{r+1}\right)$.
The set σ_{r} is the preimage of $\{0\}$ so it is closed.

Non-semicontinuity of tensor rank

A classical example (essentially due to Sylvester - 1852). Consider

$$
\mathbf{w}=|1\rangle \otimes|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle \otimes|0\rangle+|0\rangle \otimes|0\rangle \otimes|1\rangle .
$$

Last week, we saw that $R(|w\rangle)=3$.
However

$$
\mathbf{w}=\lim _{\varepsilon \rightarrow 0}\left[\frac{1}{\varepsilon}(|0\rangle+\varepsilon|1\rangle)^{\otimes 3}-\frac{1}{\varepsilon}|0\rangle^{\otimes 3}\right] .
$$

So $\mathbf{w}=\lim _{\varepsilon \rightarrow 0} T_{\varepsilon}$ with $\mathrm{R}\left(T_{\varepsilon}\right)=2$ when $\varepsilon \neq 0$.
This shows that the set

$$
\sigma_{r}^{\circ}=\{T \in U \otimes V \otimes W: R(T) \leq r\}
$$

is NOT closed in general.

Border rank and secant varieties

Let $\sigma_{r}=\overline{\sigma_{r}^{\circ}}$ be the closure of the set of tensors of rank at most r.

The border rank of a tensor T is

$$
\underline{\mathrm{R}}(T)=\min \left\{r \in \mathbb{N}: T \in \sigma_{r}\right\} .
$$

Note: $\underline{\mathrm{R}}(T) \leq \mathrm{R}(T)$. We just saw $\underline{\mathrm{R}}(|\mathbf{w}\rangle) \leq 2$.

Important Fact: The set σ_{r} is an algebraic variety: it is the zero set of a collection of polynomial equations on $U \otimes V \otimes W$. [Chevalley's Theorem]

For instance, in the case of matrices, σ_{r} is the zero set of the collection of minors of size $r+1$.

The variety $\sigma_{1}=\{u \otimes v \otimes w: u \in U, v \in V, w \in W\}$ is called Segre variety of rank one tensors.

The variety σ_{r} is the r-th secant variety of the Segre variety.

Lower bounds for border rank

Given $T \in U \otimes V \otimes W$, how to determine $\underline{R}(T)$.

- Upper bounds
- We try to give explicit expressions.
- We do not have a systematic way to do it.
- Maybe surprisingly: many good ways to tweak numerical methods.
- Lower bounds
- We look for equations and use them as obstructions: For $F \in \mathbb{C}[U \otimes V \otimes W]$

$$
\left.F\right|_{\sigma_{r}} \equiv 0 \text { and } F(T) \neq 0 \Rightarrow \underline{\mathrm{R}}(T)>r
$$

- The secant variety $\sigma_{r} \subseteq U \otimes V \otimes W$ is a variety invariant for the action of $\mathrm{GL}(U) \times \mathrm{GL}(V) \times \mathrm{GL}(W)$
- Highest weight vectors methods (Christian's talk)
- Flattening methods

Flattening methods

A flattening of $U \otimes V \otimes W$ is a linear maps

$$
\text { Flat : } U \otimes V \otimes W \rightarrow \operatorname{Hom}(\mathcal{E}, \mathcal{F})
$$

for two vector spaces \mathcal{E}, \mathcal{F}.
We use flattenings to translate membership in σ_{r} into membership into a set of low rank matrices.

Let $r_{0}=\max \left\{\operatorname{rank}(\operatorname{Flat}(T)): T \in \sigma_{1}\right\}$.
Proposition. [Landsberg-Ottaviani]
Let $T \in U \otimes V \otimes W$.

$$
\text { If } T \in \sigma_{r} \text { then } \operatorname{rank}(\operatorname{Flat}(T)) \leq r \cdot r_{0}
$$

Equivalently, if $\operatorname{rank}(\operatorname{Flat}(T))>R$, then $\underline{R}(T)>R / r_{0}$.
Proof. If $\mathrm{R}(T) \leq r$, then the statement is clear by linearity.
But on the matrix side, $\operatorname{rank}(\operatorname{Flat}(T)) \leq r_{0} r$ is a closed condition, so it also holds at the limit.

Flattening methods: standard flattenings

A tensor $T \in U \otimes V \otimes W$, defines a linear map

$$
\begin{aligned}
T_{U}: U^{*} & \rightarrow V \otimes W \\
\alpha & \mapsto \alpha(T)
\end{aligned}
$$

via contraction on the first factor. Similarly T_{V}, T_{w}.
Claim. If $T=u \otimes v \otimes w$, then $\operatorname{rank}\left(T_{U}\right)=r_{0}=1$.
Indeed: image $\left(T_{U}\right)=\left\{\alpha(u) \cdot v \otimes w: \alpha \in U^{*}\right\}=\operatorname{span}(v \otimes w)$.
Consequence. $\underline{\mathrm{R}}(T) \geq \operatorname{rank}\left(T_{U}\right)$.
Example. We show $\underline{R}\left(I_{r}\right)=r$ where

$$
\mathbf{I}_{r}=|1\rangle \otimes|1\rangle \otimes|1\rangle+\cdots+|r\rangle \otimes|r\rangle \otimes|r\rangle \quad \in \quad U \otimes V \otimes W .
$$

We have

$$
T_{U}\left(\left\langle\left. k\right|_{U}\right)=|k\rangle_{V} \otimes|k\rangle_{W}\right.
$$

therefore image $\left(T_{U}\right)=\operatorname{span}\left(|1,1\rangle_{U V}, \ldots,|r, r\rangle_{U V}\right)$, which has dimension r.

Flattening methods: Koszul flattenings

Let $T \in U \otimes V \otimes W$. Let $\operatorname{Flat}(T)$ be the composition

$$
U^{*} \otimes W \xrightarrow{T_{U} \otimes \operatorname{Id}_{W}} V \otimes W \otimes W \xrightarrow{\text { skew }} V \otimes \Lambda^{2} W
$$

where $\operatorname{skew}\left(w_{1} \otimes w_{2}\right)=\frac{1}{2}\left(w_{1} \otimes w_{2}-w_{2} \otimes w_{1}\right)$.
Claim. If $T=u \otimes v \otimes w$, then $\operatorname{rank}(\operatorname{Flat}(T))=r_{0}=\operatorname{dim} W-1$.
Indeed

$$
\begin{aligned}
& \alpha \otimes w^{\prime} \mapsto \\
& \quad \alpha(u) \cdot v \otimes w \otimes w^{\prime} \mapsto \\
& \quad \alpha(u) \cdot v \otimes\left(w \otimes w^{\prime}-w^{\prime} \otimes w\right)
\end{aligned}
$$

The image is (canonically) isomorphic to $\operatorname{span}(v) \otimes W / \operatorname{span}(w)$. It has dimension equal to $\operatorname{dim} W-1$.

An Example

Let $\operatorname{dim} U=\operatorname{dim} V=\operatorname{dim} W=3$. So $r_{0}=2$.
Let $T=|1,1,1\rangle_{U V W}+|2,2,2\rangle_{U V W}+|3,3,3\rangle_{U V W}+|1,2,3\rangle_{U V W}$.
We show $\underline{\mathrm{R}}(T) \geq 4$ by showing $\operatorname{rank}(\operatorname{Flat}(T)) \geq 7$.
If $i=2,3$:

$$
\begin{aligned}
& \left\langle\left. i\right|_{U} \otimes \mid j\right\rangle_{W} \xrightarrow{T_{U} \otimes \mathrm{id}_{W}} \\
& |i, i\rangle_{V W} \otimes|j\rangle_{W}=|i\rangle_{V} \otimes|i\rangle_{W} \otimes|j\rangle_{W} \xrightarrow{\text { skew }} \\
& \quad|i\rangle_{V} \otimes\left(|i, j\rangle_{W W}-|j, i\rangle_{W W}\right) .
\end{aligned}
$$

Get 4 linearly independent elements in image(Flat $(T))$.
If $i=1$:

$$
\begin{aligned}
& \left\langle\left. 1\right|_{U} \otimes \mid j\right\rangle_{W} \xrightarrow{T_{U} \otimes \mathrm{id}_{W}} \\
& \left(|1,1\rangle_{V W}+|2,3\rangle_{V W}\right) \otimes|j\rangle_{W} \xrightarrow{\text { skew }}
\end{aligned}
$$

$$
|1\rangle_{v} \otimes\left(|1, j\rangle_{w w}-|j, 1\rangle_{w w}\right)+|2\rangle_{v} \otimes\left(|3, j\rangle_{w w}-|j, 3\rangle_{w w}\right)
$$

Get 3 more linearly independent elements in image(Flat(T)).

More general flattenings

- Young flattenings built on other representations of $\mathrm{GL} \times \mathrm{GL} \times \mathrm{GL}$.
- We can use representation theory to compute ranks of the flattenings.
- Standard flattenings give all equations of σ_{r} for $r=1,2$. [classical] + [Landsberg-Manivel]
- Koszul flattenings give all equations of σ_{r} for $r=3$. [Strassen] $+[\mathrm{Qi}]$
- Barriers: no flattening gives equations for $r \geq 6 n$ if $\operatorname{dim} U=\operatorname{dim} V=\operatorname{dim} W=n$. [Galazka] + [Efremenko-Garg-Oliveira-Wigderson]
- Other methods for lower bounds:

Apolarity, border apolarity, border substitution.
[larrobino] + [Buczyńska-Buczyński] + [Landsberg-Michałek]
They go further, but we do not really know how far.

Degeneration of tensors

Given two tensors $T, S \otimes U \otimes V \otimes W$, we say that T restricts to S if there exist linear maps

$$
A: U \rightarrow U \quad B: V \rightarrow V \quad C: W \rightarrow W
$$

such that

$$
(A \otimes B \otimes C)(T)=S
$$

We say that T degenerates to S if there exist linear maps

$$
A(\varepsilon): U \rightarrow U, \quad B(\varepsilon): V \rightarrow V, \quad C(\varepsilon): W \rightarrow W
$$

depending polynomially on a formal variable ε such that

$$
(A(\varepsilon) \otimes B(\varepsilon) \otimes C(\varepsilon))(T)=\varepsilon^{a} S_{a}+\varepsilon^{a+1} S_{a+1}+\cdots+\varepsilon^{e} S_{e}
$$

with $S=S_{a}$.

We have

$$
T \text { restricts to } S \Rightarrow T \text { degenerates to } S
$$

Geometrically: A degeneration is a limit of restrictions along a curve a degree e.

Degeneration of tensors - cont'd

Example. Consider

$$
\begin{aligned}
A(\varepsilon)=B(\varepsilon)=C(\varepsilon): \mathbb{C}^{2} & \rightarrow \mathbb{C}^{2} \\
|0\rangle & \mapsto|0\rangle+\varepsilon|1\rangle \\
|1\rangle & \mapsto-|0\rangle
\end{aligned}
$$

As 2×2 matrices

$$
A(\varepsilon)=B(\varepsilon)=C(\varepsilon)=\left(\begin{array}{cc}
1 & -1 \\
\varepsilon & 0
\end{array}\right)
$$

Recall the second unit tensor:

$$
\mathbf{I}_{2}=|0\rangle \otimes|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \otimes|1\rangle .
$$

Then

$$
A(\varepsilon) \otimes B(\varepsilon) \otimes C(\varepsilon)\left(\mathbf{I}_{2}\right)=\varepsilon \mathbf{w}+\varepsilon^{2} S_{1}+\varepsilon^{3} S_{2}
$$

Therefore $\mathbf{I}_{\mathbf{2}}$ degenerates to \mathbf{w}.
Theorem.
$\underline{\mathrm{R}}(T) \leq r$ if and only if \mathbf{I}_{r} degenerates to T.

Border rank and asymptotic rank

Recall the notion of asymptotic rank of a tensor:

$$
\underset{\sim}{\mathrm{R}}(T)=\lim _{N \rightarrow \infty}\left[\mathrm{R}\left(T^{\boxtimes N}\right)\right]^{1 / N}, \quad \underset{\sim}{\mathrm{R}}(T)=\lim _{N \rightarrow \infty}\left[\underline{\mathrm{R}}\left(T^{\boxtimes N}\right)\right]^{1 / N} .
$$

Theorem. [Bini-Capovani-Lotti-Romani 1979, Bini 1980]
$\underset{\sim}{\mathrm{R}}(T)=\underset{\sim}{\mathrm{R}}(T)$

Proposition.

If $T=\lim (A(\varepsilon) \otimes B(\varepsilon) \otimes C(\varepsilon)) \mathbf{I}_{r}$ with $\operatorname{deg} A(\varepsilon), \operatorname{deg} B(\varepsilon), \operatorname{deg} C(\varepsilon) \leq e$, then

$$
\mathrm{R}\left(T^{\boxtimes N}\right) \leq r^{N}(3 e N+1)
$$

Proposition.

If $T=\lim (A(\varepsilon) \otimes B(\varepsilon) \otimes C(\varepsilon)) \mathbf{I}_{r}$ with $\operatorname{deg} A(\varepsilon), \operatorname{deg} B(\varepsilon), \operatorname{deg} C(\varepsilon) \leq e$, (as functions of ε), then

$$
\mathrm{R}\left(T^{\boxtimes N}\right) \leq r^{N}(3 e N+1)
$$

Proof.
Let $T_{\varepsilon}=(A(\varepsilon) \otimes B(\varepsilon) \otimes C(\varepsilon)) \mathbf{I}_{r}$. This is a curve of degree (at most) $3 e$ (in ε) in the space of tensors.

Interpolation:
$3 e+1$ generic points on a curve of degree $3 e$ have the same span as the whole curve. In particular, they span T.

For $\varepsilon \neq 0, \mathrm{R}\left(T_{\varepsilon}\right) \leq r$. Expressing T as linear combination of $3 e+1$ tensors on the curve yields

$$
\mathrm{R}(T) \leq r(3 e+1)
$$

This is the statement for $N=1$.
Now:

$$
T^{\boxtimes N}=\lim \left(A(\varepsilon)^{\boxtimes N} \otimes B(\varepsilon)^{\boxtimes N} \otimes C(\varepsilon)^{\boxtimes N}\right)\left(\mathbf{I}_{r}\right)^{\boxtimes N}
$$

Recall $\mathbf{I}_{r}^{\boxtimes N}=\mathbf{I}_{r} N$.
Also, if $A(\varepsilon)$ has degree at most e, then $A(\varepsilon)^{\boxtimes N}$ has degree at most $e N$. Repeat the argument above.

Theorem.
Let $\underset{\sim}{\mathrm{R}}(T)=\lim _{N \rightarrow \infty}\left[\mathrm{R}\left(T^{\boxtimes N}\right)\right]^{1 / N}, \quad \underset{\sim}{\mathrm{R}}(T)=\lim _{N \rightarrow \infty}\left[\underline{\mathrm{R}}\left(T^{\boxtimes N}\right)\right]^{1 / N}$. Then

$$
\underset{\sim}{\mathrm{R}}(T)=\overline{\mathrm{R}}(T) .
$$

Proof.

Since $\underline{R}(T) \leq R(T)$, we have $\underset{\sim}{\bar{R}}(T) \leq \underset{\sim}{R}(T)$.
Define $r_{K}=\underline{\mathrm{R}}\left(T^{\boxtimes K}\right)$. We show $\underset{\sim}{\mathrm{R}}(T) \leq r_{K}^{1 / K}$.
We have

$$
\begin{aligned}
\underset{\sim}{\mathrm{R}}(T) & \leq\left[\mathrm{R}\left(T^{\boxtimes N}\right)\right]^{1 / N} \leq \\
& \leq\left[\mathrm{R}\left(\left(T^{\boxtimes K}\right)^{\boxtimes N / K}\right)\right]^{1 / N} \leq \\
& \leq\left[r_{K}^{N / K}\left(3 e_{K} \frac{N}{K}+1\right)\right]^{1 / N}=r_{K}^{1 / K}\left(3 e_{\kappa} \frac{N}{K}+1\right)^{1 / N} .
\end{aligned}
$$

As $N \rightarrow \infty$, we obtain $\underset{\sim}{R}(T) \leq r_{K}^{1 / K}$.
We conclude

$$
\underset{\sim}{\mathrm{R}}(T) \leq \lim _{K \rightarrow \infty} r_{K}^{1 / K}=\underset{\sim}{\overline{\mathrm{R}}}(T) .
$$

