Tensor rank and substitution method

Vladimir Lysikov

RUB Seminar Mathematics and Computation

Bochum, 25.04.2024
Plan

- Tensors, restrictions and tensor rank
- Direct sums and Kronecker products of tensors
- Properties of tensor rank. Asymptotic rank
- Lower bounds. Substitution method
We consider tensor products of finite-dimensional vector spaces.
Tensors: abstract definition

- We consider tensor products of finite-dimensional vector spaces
- For order three tensors in $U \otimes V \otimes W$:
- We have a trilinear map

$$u \in U, v \in V, w \in W \mapsto u \otimes v \otimes w \in U \otimes V \otimes W$$
Tensors: abstract definition

- We consider tensor products of finite-dimensional vector spaces
- For order three tensors in $U \otimes V \otimes W$
 - We have a trilinear map

$$u \in U, v \in V, w \in W \mapsto u \otimes v \otimes w \in U \otimes V \otimes W$$

$$T \in U \otimes V \otimes W \Rightarrow T = \sum_i u_i \otimes v_i \otimes w_i$$
We consider tensor products of finite-dimensional vector spaces.

For order three tensors in $U \otimes V \otimes W$:

We have a trilinear map:

$$u \in U, v \in V, w \in W \mapsto u \otimes v \otimes w \in U \otimes V \otimes W$$

$$T \in U \otimes V \otimes W \Rightarrow T = \sum_{i} u_i \otimes v_i \otimes w_i$$

There is a bijective correspondence:

trilinear $F : U \times V \times W \to X$ \iff linear $L : U \otimes V \otimes W \to X$

$L(u \otimes v \otimes w) = F(u, v, w)$
Tensors: abstract definition

- We consider tensor products of finite-dimensional vector spaces
- For order three tensors in $U \otimes V \otimes W$:
 - We have a trilinear map

 $$u \in U, v \in V, w \in W \mapsto u \otimes v \otimes w \in U \otimes V \otimes W$$

 $$T \in U \otimes V \otimes W \Rightarrow T = \sum_i u_i \otimes v_i \otimes w_i$$

- There is a bijective correspondence

 trilinear $F: U \times V \times W \to X \leftrightarrow$ linear $L: U \otimes V \otimes W \to X$

 $$L(u \otimes v \otimes w) = F(u, v, w)$$

 $$L \left(\sum_i u_i \otimes v_i \otimes w_i \right) = \sum_i F(u_i, v_i, w_i)$$
Let \((u_1, \ldots, u_\ell), (v_1, \ldots, v_m), (w_1, \ldots, w_n)\) be bases of \(U, V, W\).

Then \(u_i \otimes v_j \otimes w_k\) form a basis of \(U \otimes V \otimes W\).
Tensors: concrete representation

- Let \((u_1, \ldots, u_\ell), (v_1, \ldots, v_m), (w_1, \ldots, w_n)\) be bases of \(U, V, W\).
- Then \(u_i \otimes v_j \otimes w_k\) form a basis of \(U \otimes V \otimes W\).
- Every tensor \(T \in U \otimes V \otimes W\) decomposes as

\[
T = \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} t_{ijk} (u_i \otimes v_j \otimes w_k)
\]
Tensors: concrete representation

- Let \((u_1, \ldots, u_\ell), (v_1, \ldots, v_m), (w_1, \ldots, w_n)\) be bases of \(U, V, W\)
- Then \(u_i \otimes v_j \otimes w_k\) form a basis of \(U \otimes V \otimes W\)
- Every tensor \(T \in U \otimes V \otimes W\) decomposes as
 \[
 T = \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} t_{ijk} (u_i \otimes v_j \otimes w_k)
 \]
- An order three tensor \(T\) is given by a three-way array \((t_{ijk})\)
Let $A: U \to U'$, $B: V \to V'$, $C: W \to W'$ be linear maps.

Then we have a linear map

$$(A \otimes B \otimes C): U \otimes V \otimes W \to U' \otimes V' \otimes W'$$

defined by the identity

$$(A \otimes B \otimes C)(u \otimes v \otimes w) = (Au \otimes Bv \otimes Cw)$$
Definition (Restriction preorder)

T is a restriction of S if $T = (A \otimes B \otimes C)S$ for some linear maps A, B, C

Notation: $T \leq S$

Definition (Equivalence of tensors)

Tensors T and S are equivalent if $T \leq S$ and $S \leq T$.
Definition (Diagonal tensor)

\[I_r = \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \in \mathbb{F}^r \otimes \mathbb{F}^r \otimes \mathbb{F}^r \]

Definition (Tensor rank)

\[R(T) = \min \{ r \mid T \leq I_r \} \]
\[I_3 = e_1 \otimes e_1 \otimes e_1 + e_2 \otimes e_2 \otimes e_2 + e_3 \otimes e_3 \otimes e_3 \]
\[W = e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_0 \]
Example

\[l_3 = |1\rangle \otimes |1\rangle \otimes |1\rangle + |2\rangle \otimes |2\rangle \otimes |2\rangle + |3\rangle \otimes |3\rangle \otimes |3\rangle \]

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]
Example

\[I_3 = |1\rangle \otimes |1\rangle \otimes |1\rangle + |2\rangle \otimes |2\rangle \otimes |2\rangle + |3\rangle \otimes |3\rangle \otimes |3\rangle \]
\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[R(W) \leq 3 \]

\[W = \left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \right) \cdot I_3 \]
Example

\[I_3 = |1\rangle \otimes |1\rangle \otimes |1\rangle + |2\rangle \otimes |2\rangle \otimes |2\rangle + |3\rangle \otimes |3\rangle \otimes |3\rangle \]

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[R(W) \leq 3 \]

\[W = \left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right) \cdot I_3 \]
Example

\[I_3 = |1\rangle \otimes |1\rangle \otimes |1\rangle + |2\rangle \otimes |2\rangle \otimes |2\rangle + |3\rangle \otimes |3\rangle \otimes |3\rangle \]

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[R(W) \leq 3 \]

\[W = \left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right) \cdot I_3 \]
Example

\[I_3 = |1\rangle \otimes |1\rangle \otimes |1\rangle + |2\rangle \otimes |2\rangle \otimes |2\rangle + |3\rangle \otimes |3\rangle \otimes |3\rangle \]

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[R(W) \leq 3 \]

\[W = \left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right) \cdot I_3 \]
Example

\[I_3 = |1\rangle \otimes |1\rangle \otimes |1\rangle + |2\rangle \otimes |2\rangle \otimes |2\rangle + |3\rangle \otimes |3\rangle \otimes |3\rangle \]
\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[R(W) \leq 3 \]

\[W = \left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right) \cdot I_3 \]
Definition

A decomposition of the form

\[T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \]

is called a *rank decomposition* of \(T \).

Theorem

\(R(T) \) is the minimal number of summands in a rank decomposition of \(T \).

- \(R(T) \leq r \iff T \leq I_r \)
Rank decompositions

Definition

A decomposition of the form

\[T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \]

is called a *rank decomposition* of \(T \).

Theorem

\(R(T) \) is the minimal number of summands in a rank decomposition of \(T \).

- \(R(T) \leq r \iff T = (A \otimes B \otimes C)I_r \)
Definition

A decomposition of the form

\[T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \]

is called a *rank decomposition* of \(T \).

Theorem

\(R(T) \) is the minimal number of summands in a rank decomposition of \(T \).

\[R(T) \leq r \iff T = (A \otimes B \otimes C) (\sum_{i=1}^{r} |i\rangle \otimes |i\rangle \otimes |i\rangle) \]
A decomposition of the form

\[T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \]

is called a \textit{rank decomposition} of \(T \).

\[R(T) \] is the minimal number of summands in a rank decomposition of \(T \).

- \(R(T) \leq r \iff T = \sum_{i=1}^{r} (A \, |i\rangle) \otimes (B \, |i\rangle) \otimes (C \, |i\rangle) \)
Rank decompositions

Definition

A decomposition of the form

\[T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \]

is called a rank decomposition of \(T \).

Theorem

\(R(T) \) is the minimal number of summands in a rank decomposition of \(T \).

\[R(T) \leq r \iff T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \text{ with } u_i = A |i\rangle, v_i = B |i\rangle, w_i = C |i\rangle \]
Example

\[A_3 = |1\rangle \wedge |2\rangle \wedge |3\rangle = \sum_{\pi \in S_3} (-1)^{\sigma} |\pi(1)\rangle \otimes |\pi(2)\rangle \otimes |\pi(3)\rangle \]

\[R(A_3) \leq 5 \]
A_3 = |1⟩ \land |2⟩ \land |3⟩ = \sum_{\pi \in \mathcal{S}_3} (-1^\sigma) |\pi(1)⟩ \otimes |\pi(2)⟩ \otimes |\pi(3)⟩ \\
R(A_3) \leq 5
A_3 = |1⟩ \land |2⟩ \land |3⟩ = \sum_{\pi \in S_3} (-1)^{\sigma} |\pi(1)⟩ \otimes |\pi(2)⟩ \otimes |\pi(3)⟩

R(A_3) \leq 5
Example

\[A_3 = |1\rangle \wedge |2\rangle \wedge |3\rangle = \sum_{\pi \in S_3} (-1)^{\sigma} |\pi(1)\rangle \otimes |\pi(2)\rangle \otimes |\pi(3)\rangle \]

\[R(A_3) \leq 5 \]
Properties of tensor rank

\[T \leq S \Rightarrow R(T) \leq R(S) \]
Properties of tensor rank

\[T \leq S \Rightarrow R(T) \leq R(S) \]

\[R(I_r) = r \]

- I.O.U a proof
Direct sum of tensors

Let U_1, V_1, W_1 and U_2, V_2, W_2 be vector spaces

The injections $U_1 \hookrightarrow U_1 \oplus U_2$, $V_1 \hookrightarrow V_1 \oplus V_2$, $W_1 \hookrightarrow W_1 \oplus W_2$
give an injection $U_1 \otimes V_1 \otimes W_1 \hookrightarrow (U_1 \oplus U_2) \otimes (V_1 \oplus V_2) \otimes (W_1 \oplus W_2)$

Same for $U_2 \otimes V_2 \otimes W_2$

Definition (Direct sum)

For $T_1 \in U_1 \otimes V_1 \otimes W_1$ and $T_2 \in U_2 \otimes V_2 \otimes W_2$ their direct sum is the sum of their embeddings in $(U_1 \oplus U_2) \otimes (V_1 \oplus V_2) \otimes (W_1 \oplus W_2)$
Direct sum: example

- The space $(U_1 \oplus U_2) \otimes (V_1 \oplus V_2) \otimes (W_1 \oplus W_2)$ decomposes into 8 "blocks" $U_i \otimes V_j \otimes W_k$.
- Direct sums use "diagonal blocks"
Direct sum: diagonal tensors

- We have seen this diagonal placement before

![Diagram of I_3]

- Note $F^a \oplus F^b \cong F^{a+b}$

- Using this isomorphism on all three factors, we get

 $$I_a \oplus I_b \sim I_{a+b}$$

- This gives an alternative definition of diagonal tensors

 $$I_1 = 1 \otimes 1 \otimes 1 \in F \otimes F \otimes F; \quad I_a = I_1^{\oplus a}$$
\[
((A_1 \oplus A_2) \otimes (B_1 \oplus B_2) \otimes (C_1 \oplus C_2))(T_1 \oplus T_2) = \\
= [(A_1 \otimes B_1 \otimes C_1)T_1] \oplus [(A_2 \otimes B_2 \otimes C_2)T_2]
\]
Direct sum and restrictions

\[
((A_1 \oplus A_2) \otimes (B_1 \oplus B_2) \otimes (C_1 \oplus C_2))(T_1 \oplus T_2) = \\
= [(A_1 \otimes B_1 \otimes C_1) T_1] \oplus [(A_2 \otimes B_2 \otimes C_2) T_2]
\]

\[
\begin{cases}
T_1 \leq S_1 \\
T_2 \leq S_2
\end{cases} \Rightarrow T_1 \oplus T_2 \leq S_1 \oplus S_2
\]
\[(A_1 \oplus A_2) \otimes (B_1 \oplus B_2) \otimes (C_1 \oplus C_2))(T_1 \oplus T_2) =
\quad = [(A_1 \otimes B_1 \otimes C_1)T_1] \oplus [(A_2 \otimes B_2 \otimes C_2)T_2] \]

\[
\begin{cases}
T_1 \leq S_1 \\
T_2 \leq S_2
\end{cases}
\Rightarrow T_1 \oplus T_2 \leq S_1 \oplus S_2
\]

\[R(T_1 \oplus T_2) \leq R(T_1) + R(T_2)\]
Strassen conjectured that $R(T_1 \oplus T_2) = R(T_1) + R(T_2)$

The conjecture was disproven in 2017 by Shitov
Strassen conjectured that $R(T_1 \oplus T_2) = R(T_1) + R(T_2)$

The conjecture was disproven in 2017 by Shitov

The proof uses generic tensors of a special form

No explicit pair of tensors with $R(T_1 \oplus T_2) < R(T_1) + R(T_2)$ is known
Tensor product and Kronecker product

- It will be useful for us to introduce two different tensor products $U \otimes V$ and $U \boxtimes V$
- Intuitively, we think of $U \otimes V \otimes \ldots$ as matrices and tensors, and $U \boxtimes V \boxtimes \ldots$ as “long vectors” composed of other vectors

\[
(u_1, u_2, u_3) \otimes (v_1, v_2) =
\begin{bmatrix}
 u_1 v_1 & u_1 v_2 \\
 u_2 v_1 & u_2 v_2 \\
 u_3 v_1 & u_3 v_2
\end{bmatrix}
\]

\[
(u_1, u_2, u_3) \boxtimes (v_1, v_2) = (u_1 v | u_2 v | u_3 v) =

= (u_1 v_1, u_1 v_2, u_2 v_1, u_2 v_2, u_3 v_1, u_3 v_2)
\]

- Of course, $U \otimes V$ and $U \boxtimes V$ are isomorphic as vector spaces and tensor products, the difference is purely syntactic convenience
Definition (Kronecker product)

For $T_1 \in U_1 \otimes V_1 \otimes W_1$ and $T_2 \in U_2 \otimes V_2 \otimes W_2$ we define the **Kronecker product** $T_1 \boxtimes T_2 \in (U_1 \boxtimes U_2) \otimes (V_1 \boxtimes V_2) \otimes (W_1 \boxtimes W_2)$ as a bilinear function of T_1 and T_2 satisfying

$$(u_1 \otimes v_1 \otimes w_1) \boxtimes (u_2 \otimes v_2 \otimes w_2) = (u_1 \boxtimes u_2) \otimes (v_1 \boxtimes v_2) \otimes (w_1 \boxtimes w_2)$$

- Let $T = (t_{ijk})$. Then $T \boxtimes S = \sum_{i,j,k} (|i\rangle \otimes |j\rangle \otimes |k\rangle) \boxtimes (t_{ijk}S)$
- $T \boxtimes S$ has the “outer structure” of T, but instead of scalars, we have scalar multiples of S as blocks
Kronecker product: example

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[W = \]

\[\]

\[\]
Kronecker product: example

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[W \boxtimes W = |00\rangle \otimes |00\rangle \otimes |11\rangle + |00\rangle \otimes |01\rangle \otimes |10\rangle + |01\rangle \otimes |00\rangle \otimes |10\rangle + |00\rangle \otimes |10\rangle \otimes |01\rangle + |00\rangle \otimes |11\rangle \otimes |00\rangle + |01\rangle \otimes |10\rangle \otimes |00\rangle + |10\rangle \otimes |00\rangle \otimes |01\rangle + |10\rangle \otimes |01\rangle \otimes |00\rangle + |11\rangle \otimes |00\rangle \otimes |00\rangle \]
Kronecker product: example

\[W = |0\rangle \otimes |0\rangle \otimes |1\rangle + |0\rangle \otimes |1\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \otimes |0\rangle \]

\[W \boxtimes W = |00\rangle \otimes |00\rangle \otimes |11\rangle + |00\rangle \otimes |01\rangle \otimes |10\rangle + |01\rangle \otimes |00\rangle \otimes |10\rangle + |00\rangle \otimes |10\rangle \otimes |01\rangle + |00\rangle \otimes |11\rangle \otimes |00\rangle + |01\rangle \otimes |10\rangle \otimes |00\rangle + |10\rangle \otimes |00\rangle \otimes |01\rangle + |10\rangle \otimes |01\rangle \otimes |00\rangle + |11\rangle \otimes |00\rangle \otimes |00\rangle \]
Matrix multiplication tensors

\[M_{abc} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} |ij\rangle \otimes |jk\rangle \otimes |ik\rangle \]
Matrix multiplication tensors

\[
M_{abc} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} |ij\rangle \otimes |jk\rangle \otimes |ik\rangle
\]

\[
M_{a11} \sim \sum_{i=1}^{a} |i\rangle \otimes 1 \otimes |i\rangle \in F^a \otimes F \otimes F^a
\]

\[
M_{1b1} \sim \sum_{j=1}^{b} |j\rangle \otimes |j\rangle \otimes 1 \in F^b \otimes F^b \otimes F
\]

\[
M_{11c} \sim \sum_{k=1}^{c} 1 \otimes |k\rangle \otimes |k\rangle \in F \otimes F^c \otimes F^c
\]
Matrix multiplication tensors

\[M_{abc} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} |ij\rangle \otimes |jk\rangle \otimes |ik\rangle \]

\[M_{a11} \sim \sum_{i=1}^{a} |i\rangle \otimes 1 \otimes |i\rangle \in F^a \otimes F \otimes F^a \]

\[M_{1b1} \sim \sum_{j=1}^{b} |j\rangle \otimes |j\rangle \otimes 1 \in F^b \otimes F^b \otimes F \]

\[M_{11c} \sim \sum_{k=1}^{c} 1 \otimes |k\rangle \otimes |k\rangle \in F \otimes F^c \otimes F^c \]

\[M_{abc} \sim M_{a11} \boxtimes M_{1b1} \boxtimes M_{11c} \]
Kronecker product and restrictions

\[I_a \boxtimes I_b = I_{ab} \]

\[
((A_1 \boxtimes A_2) \otimes (B_1 \boxtimes B_2) \otimes (C_1 \boxtimes C_2)) \cdot (T_1 \boxtimes T_2) = \\
= ((A_1 \otimes B_1 \otimes C_1) T_1) \boxtimes ((A_2 \otimes B_2 \otimes C_2) T_2)
\]

\[
\left\{ \begin{array}{l}
T_1 \leq S_1 \\
T_2 \leq S_2
\end{array} \right. \Rightarrow T_1 \boxtimes T_2 \leq S_1 \boxtimes S_2
\]

\[R(T_1 \boxtimes T_2) \leq R(T_1)R(T_2) \]
$R(W \boxtimes W) \leq 7$

$W \boxtimes W =$
$R(W \boxtimes W) \leq 7$
$R(W \boxtimes W) \leq 7$
Properties of rank

Monotonicity: \(T \leq S \Rightarrow R(T) \leq R(S) \)

Subadditivity: \(R(T \oplus S) \leq R(T) + R(S) \)

Submultiplicativity: \(R(T \boxtimes S) \leq R(T) \cdot R(S) \)

Normalization: \(R(I_r) = r \)
Asymptotic behaviour of rank

- Denote $\rho_n = \log R(T \boxtimes n)$
- From the properties of rank it follows that ρ is subadditive

$$\rho_{n+m} \leq \rho_n + \rho_m$$

- Fekete’s lemma: $\frac{\rho_n}{n}$ converges

Definition

Asymptotic rank of T is defined as

$$R(T) = \lim_{n \to \infty} \left(R(T \boxtimes n) \right)^{\frac{1}{n}}$$

- We have $R(T \boxtimes n) \sim R(T)^n + o(n)$
As for the diagonal tensors, we have

\[M_{a11} \boxtimes M_{a'11} = M_{aa',1,1} \]

And the same for \(M_{1b1} \) and \(M_{11b} \)
As for the diagonal tensors, we have

\[M_{a11} \boxtimes M_{a'11} = M_{aa',1,1} \]

And the same for \(M_{1b1} \) and \(M_{11b} \)

It follows that

\[M_{abc} \boxtimes M_{a'b'c'} = M_{aa',bb',cc'} \]

This property has interpretation for matrix multiplication maps: block matrices can be multiplied blockwise
The question about asymptotic complexity of matrix multiplication can be stated in terms of tensor rank

$$R(M_{n\times n}) = n^{\omega + o(1)}$$
The question about asymptotic complexity of matrix multiplication can be stated in terms of tensor rank

\[R(M_{nnn}) = n^{\omega + o(1)} \]

Note that \(M_{aaa} \otimes M_{bbb} = M_{ab,ab,ab} \)

\[R(M_{222}) = \lim_n \sqrt[n]{R(M_{2n,2n,2n})} = \lim_n \sqrt[n]{2^{\omega n + o(n)}} = 2^\omega \]
In applications, tensor rank provides a measure of complexity for objects represented by tensors.
In applications, tensor rank provides a measure of complexity for objects represented by tensors.

Algebraic Computation: complexity of computing multilinear maps.

Upper bounds \approx “algorithms”, lower bounds \approx “hardness proofs”.

Restrictions \approx “reductions between problems”.

In applications, tensor rank provides a measure of complexity for objects represented by tensors.

Algebraic Computation: complexity of computing multilinear maps.

Upper bounds \approx “algorithms”, lower bounds \approx “hardness proofs”.

Restrictions \approx “reductions between problems”.

Computing tensor rank is hard; the exact value is known only for small or very restricted tensors.

Have some construction for upper bounds / explicit restrictions.

The situation with lower bounds is much worse.
Tensor rank and ranks of tensors

- There are other notions of rank for tensors
- Subrank, slice rank, flattening rank . . .
- What are the common properties of these ranks?
Tensor rank and ranks of tensors

- There are other notions of rank for tensors
- Subrank, slice rank, flattening rank . . .
- What are the common properties of these ranks?

Definition

\[F : \{\text{tensors}\} \rightarrow \mathbb{R}_+ \] is a *rank functional* if it satisfies

- **Monotonicity:** \[T \leq S \Rightarrow F(T) \leq F(S) \]
- **Normalization:** \[F(I_r) = r \]
Tensor rank and ranks of tensors

- There are other notions of rank for tensors
- Subrank, slice rank, flattening rank . . .
- What are the common properties of these ranks?

Definition

\[F : \{\text{tensors}\} \rightarrow \mathbb{R}_+ \] is a *rank functional* if it satisfies

- Monotonicity: \(T \leq S \Rightarrow F(T) \leq F(S) \)
- Normalization: \(F(I_r) = r \)

Theorem

Tensor rank dominates every rank functional

- *Proof:* \(R(T) = r \)
There are other notions of rank for tensors
Subrank, slice rank, flattening rank . . .
What are the common properties of these ranks?

Definition

\[F : \{ \text{tensors} \} \rightarrow \mathbb{R}_+ \text{ is a rank functional if it satisfies} \]

- **Monotonicity:** \(T \leq S \Rightarrow F(T) \leq F(S) \)
- **Normalization:** \(F(I_r) = r \)

Theorem

Tensor rank dominates every rank functional

- **Proof:** \(R(T) = r \Rightarrow T \leq I_r \)
There are other notions of rank for tensors

- Subrank, slice rank, flattening rank . . .
- What are the common properties of these ranks?

Definition

\(F : \{\text{tensors}\} \rightarrow \mathbb{R}_+ \) is a rank functional if it satisfies

- Monotonicity: \(T \leq S \Rightarrow F(T) \leq F(S) \)
- Normalization: \(F(I_r) = r \)

Theorem

Tensor rank dominates every rank functional

- \textit{Proof: } \(R(T) = r \Rightarrow T \leq I_r \Rightarrow F(T) \leq F(I_r) = r \) for all ranks \(F \).
Tensor rank and ranks of tensors

- There are other notions of rank for tensors
- Subrank, slice rank, flattening rank ...
- What are the common properties of these ranks?

Definition

\(F : \{ \text{tensors} \} \rightarrow \mathbb{R}^+ \) is a *rank functional* if it satisfies

- **Monotonicity:** \(T \leq S \implies F(T) \leq F(S) \)
- **Normalization:** \(F(I_r) = r \)

Proposition

If there exists some rank functional, then \(R(I_r) = r \)

- **Proof:** \(R(I_r) \geq F(I_r) = r \). It is obvious that \(R(I_r) \leq r \).
Flattening and flattening rank

- Flattening is a way to transform a tensor into a matrix.
- Flattening with respect to the 1st factor:

\[
T \in U \otimes V \otimes W \quad \mapsto \quad F_1(T) \in U \otimes (V \boxtimes W)
\]

\[
u \otimes v \otimes w \quad \mapsto \quad u \otimes (v \boxtimes w)
\]
Flattening and flattening rank

- Flattening is a way to transform a tensor into a matrix
- Flattening with respect to the 1st factor

\[T \in U \otimes V \otimes W \implies \mathcal{F}_1(T) \in U \otimes (V \boxtimes W) \]

\[u \otimes v \otimes w \implies u \otimes (v \boxtimes w) \]
Flattening and flattening rank

- Flattening is a way to transform a tensor into a matrix
- Flattening with respect to the 1st factor

\[T \in U \otimes V \otimes W \mapsto \mathcal{F}_1(T) \in U \otimes (V \boxtimes W) \]

\[u \otimes v \otimes w \mapsto u \otimes (v \boxtimes w) \]
Flattening and flattening rank

- Flattening with respect to the 1st factor

\[T \in U \otimes V \otimes W \implies F_1(T) \in U \otimes (V \boxtimes W) \]

\[u \otimes v \otimes w \implies u \otimes (v \boxtimes w) \]

Definition (Flattening rank)

Flattening rank of \(T \) is the rank of the flattening

\[R_1(T) = \text{rk} F_1(T) \]

Proposition

Flattening rank is a rank functional

\[T \leq S \]
Flattening and flattening rank

- **Flattening with respect to the 1st factor**

\[T \in U \otimes V \otimes W \mapsto \mathcal{F}_1(T) \in U \otimes (V \boxtimes W) \]

\[u \otimes v \otimes w \mapsto u \otimes (v \boxtimes w) \]

Definition (Flattening rank)

Flattening rank of \(T \) is the rank of the flattening

\[R_1(T) = \text{rk} \mathcal{F}_1(T) \]

Proposition

Flattening rank is a rank functional

- \(T \leq S \Rightarrow T = (A \otimes B \otimes C)S \)
Flattening and flattening rank

- Flattening with respect to the 1st factor

\[T \in U \otimes V \otimes W \mapsto \mathcal{F}_1(T) \in U \otimes (V \boxtimes W) \]
\[u \otimes v \otimes w \mapsto u \otimes (v \boxtimes w) \]

Definition (Flattening rank)

Flattening rank of \(T \) is the rank of the flattening

\[R_1(T) = \text{rk} \mathcal{F}_1(T) \]

Proposition

Flattening rank is a rank functional

\[T \leq S \Rightarrow T = (A \otimes B \otimes C)S \Rightarrow \mathcal{F}_1(T) = (A \otimes (B \boxtimes C)) \mathcal{F}_1(S) \]
Flattening and flattening rank

- Flattening with respect to the 1st factor

\[T \in U \otimes V \otimes W \mapsto \mathcal{F}_1(T) \in U \otimes (V \boxtimes W) \]
\[u \otimes v \otimes w \mapsto u \otimes (v \boxtimes w) \]

Definition (Flattening rank)

Flattening rank of \(T \) is the rank of the flattening

\[R_1(T) = \text{rk} \mathcal{F}_1(T) \]

Proposition

Flattening rank is a rank functional

- \(T \leq S \Rightarrow T = (A \otimes B \otimes C)S \Rightarrow \mathcal{F}_1(T) = (A \otimes (B \boxtimes C))\mathcal{F}_1(S) \)

 Or, in terms of matrix multiplication, \(\mathcal{F}_1(T) = A \cdot \mathcal{F}_1(S) \cdot (B \boxtimes C)^\top \)
Flattening and flattening rank

- Flattening with respect to the 1st factor

\[T \in U \otimes V \otimes W \mapsto \mathcal{F}_1(T) \in U \otimes (V \boxtimes W) \]

\[u \otimes v \otimes w \mapsto u \otimes (v \boxtimes w) \]

Definition (Flattening rank)

Flattening rank of \(T \) is the rank of the flattening

\[R_1(T) = \text{rk} \mathcal{F}_1(T) \]

Proposition

Flattening rank is a rank functional

- \(\mathcal{F}_1(1_r) = \sum_{i=1}^{r} |i\rangle \otimes |ii\rangle \)
Theorem

Tensor rank dominates every rank functional
Theorem

Every rank functional is a lower bound for tensor rank

- Lower bound problem solved?
Theorem

Every rank functional is a lower bound for tensor rank

- Lower bound problem solved?
- Not really: all known rank functionals
 - Either are very similar to tensor rank
 - Or give weak lower bounds
Theorem

Every rank functional is a lower bound for tensor rank

- Lower bound problem solved?
- Not really: all known rank functionals
 - Either are very similar to tensor rank
 - Or give weak lower bounds

- Known lower bound methods
 - Continuous methods
 - Substitution method
 - Coding theory methods over finite fields
Definition (Conciseness)

A tensor $T \in U \otimes V \otimes W$ is *concise in the 1st factor* (or 1-concise) if

$$R_1(T) = \dim U$$
Concise tensors

Definition (Conciseness)

A tensor $T \in U \otimes V \otimes W$ is **concise in the 1st factor** (or 1-concise) if

$$R_1(T) = \dim U$$

Proposition

If $T = (A \otimes B \otimes C)S$ and T is 1-concise, then A is surjective.

Proof: As matrices $F_1(T) = A \cdot F_1(S) \cdot (B \boxtimes C)^\top$

Therefore $\text{rk } A \geq \text{rk } F_1(T) = \dim U$

Corollary

If $T = \sum_i u_i \otimes v_i \otimes w_i$ and T is 1-concise, then \{u_i\} generates U.

Theorem (Substitution method)

Let $T \in U \otimes V \otimes W$ be a 1-concise tensor, and $X \subset U$. Then there exists a projection $\Pi: U \rightarrow X$ such that

$$R(T) \geq R((\Pi \otimes \text{Id} \otimes \text{Id})T) + \Delta$$

where $\Delta = \dim U - \dim X$

Proof: Let $R(T) = r$, so $T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$
Theorem (Substitution method)

Let $T \in U \otimes V \otimes W$ be a 1-concise tensor, and $X \subset U$. Then there exists a projection $\Pi: U \to X$ such that

$$R(T) \geq R((\Pi \otimes \text{Id} \otimes \text{Id})T) + \Delta$$

where $\Delta = \dim U - \dim X$

Proof: Let $R(T) = r$, so $T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$

- T is 1-concise \Rightarrow the vectors u_i generate U
Substitution method

Theorem (Substitution method)

Let \(T \in U \otimes V \otimes W \) be a 1-concise tensor, and \(X \subset U \). Then there exists a projection \(\Pi: U \rightarrow X \) such that

\[
R(T) \geq R((\Pi \otimes \text{Id} \otimes \text{Id})T) + \Delta
\]

where \(\Delta = \dim U - \dim X \)

Proof: Let \(R(T) = r \), so \(T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \)

- \(T \) is 1-concise \(\Rightarrow \) the vectors \(u_i \) generate \(U \)
- W.l.o.g \(u_1, \ldots, u_\Delta \) span a complement of \(X \)
Theorem (Substitution method)

Let $T \in U \otimes V \otimes W$ be a 1-concise tensor, and $X \subset U$. Then there exists a projection $\Pi: U \to X$ such that

$$R(T) \geq R((\Pi \otimes \text{Id} \otimes \text{Id}) T) + \Delta$$

where $\Delta = \dim U - \dim X$

Proof: Let $R(T) = r$, so $T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$

- T is 1-concise \Rightarrow the vectors u_i generate U
- W.l.o.g u_1, \ldots, u_{Δ} span a complement of X
- Let $\Pi: U \to X$ be the projection along $\text{Span}(u_1, \ldots, u_{\Delta})$
Theorem (Substitution method)

Let \(T \in U \otimes V \otimes W \) be a 1-concise tensor, and \(X \subset U \). Then there exists a projection \(\Pi: U \rightarrow X \) such that

\[
R(T) \geq R((\Pi \otimes \text{Id} \otimes \text{Id}) T) + \Delta
\]

where \(\Delta = \dim U - \dim X \)

Proof: Let \(R(T) = r \), so \(T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \)

\(T \) is 1-concise \(\Rightarrow \) the vectors \(u_i \) generate \(U \)

W.l.o.g \(u_1, \ldots, u_\Delta \) span a complement of \(X \)

Let \(\Pi: U \rightarrow X \) be the projection along \(\text{Span}(u_1, \ldots, u_\Delta) \)

\((\Pi \otimes \text{Id} \otimes \text{Id}) \cdot T = \sum_{i=\Delta+1}^{r} \Pi u_i \otimes v_i \otimes w_i \)
Substitution method

Theorem (Substitution method)

Let \(T \in U \otimes V \otimes W \) be a 1-concise tensor, and \(X \subset U \). Then there exists a projection \(\Pi: U \rightarrow X \) such that

\[
R(T) \geq R((\Pi \otimes \text{Id} \otimes \text{Id})T) + \Delta
\]

where \(\Delta = \dim U - \dim X \)

Proof: Let \(R(T) = r \), so \(T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \)

- \(T \) is 1-concise \(\Rightarrow \) the vectors \(u_i \) generate \(U \)
- W.l.o.g \(u_1, \ldots, u_\Delta \) span a complement of \(X \)
- Let \(\Pi: U \rightarrow X \) be the projection along \(\text{Span}(u_1, \ldots, u_\Delta) \)
- \((\Pi \otimes \text{Id} \otimes \text{Id}) \cdot T = \sum_{i=\Delta+1}^{r} \Pi u_i \otimes v_i \otimes w_i \)
- Therefore \(R((\Pi \otimes \text{Id} \otimes \text{Id}) \cdot T) \leq r - \Delta \)
Example

\[P_n = \sum_{i+j+k=n-1} |i\rangle \otimes |j\rangle \otimes |k\rangle \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes \mathbb{F}^n \]
Example

\[P_n = \sum_{i+j+k=n-1} |i\rangle \otimes |j\rangle \otimes |k\rangle \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes \mathbb{F}^n \]

- Let \(\Pi: \mathbb{F}^n \rightarrow \text{Span}(|0\rangle) \) be a projection. \(\Pi |i\rangle = \alpha_i |0\rangle \), with \(\alpha_0 = 1 \)

\[(\Pi \otimes \text{Id} \otimes \text{Id}) \cdot P_n = \sum_{i+j+k=n-1} \Pi |i\rangle \otimes |j\rangle \otimes |k\rangle = \sum_{j+k=n-1-i} \alpha_i |0\rangle \otimes |j\rangle \otimes |k\rangle \]

- \((\Pi \otimes \text{Id} \otimes \text{Id}) \cdot P_n = |0\rangle \otimes M \) where \(M \) is a triangular matrix with 1 on the diagonal

- \(R(M) = n \Rightarrow R(P_n) \geq n + (n - 1) = 2n - 1 \)
Generalization of the example: attempt 1

Definition (Contraction)
For \(f \in U^* \), denote \(Tf = (f \otimes \text{Id} \otimes \text{Id}) \cdot T \in \mathbb{F} \otimes V \otimes W \cong V \otimes W \)

Definition (Minrank)
Define *minrank* of \(T \) as

\[
\text{mr}(T) = \min\{\text{rk}(Tf) \mid f \neq 0\}
\]

Theorem
For a 1-concise tensor \(T \in U \otimes V \otimes W \)

\[
R(T) \geq \text{mr}(T) + \dim U - 1
\]

- Does not generalize the example: \(\text{mr}(P_n) = 1 \)
Questions?

Thank you!