Irreducible representations, Schur-Weyl duality, and explicit construction of highest weight vectors

Christian Ikenmeyer

Seminar Mathematics and Computation: Tensor Ranks and Tensor Invariants (Summer 2024)

2024-Apr-18

- $V=\mathbb{C}^{a}, W=\mathbb{C}^{b}, U=\mathbb{C}^{c}$
- The space of tensors: $X=V \otimes W \otimes U$
- Standard basis tensors $e_{i, j, k}=e_{i} \otimes e_{j} \otimes e_{k}$
- $Z \subseteq X$, for example $Z=\{T \in X \mid R(T)=1\}$.
- Consider $T^{\prime}=\langle 2\rangle=e_{1,1,1}+e_{2,2,2}$
- To prove $R\left(T^{\prime}\right) \geq 2$, we want to find $f: X \rightarrow \mathbb{C}$ with
- $\forall T \in Z: f(T)=0$
- $f\left(T^{\prime}\right) \neq 0$
- For example, $f=x_{2,1,1} x_{1,2,2}+x_{1,1,1} x_{2,2,2}-x_{2,2,1} x_{1,1,2}-x_{1,2,1} x_{2,1,2}$
- We want to study the polynomials f on X :
- $\mathbb{C}[X] \simeq \mathbb{C}\left[x_{1,1,1}, \ldots, x_{a, b, c}\right]$.
- In particular, we are interested in homogeneous degree d polynomials: $f \in \mathbb{C}[X]_{d}$
- We want f to vanish on Z, i.e., $f \in I(Z)_{d} \quad(I(Z)=\{f \in \mathbb{C}[X] \mid f(Z)=\{0\}\}$ is the vanishing ideal of $Z)$
- In our cases: Z is closed under the action of $G=\mathrm{GL}_{a} \times \mathrm{GL}_{b} \times \mathrm{GL}_{c}$
- Define a linear action of G on $\mathbb{C}[X]$ via canonical pullback: $(g f)(T):=f\left(g^{-1} T\right)$
- For example, $\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right) f=x_{1,1,1} x_{2,2,2}+x_{2,1,1} x_{1,2,2}-x_{1,2,1} x_{2,1,2}-x_{2,2,1} x_{1,1,2}$
- Observe: If $f \in I(Z)_{d}$, then $\forall g \in G: g f \in I(Z)_{d}$
- Hence, $I(Z)_{d}$ is a G-representation
- Since G is linearly reductive, $I(Z)_{d}$ decomposes into irreducible G-representations: $I(Z)_{d}=\bigoplus_{i} \mathscr{V}_{i}$
- Decompose $f=\sum_{i} f_{i}$ with $f_{i} \in \mathscr{V}_{i}$.
- Since $f\left(T^{\prime}\right) \neq 0$, at least one i has $f_{i}\left(T^{\prime}\right) \neq 0$
- Hence, it is sufficient to restrict out attention to f in irreducible G-representations
- Even stronger: We can restrict to so-called highest weight vectors

Symmetric tensor powers and the connection to polynomials

- $X=V \otimes W \otimes U$
- Recall: The tensor power $\bigotimes^{d}(X)=X^{\otimes d}$
- The symmetric group \mathfrak{S}_{d} acts linearly on $X^{\otimes d}$ by permutation of the tensor factors:

$$
\pi\left(x_{1} \otimes \cdots \otimes x_{d}\right)=x_{\pi^{-1}(1)} \otimes \cdots \otimes x_{\pi^{-1}(d)}
$$

- Let $\operatorname{Sym}^{d} X \subseteq \bigotimes^{d} X$ denote the set of $T \in X$ that are invariant under the action of \mathfrak{S}_{d}.
- For example, $e_{1,1,2} \otimes e_{1,1,1} \in \bigotimes^{2} X \backslash \operatorname{Sym}^{2} X$. But $e_{1,1,2} \otimes e_{1,1,1}+e_{1,1,1} \otimes e_{1,1,2} \in \operatorname{Sym}^{2} X$
- The symmetrization projection $\bigotimes^{d} X \rightarrow \operatorname{Sym}^{d} X: \quad T \mapsto \frac{1}{d!} \sum_{\pi \in \mathfrak{G}_{d}} \pi(T)$
- $\mathbb{C}[X]_{d} \simeq \operatorname{Sym}^{d}\left(X^{*}\right)$ via explicit isomorphism φ :
- $\varphi\left(x_{i, j, k}\right)=e_{i, j, k}^{*} \quad \varphi\left(x_{i, j, k} x_{i^{\prime}, j^{\prime}, k^{\prime}}\right)=\frac{1}{2}\left(e_{i, j, k}^{*} \otimes e_{i^{\prime}, j^{\prime}, k^{\prime}}^{*}+e_{i^{\prime}, j^{\prime}, k^{\prime}}^{*} \otimes e_{i, j, k}^{*}\right) \quad$ etc
- For example, $\varphi\left(x_{111} x_{122}-x_{121} x_{112}\right)=\frac{1}{2}\left(e_{1,1,1}^{*} \otimes e_{1,2,2}^{*}+e_{1,2,2}^{*} \otimes e_{1,1,1}^{*}-e_{1,2,1}^{*} \otimes e_{1,1,2}^{*}-e_{1,1,2}^{*} \otimes e_{1,2,1}^{*}\right)$
- We want to study $\operatorname{Sym}^{d}\left(X^{*}\right)$. First, we study $\bigotimes^{d}\left(X^{*}\right)$, and then we symmetrize.

Recall, $X=V \otimes W \otimes U$.

- $\otimes^{d}\left(X^{*}\right)=\bigotimes^{d}\left(V^{*} \otimes W^{*} \otimes U^{*}\right) \simeq \bigotimes^{d}\left(V^{*}\right) \otimes \otimes^{d}\left(W^{*}\right) \otimes \otimes^{d}\left(U^{*}\right)$
- We first study one factor: $\bigotimes^{d}\left(\mathbb{C}^{n}\right)$. Main tool: Schur-Weyl duality

Irreducible representations

- Let G be a group and let $\mathscr{V}=\mathbb{C}^{N}$.
- A group homomorphism $\varrho: G \rightarrow \mathrm{GL}(\mathscr{V})$ is called a representation of G.
- Short notation for $g \in G, v \in \mathscr{V}: g v=\varrho(g)(v)$
- A representation \mathscr{V} of GL_{n} is called polynomial if all ($\left.\operatorname{dim} \mathscr{V}\right)^{2}$ many coordinate functions of $\varrho(g)$ are given by polynomials in the n^{2} matrix entries.
- A linear subspace $\mathscr{W} \subseteq \mathscr{V}$ is called a subrepresentation if $\forall g \in G, w \in \mathscr{W}: g w \in \mathscr{W}$.
- A representation \mathscr{V} is irreducible if 0 and \mathscr{V} are the only subrepresentations.
- A linear map $\varphi: \mathscr{V} \rightarrow \mathscr{W}$ between two representations \mathscr{V} and \mathscr{W} of G is called a morphism of representations, if $\forall g \in G, v \in \mathscr{V}: \varphi(g v)=g \varphi(v)$.
- A bijective morphism of representations is called an isomorphism of representations.
- Important task in representation theory: Classify for a group G its irreducible representations up to isomorphism.
- This has been achieved for many groups, including GL_{n} and \mathfrak{S}_{d}.
- The orbit $G v:=\{g v \mid g \in G\}$
- $\forall v \in \mathscr{V}: \operatorname{linspan}(G v)$ is a subrepresentation.
- In particular, is \mathscr{V} is irreducible and $v \neq 0$, then $\operatorname{linspan}(G v)=\mathscr{V}$.
- \mathbb{C}^{n} is an irreducible representation of GL_{n}
- $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ is a GL_{2}-representation, but it is not irreducible:
it contains the nontrivial 1-dim subrepresentation spanned by: $e_{1} \wedge e_{2}=\frac{1}{2}\left(e_{1,2}-e_{2,1}\right) . \quad e_{i, j}=e_{i} \otimes e_{j}$

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) e_{1} \wedge e_{2} & =\binom{a}{c} \wedge\binom{b}{d} \\
& =\binom{a}{0} \wedge\binom{b}{d}+\binom{0}{c} \wedge\binom{b}{d} \\
& =\binom{a}{0} \wedge\binom{b}{0}+\binom{a}{0} \wedge\binom{0}{d}+\binom{0}{c} \wedge\binom{b}{0}+\binom{0}{c} \wedge\binom{0}{d} \\
& =\binom{a}{0} \wedge\binom{0}{d}+\binom{0}{c} \wedge\binom{b}{0} \\
& =(a d-b c)\left(e_{1} \wedge e_{2}\right)
\end{aligned}
$$

- For $g \in \mathrm{GL}_{n}: g\left(e_{1} \wedge \cdots \wedge e_{n}\right)=\operatorname{det}(g)\left(e_{1} \wedge \cdots \wedge e_{n}\right)$

Definition weight vector

For a GL_{n}-representation \mathscr{V} and $\lambda \in \mathbb{Z}^{n}$, a vector $v \in \mathscr{V}$ is called a weight vector of weight λ if $\forall \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \operatorname{GL}_{n}: \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right) v=\alpha_{1}^{\lambda_{1}} \alpha_{2}^{\lambda_{2}} \cdots \alpha_{n}^{\lambda_{n}} v$.

- For example, $e_{1} \wedge \cdots \wedge e_{i}$ is a weight vector of weight $(1,1, \ldots, 1,0, \ldots, 0)=\left(1^{i}\right)$ in $\bigotimes^{i} \mathbb{C}^{n}$ for $n \geq i$. If $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$, then λ is called a partition. Define $\lambda^{t}=\mu$ via $\mu_{i}=\max \left\{j \mid \lambda_{j} \geq i\right\}$.

Definition highest weight vector (HWV)

For a GL_{n}-representation \mathscr{V} and a partition λ, a vector $v \in \mathscr{V}$ is called a highest weight vector of weight λ if

1. v is a weight vector of weight λ 2. $\forall g \in\left(\right.$| 1 | $*$ | \cdots | $*$ |
| :---: | :---: | :---: | :---: |
| 0 | \ddots | \ddots | |
| \vdots | \ddots | | |
| 0 | \cdots | | 1 |$): g v=v$.

- For example, $e_{1} \wedge \cdots \wedge e_{i}$ is a highest weight vector of weight $\left(1^{i}\right)$.
- v is an SL_{n}-invariant iff v is a highest weight vector of weight (k^{n}) for some k.
- A polynomial representation \mathscr{V} of GL_{n} is irreducible iff there \exists a unique (up to scale) HWV v in \mathscr{V}.
- The weight λ of v is called the isomorphism type of \mathscr{V}.
- Two irreducible representations of GL_{n} are isomorphic iff they have the same isomorphism type.
- For a HWV v, the linear span of the orbit $\mathrm{GL}_{n} v$ is irreducible.
- To every λ there exists an irreducible representation of isomorphism type λ, for example using the HWV h_{λ} :

$$
h_{\lambda}:=\left(e_{1} \wedge \cdots \wedge e_{\mu_{1}}\right) \otimes\left(e_{1} \wedge \cdots \wedge e_{\mu_{2}}\right) \otimes \cdots \otimes\left(e_{1} \wedge \cdots \wedge e_{\mu_{\lambda_{1}}}\right)
$$

$h_{\lambda}:=\left(e_{1} \wedge \cdots \wedge e_{\mu_{1}}\right) \otimes\left(e_{1} \wedge \cdots \wedge e_{\mu_{2}}\right) \otimes \cdots \otimes\left(e_{1} \wedge \cdots \wedge e_{\mu_{\lambda_{1}}}\right)$
Let $S^{\lambda}\left(\mathbb{C}^{n}\right)$ denote the irreducible GL_{n}-representation of type λ, i.e., $S^{\lambda}\left(\mathbb{C}^{n}\right)=\operatorname{linspan}\left(\mathrm{GL}_{n} h_{\lambda}\right)$
For example, $S^{(2,1)}\left(\mathbb{C}^{3}\right)$.
Highest weight vector: $\left(e_{1} \wedge e_{2}\right) \otimes e_{1}$.
linspan $\left(\mathrm{GL}_{3}\left(\left(e_{1} \wedge e_{2}\right) \otimes e_{1}\right)\right)$ is an irreducible GL_{3}-representation with basis

- $\left(e_{1} \wedge e_{2}\right) \otimes e_{1}$
- $\left(e_{1} \wedge e_{2}\right) \otimes e_{2}$
- $\left(e_{1} \wedge e_{3}\right) \otimes e_{1}$
- $\left(e_{1} \wedge e_{3}\right) \otimes e_{2}+\left(e_{1} \wedge e_{2}\right) \otimes e_{3}$
- $\left(e_{2} \wedge e_{3}\right) \otimes e_{1}+\left(e_{1} \wedge e_{3}\right) \otimes e_{2}$
- $\left(e_{2} \wedge e_{3}\right) \otimes e_{2}$
- $\left(e_{1} \wedge e_{3}\right) \otimes e_{3}$
- $\left(e_{2} \wedge e_{3}\right) \otimes e_{3}$
weight $(2,1,0)$
weight ($1,2,0$)
weight $(2,0,1)$
weight ($1,1,1$)
weight ($1,1,1$)
weight ($0,2,1$)
weight ($1,0,2$)
weight $(0,1,2)$
The space of weight $(1,1, \ldots, 1)$ is called the zero weight space, $S^{\lambda}\left(\mathbb{C}^{n}\right)^{0}$. Remark: $S^{\lambda}\left(\mathbb{C}^{n}\right)^{0}=\left(S^{\lambda}\left(\mathbb{C}^{n}\right)\right)^{\text {ST }_{n}}$
Note: The group $\mathfrak{S}_{3} \subset \mathrm{GL}_{3}$ acts on

$$
\operatorname{linspan}\left(\left(e_{1} \wedge e_{3}\right) \otimes e_{2}+\left(e_{1} \wedge e_{2}\right) \otimes e_{3},\left(e_{2} \wedge e_{3}\right) \otimes e_{1}+\left(e_{1} \wedge e_{3}\right) \otimes e_{2}\right)
$$

$S^{(2,1)}\left(\mathbb{C}^{3}\right)^{0}$ is an irreducible \mathfrak{S}_{3}-representation.

The irreducible representations of \mathfrak{S}_{n}

Let λ be a partition with $\sum_{i} \lambda_{i}=n$.
$S^{\lambda}\left(\mathbb{C}^{n}\right)^{0}$ is an irreducible \mathfrak{S}_{n}-representation, denoted by [λ], called the Specht module.
The set of Specht modules is a complete set of pairwise non-isomorphic irreducible \mathfrak{S}_{n}-representations.

The irreducible representations of $\mathrm{GL}_{n} \times \mathfrak{S}_{d}$ are tensor products $S^{\lambda}\left(\mathbb{C}^{n}\right) \otimes[\mu]$.

Schur-Weyl duality

$$
\otimes^{d} \mathbb{C}^{n} \simeq \bigoplus_{\lambda} S^{\lambda}\left(\mathbb{C}^{n}\right) \otimes[\lambda]
$$

where λ is a partition with at most n entries, and $|\lambda|=d$.

- In particular, $\operatorname{HWV}_{\lambda}\left(\otimes^{d} \mathbb{C}^{n}\right) \simeq[\lambda]$ is irreducible.
- Hence, $\operatorname{HWV}_{\lambda}\left(\otimes^{d} \mathbb{C}^{n}\right)=\operatorname{linspan}\left\{\pi h_{\lambda} \mid \pi \in \mathfrak{S}_{n}\right\}$.
- And $\operatorname{HWV}_{\lambda, \mu, \nu}\left(\otimes^{d} V \otimes \otimes^{d} W \otimes \otimes^{d} U\right)=\operatorname{linspan}\left\{\pi h_{\lambda} \otimes \sigma h_{\mu} \otimes \tau h_{\nu} \mid \pi, \sigma, \tau \in \mathfrak{S}_{n}\right\}$.
- $\operatorname{HWV}_{\lambda \mu, \nu}\left(\operatorname{Sym}^{d}(V \otimes W \otimes U)\right)$ is obtained via symmetrization of $\operatorname{HWV}_{\lambda \mu, \nu}\left(\otimes^{d}(V \otimes W \otimes U)\right)$.

Example (Hauenstein-I-Landsberg 2013): Let $\lambda=\mu=\nu=(5,5,5,5)$. Let $d=20$.
Define $f_{1}, f_{2}, f_{3}, f_{4} \in \operatorname{HWV}_{\lambda \mu, \nu}\left(\operatorname{Sym}^{d}(V \otimes W \otimes U)\right)$ via
$\pi^{(1)}=\operatorname{id}, \sigma^{(1)}=(10,15,5,9,13,4,17,14,7,20,19,11,2,12,8,3,16,18,6,1), \tau^{(1)}=(10,11,6,2,8,9,4,20,15,16,13,18,14,19,7,5,17,3,12,1)$
$\pi^{(2)}=\mathrm{id}, \sigma^{(2)}=(19,10,1,5,7,12,2,13,16,6,18,9,11,20,3,17,14,8,15,4), \tau^{(2)}=(10,5,13,6,3,16,11,1,4,18,15,17,9,2,8,12,19,7,14,20)$
$\pi^{(3)}=\mathrm{id}, \sigma^{(3)}=(16,20,9,13,8,1,4,19,11,17,7,2,14,3,6,5,12,15,18,10), \tau^{(3)}=(1,20,11,19,5,16,17,2,18,13,7,12,14,10,8,15,6,9,3,4)$
$\pi^{(4)}=\mathrm{id}, \sigma^{(4)}=(11,5,2,1,16,10,20,3,17,19,12,18,13,9,14,4,8,6,15,7), \tau^{(4)}=(1,6,15,13,20,3,18,11,14,2,9,5,4,17,12,8,19,16,7,10)$ $f=-266054 f_{1}+421593 f_{2}+755438 f_{3}+374660 f_{4}$ vanishes on all rank ≤ 6 tensors in $\mathbb{C}^{4} \otimes \mathbb{C}^{4} \otimes \mathbb{C}^{4}$, but not on the 2×2 matrix multiplication tensor.
Other examples: Bürgisser-I 2011, Bürgisser-I 2013, Bläser-Christandl-Zuiddam 2017

The Algebraic Peter-Weyl theorem

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, let $\ell(\lambda):=\max \left\{i \mid \lambda_{i} \neq 0\right\}$. And let $|\lambda|=\sum_{i} \lambda_{i}$.
For any group G, the product $G \times G$ acts on G via $\left(g_{1}, g_{2}\right) g=g_{1} g g_{2}^{-1}$.
Algebraic Peter-Weyl theorem for GL_{n} :
$\mathbb{C}\left[\mathrm{GL}_{n}\right]_{d} \stackrel{\mathrm{GL}_{n}}{\simeq} \underset{\sim}{\mathrm{GL}_{n}} \bigoplus_{\substack{\lambda \in \mathbb{Z}^{n} \\ \lambda_{1} \geq \lambda_{2} \geq \cdots \\|\lambda|=d}} S_{\lambda}\left(\mathbb{C}^{n}\right) \otimes\left(S_{\lambda}\left(\mathbb{C}^{n}\right)\right)^{*}$

"Rectangular" version:

$$
\mathbb{C}\left[\mathbb{C}^{n \times m}\right]_{d} \quad \mathrm{GL}_{n} \underset{\sim}{\propto} \mathrm{GL}_{m}
$$

$$
S_{\lambda}\left(\mathbb{C}^{n}\right) \otimes\left(S_{\lambda}\left(\mathbb{C}^{m}\right)\right)^{*}
$$

$$
\text { partition } \lambda
$$

For $m=d$, go to the right zero weight space:

$$
\ell(\lambda) \leq \min (n, m)
$$

A basis for the LHS is given by degree d monomials in $x_{i, j}, i \in\{1, \ldots, n\}, j \in\{1, \ldots, d\}$, in which every j appears once. Hence: $\left(\mathbb{C}\left[\mathbb{C}^{n \times d}\right]_{d}\right)^{0} \simeq \bigotimes^{d} \mathbb{C}^{n}$ via the isomorphism $x_{i_{1}, 1} x_{i_{2}, 2} \cdots x_{i_{d}, d} \mapsto e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{d}}$.

- The restrictions $\ell(\lambda) \leq \min (n, d)$ and $|\lambda|=d$ are equivalent to λ being a partition of d into at most n parts.
- The irreducibles of the symmetric group are self-dual: $[\lambda]^{*} \simeq[\lambda]$.

Hence, we obtain Schur-Weyl duality:

$$
\otimes^{d} \mathbb{C}^{n} \stackrel{\mathrm{GL}}{n} \times \mathfrak{G}_{d} \bigoplus_{\lambda} S_{\lambda}\left(\mathbb{C}^{n}\right) \otimes[\lambda]
$$

Kronecker coefficients

$$
\begin{aligned}
\operatorname{Sym}^{d}\left(\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}\right) & \left.\simeq\left(\otimes^{d}\left(\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}\right)\right)^{\mathfrak{S}_{d}} \simeq\left(\left(\otimes^{d} \mathbb{C}^{a}\right) \otimes\left(\otimes \mathbb{C}^{b}\right) \otimes\left(\otimes^{d} \mathbb{C}^{c}\right)\right)\right)^{\mathfrak{S}_{d}} \\
& \left.\simeq\left(\left(\bigoplus_{\lambda} S^{\lambda}\left(\mathbb{C}^{a}\right) \otimes[\lambda]\right) \otimes\left(\bigoplus_{\mu} S^{\mu}\left(\mathbb{C}^{b}\right) \otimes[\mu]\right) \otimes\left(\bigoplus_{\nu} S^{\nu}\left(\mathbb{C}^{c}\right) \otimes[\nu]\right)\right)\right)^{\mathfrak{S}_{d}} \\
& \simeq\left(\bigoplus_{\lambda, \mu, \nu} S^{\lambda}\left(\mathbb{C}^{a}\right) \otimes S^{\mu}\left(\mathbb{C}^{b}\right) \otimes S^{\nu}\left(\mathbb{C}^{c}\right) \otimes[\lambda] \otimes[\mu] \otimes[\nu]\right)^{\mathfrak{S}_{d}} \\
& \simeq \bigoplus_{\lambda, \mu, \nu} S^{\lambda}\left(\mathbb{C}^{a}\right) \otimes S^{\mu}\left(\mathbb{C}^{b}\right) \otimes S^{\nu}\left(\mathbb{C}^{c}\right) \otimes([\lambda] \otimes[\mu] \otimes[\nu])^{\mathfrak{S}_{d}}
\end{aligned}
$$

Hence, $\quad \operatorname{dim} \operatorname{HWV}_{\lambda, \mu, \nu}\left(\operatorname{Sym}^{d}\left(\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}\right)\right)=\operatorname{dim}([\lambda] \otimes[\mu] \otimes[\nu])^{\mathfrak{S}_{d}}=k(\lambda, \mu, \nu)$

- $k(\lambda, \mu, \nu)$ is called the Kronecker coefficient.
- Stanley's problem 10 (2000): Find a non-negative combinatorial interpretation for $k(\lambda, \mu, \nu)$
- Formally, we ask if the map $(\lambda, \mu, \nu) \mapsto k(\lambda, \mu, \nu)$ is in \#P.
- The non-symmetrized version is understood:

$$
\operatorname{dim} H W V_{\lambda, \mu, \nu}\left(\otimes^{d}\left(\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}\right)\right)=\operatorname{dim}([\lambda] \otimes[\mu] \otimes[\nu])=\operatorname{dim}[\lambda] \cdot \operatorname{dim}[\mu] \cdot \operatorname{dim}[\nu]
$$

$\operatorname{dim}[\lambda]=$ number of standard tableaux of shape λ.
Example: $\lambda=(3,1,1)$

Summary

- $Z \subseteq X=\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}$
- $I(Z)_{d}=\{f \in \mathbb{C}[X] \mid f(Z=\{0\})\}$
- If $I(Z)_{d} \neq 0$, then $I(Z)_{d}$ contains some HWV
- $\operatorname{HWV}_{\lambda, \mu, \nu}\left(\mathbb{C}[X]_{d}\right) \simeq([\lambda] \otimes[\mu] \otimes[\nu])^{\mathfrak{S}_{d}}$
- Explicit HWV, given partitions λ, μ, ν and permutations $\pi, \sigma, \tau: \frac{1}{d!} \sum_{\kappa \in \mathfrak{S}_{d}}\left(\kappa \pi h_{\lambda}\right) \otimes\left(\kappa \sigma h_{\mu}\right) \otimes\left(\kappa \tau h_{\nu}\right)$

Thank you for your attention!

