Irreducible representations, Schur-Weyl duality, and explicit construction of highest weight vectors

Christian Ikenmeyer

Seminar Mathematics and Computation: Tensor Ranks and Tensor Invariants (Summer 2024)

2024-Apr-18

- $V = \mathbb{C}^a$, $W = \mathbb{C}^b$, $U = \mathbb{C}^c$. • The space of tensors: $X = V \otimes W \otimes U$ • Standard basis tensors $e_{i,j,k} = e_i \otimes e_j \otimes e_k$ • $Z \subseteq X$, for example $Z = \{T \in X \mid R(T) = 1\}$. • Consider $T' = \langle 2 \rangle = e_{1,1,1} + e_{2,2,2}$ • To prove $R(T') \ge 2$, we want to find $f : X \to \mathbb{C}$ with • $\forall T \in Z : f(T) = 0$ • $f(T') \ne 0$
- For example, $f = x_{2,1,1}x_{1,2,2} + x_{1,1,1}x_{2,2,2} x_{2,2,1}x_{1,1,2} x_{1,2,1}x_{2,1,2}$
- We want to study the polynomials f on X:
 - $\blacktriangleright \mathbb{C}[X] \simeq \mathbb{C}[x_{1,1,1}, \dots, x_{a,b,c}].$
 - ▶ In particular, we are interested in homogeneous degree d polynomials: $f \in \mathbb{C}[X]_d$
 - ▶ We want f to vanish on Z, i.e., $f \in I(Z)_d$ $(I(Z) = \{f \in \mathbb{C}[X] \mid f(Z) = \{0\}\}$ is the vanishing ideal of Z)
- In our cases: Z is closed under the action of $G = \operatorname{GL}_a \times \operatorname{GL}_b \times \operatorname{GL}_c$
- Define a linear action of G on $\mathbb{C}[X]$ via canonical pullback: $(gf)(T) := f(g^{-1}T)$
- For example, $\begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} f = x_{1,1,1}x_{2,2,2} + x_{2,1,1}x_{1,2,2} x_{1,2,1}x_{2,1,2} x_{2,2,1}x_{1,1,2}$
- Observe: If $f \in I(Z)_d$, then $\forall g \in G : gf \in I(Z)_d$
- Hence, $I(Z)_d$ is a G-representation
- Since G is linearly reductive, $I(Z)_d$ decomposes into irreducible G-representations: $I(Z)_d = \bigoplus_i \mathscr{V}_i$
- Decompose $f = \sum_i f_i$ with $f_i \in \mathscr{V}_i$.
- Since $f(T') \neq 0$, at least one i has $f_i(T') \neq 0$
- $\bullet\,$ Hence, it is sufficient to restrict out attention to f in irreducible G-representations
- Even stronger: We can restrict to so-called highest weight vectors

Symmetric tensor powers and the connection to polynomials

• $X = V \otimes W \otimes U$

- Recall: The tensor power $\bigotimes^d(X) = X^{\otimes d}$
- The symmetric group \mathfrak{S}_d acts linearly on $X^{\otimes d}$ by permutation of the tensor factors:

$$\pi(x_1 \otimes \cdots \otimes x_d) = x_{\pi^{-1}(1)} \otimes \cdots \otimes x_{\pi^{-1}(d)}$$

• Let $Sym^d X \subseteq \bigotimes^d X$ denote the set of $T \in X$ that are invariant under the action of \mathfrak{S}_d .

- For example, $e_{1,1,2} \otimes e_{1,1,1} \in \bigotimes^2 X \setminus \operatorname{Sym}^2 X$. But $e_{1,1,2} \otimes e_{1,1,1} + e_{1,1,1} \otimes e_{1,1,2} \in \operatorname{Sym}^2 X$
- The symmetrization projection $\bigotimes^d X \twoheadrightarrow \operatorname{Sym}^d X$: $T \mapsto \frac{1}{d!} \sum_{\pi \in \mathfrak{S}_d} \pi(T)$
- $\mathbb{C}[X]_d \simeq \operatorname{Sym}^d(X^*)$ via explicit isomorphism φ :
 - $\varphi(x_{i,j,k}) = e_{i,j,k}^*$ $\varphi(x_{i,j,k}x_{i',j',k'}) = \frac{1}{2}(e_{i,j,k}^* \otimes e_{i',j',k'}^* + e_{i',j',k'}^* \otimes e_{i,j,k}^*)$ etc
 - For example, $\varphi(x_{111}x_{122} x_{121}x_{112}) = \frac{1}{2}(e_{1,1,1}^* \otimes e_{1,2,2}^* + e_{1,2,2}^* \otimes e_{1,1,1}^* e_{1,2,1}^* \otimes e_{1,1,2}^* e_{1,1,2}^* \otimes e_{1,2,1}^*)$
- We want to study $\operatorname{Sym}^d(X^*)$. First, we study $\bigotimes^d(X^*)$, and then we symmetrize.

Recall, $X = V \otimes W \otimes U$.

- $\bigotimes^d(X^*) = \bigotimes^d(V^* \otimes W^* \otimes U^*) \simeq \bigotimes^d(V^*) \otimes \bigotimes^d(W^*) \otimes \bigotimes^d(U^*)$
- We first study one factor: $\bigotimes^d(\mathbb{C}^n)$. Main tool: Schur-Weyl duality

Irreducible representations

- Let G be a group and let $\mathscr{V} = \mathbb{C}^N$.
- A group homomorphism $\varrho: G \to \operatorname{GL}(\mathscr{V})$ is called a **representation** of G.
- Short notation for $g\in G, v\in \mathscr{V}\colon \ gv=\varrho(g)(v)$
- A representation \mathscr{V} of GL_n is called **polynomial** if all $(\dim \mathscr{V})^2$ many coordinate functions of $\varrho(g)$ are given by polynomials in the n^2 matrix entries.
- A linear subspace $\mathscr{W} \subseteq \mathscr{V}$ is called a subrepresentation if $\forall g \in G, w \in \mathscr{W}$: $gw \in \mathscr{W}$.
- A representation $\mathscr V$ is irreducible if 0 and $\mathscr V$ are the only subrepresentations.
- A linear map $\varphi : \mathscr{V} \to \mathscr{W}$ between two representations \mathscr{V} and \mathscr{W} of G is called a morphism of representations, if $\forall g \in G, v \in \mathscr{V} : \varphi(gv) = g\varphi(v)$.
- A bijective morphism of representations is called an isomorphism of representations.
- Important task in representation theory: Classify for a group G its irreducible representations up to isomorphism.
- This has been achieved for many groups, including GL_n and \mathfrak{S}_d .
- The orbit $Gv := \{gv \mid g \in G\}$
- $\forall v \in \mathscr{V} : \mathsf{linspan}(Gv)$ is a subrepresentation.
- In particular, is $\mathscr V$ is irreducible and $v \neq 0$, then $linspan(Gv) = \mathscr V$.

• \mathbb{C}^n is an irreducible representation of GL_n

• $\mathbb{C}^2 \otimes \mathbb{C}^2$ is a GL₂-representation, but it is **not** irreducible: it contains the nontrivial 1-dim subrepresentation spanned by: $e_1 \wedge e_2 = \frac{1}{2}(e_{1,2} - e_{2,1})$.

 $e_{i,j} = e_i \otimes e_j$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} e_1 \wedge e_2 = \begin{pmatrix} a \\ c \end{pmatrix} \wedge \begin{pmatrix} b \\ d \end{pmatrix}$$

$$= \begin{pmatrix} a \\ 0 \end{pmatrix} \wedge \begin{pmatrix} b \\ d \end{pmatrix} + \begin{pmatrix} 0 \\ c \end{pmatrix} \wedge \begin{pmatrix} b \\ d \end{pmatrix}$$

$$= \begin{pmatrix} a \\ 0 \end{pmatrix} \wedge \begin{pmatrix} b \\ 0 \end{pmatrix} + \begin{pmatrix} a \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ d \end{pmatrix} + \begin{pmatrix} 0 \\ c \end{pmatrix} \wedge \begin{pmatrix} b \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ c \end{pmatrix} \wedge \begin{pmatrix} 0 \\ d \end{pmatrix}$$

$$= \begin{pmatrix} a \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ d \end{pmatrix} + \begin{pmatrix} 0 \\ c \end{pmatrix} \wedge \begin{pmatrix} b \\ 0 \end{pmatrix}$$

$$= (ad - bc)(e_1 \wedge e_2)$$

• For $g \in \operatorname{GL}_n$: $g(e_1 \wedge \cdots \wedge e_n) = \operatorname{det}(g)(e_1 \wedge \cdots \wedge e_n)$

Definition weight vector

For a GL_n -representation \mathscr{V} and $\lambda \in \mathbb{Z}^n$, a vector $v \in \mathscr{V}$ is called a weight vector of weight λ if $\forall \operatorname{diag}(\alpha_1, \ldots, \alpha_n) \in \operatorname{GL}_n$: $\operatorname{diag}(\alpha_1, \ldots, \alpha_n) v = \alpha_1^{\lambda_1} \alpha_2^{\lambda_2} \cdots \alpha_n^{\lambda_n} v$.

• For example, $e_1 \wedge \cdots \wedge e_i$ is a weight vector of weight $(1, 1, \dots, 1, 0, \dots, 0) = (1^i)$ in $\bigotimes^i \mathbb{C}^n$ for $n \ge i$. If $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, then λ is called a **partition**. Define $\lambda^t = \mu$ via $\mu_i = \max\{j \mid \lambda_j \ge i\}$.

Definition highest weight vector (HWV)

For a GL_n -representation $\mathscr V$ and a partition λ , a vector $v \in \mathscr V$ is called a highest weight vector of weight λ if

1. v is a weight vector of weight λ

2.
$$\forall g \in \begin{pmatrix} 1 & * \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} : gv = v.$$

For example, e₁ ∧ · · · ∧ e_i is a highest weight vector of weight (1ⁱ).
 v is an SL_n-invariant iff v is a highest weight vector of weight (kⁿ) for some k.

- A polynomial representation \mathscr{V} of GL_n is irreducible iff there \exists a unique (up to scale) HWV v in \mathscr{V} .
- The weight λ of v is called the isomorphism type of $\mathscr{V}.$
- Two irreducible representations of GL_n are isomorphic iff they have the same isomorphism type.
- For a HWV v, the linear span of the orbit $GL_n v$ is irreducible.
- To every λ there exists an irreducible representation of isomorphism type λ , for example using the HWV h_{λ} :

 $h_{\lambda} := (e_1 \wedge \cdots \wedge e_{\mu_1}) \otimes (e_1 \wedge \cdots \wedge e_{\mu_2}) \otimes \cdots \otimes (e_1 \wedge \cdots \wedge e_{\mu_{\lambda_1}})$

 $h_{\lambda} := (e_1 \wedge \cdots \wedge e_{\mu_1}) \otimes (e_1 \wedge \cdots \wedge e_{\mu_2}) \otimes \cdots \otimes (e_1 \wedge \cdots \wedge e_{\mu_{\lambda_1}})$ Let $S^{\lambda}(\mathbb{C}^n)$ denote the irreducible GL_n -representation of type λ , i.e., $\overline{S}^{\lambda}(\mathbb{C}^n) = \operatorname{linspan}(\operatorname{GL}_n h_{\lambda})$ For example, $S^{(2,1)}(\mathbb{C}^3)$. Highest weight vector: $(e_1 \wedge e_2) \otimes e_1$. linspan($GL_3((e_1 \land e_2) \otimes e_1)$) is an irreducible GL_3 -representation with basis • $(e_1 \wedge e_2) \otimes e_1$ weight (2.1.0)• $(e_1 \wedge e_2) \otimes e_2$ weight (1,2,0)• $(e_1 \wedge e_3) \otimes e_1$ weight (2.0.1)• $(e_1 \wedge e_3) \otimes e_2 + (e_1 \wedge e_2) \otimes e_3$ weight (1,1,1)• $(e_2 \wedge e_3) \otimes e_1 + (e_1 \wedge e_3) \otimes e_2$ weight (1,1,1)• $(e_2 \wedge e_3) \otimes e_2$ weight (0,2,1) • $(e_1 \wedge e_3) \otimes e_3$ weight (1,0,2) • $(e_2 \wedge e_3) \otimes e_3$ weight (0,1,2)The space of weight $(1,1,\ldots,1)$ is called the **zero weight space**. $S^{\lambda}(\mathbb{C}^n)^0$. Remark: $S^{\lambda}(\mathbb{C}^n)^0 = (S^{\lambda}(\mathbb{C}^n))^{\mathsf{ST}_n}$ Note: The group $\mathfrak{S}_3 \subset \mathrm{GL}_3$ acts on $linspan((e_1 \wedge e_3) \otimes e_2 + (e_1 \wedge e_2) \otimes e_3, (e_2 \wedge e_3) \otimes e_1 + (e_1 \wedge e_3) \otimes e_2)$ $S^{(2,1)}(\mathbb{C}^3)^0$ is an irreducible \mathfrak{S}_3 -representation. The irreducible representations of \mathfrak{S}_n Let λ be a partition with $\sum_{i} \lambda_i = n$. $S^{\lambda}(\mathbb{C}^n)^0$ is an irreducible \mathfrak{S}_n -representation, denoted by $[\lambda]$, called the Specht module. The set of Specht modules is a complete set of pairwise non-isomorphic irreducible \mathfrak{S}_n -representations.

The irreducible representations of $\operatorname{GL}_n \times \mathfrak{S}_d$ are tensor products $S^{\lambda}(\mathbb{C}^n) \otimes [\mu]$.

Schur-Weyl duality

$$\bigotimes^d \mathbb{C}^n \simeq \bigoplus_{\lambda} S^{\lambda}(\mathbb{C}^n) \otimes [\lambda]$$

where λ is a partition with at most n entries, and $|\lambda| = d$.

- In particular, $\mathsf{HWV}_{\lambda}(\bigotimes^{d} \mathbb{C}^{n}) \simeq [\lambda]$ is irreducible.
- Hence, $\mathrm{HWV}_{\lambda}(\bigotimes^{d} \mathbb{C}^{n}) = \mathrm{linspan}\{\pi h_{\lambda} \mid \pi \in \mathfrak{S}_{n}\}.$
- And $\operatorname{HWV}_{\lambda,\mu,\nu}(\bigotimes^d V \otimes \bigotimes^d W \otimes \bigotimes^d U) = \operatorname{linspan}\{\pi h_\lambda \otimes \sigma h_\mu \otimes \tau h_\nu \mid \pi, \sigma, \tau \in \mathfrak{S}_n\}.$
- $\mathsf{HWV}_{\lambda \, \mu, \nu}(\mathsf{Sym}^d(V \otimes W \otimes U))$ is obtained via symmetrization of $\mathsf{HWV}_{\lambda \, \mu, \nu}(\bigotimes^d(V \otimes W \otimes U))$.

Example (Hauenstein-I-Landsberg 2013): Let $\lambda = \mu = \nu = (5, 5, 5, 5)$. Let d = 20. Define $f_1, f_2, f_3, f_4 \in \text{HWV}_{\lambda \mu, \nu}(\text{Sym}^d(V \otimes W \otimes U))$ via $\pi^{(1)} = \text{id}, \sigma^{(1)} = (10, 15, 5, 9, 13, 4, 17, 14, 7, 20, 19, 11, 2, 12, 8, 3, 16, 18, 6, 1), \tau^{(1)} = (10, 11, 6, 2, 8, 9, 4, 20, 15, 16, 13, 18, 14, 19, 7, 5, 17, 3, 12, 1)$ $\pi^{(2)} = \text{id}, \sigma^{(2)} = (19, 10, 1, 5, 7, 12, 2, 13, 16, 6, 18, 9, 11, 20, 3, 17, 14, 8, 15, 4), \tau^{(2)} = (10, 5, 13, 6, 3, 16, 11, 1, 4, 18, 15, 17, 9, 2, 8, 12, 19, 7, 14, 20)$ $\pi^{(3)} = \text{id}, \sigma^{(3)} = (16, 20, 9, 13, 8, 1, 4, 19, 11, 17, 7, 2, 14, 3, 6, 5, 12, 15, 18, 10), \tau^{(3)} = (1, 20, 11, 19, 5, 16, 17, 2, 18, 13, 7, 12, 14, 10, 8, 15, 6, 9, 3, 4)$ $\pi^{(4)} = \text{id}, \sigma^{(4)} = (11, 5, 2, 1, 16, 10, 20, 3, 17, 19, 12, 18, 13, 9, 14, 4, 8, 6, 15, 7), \tau^{(4)} = (1, 6, 15, 13, 20, 3, 18, 11, 14, 2, 9, 5, 4, 17, 12, 8, 19, 16, 7, 10)$ $f = -266054f_1 + 421593f_2 + 755438f_3 + 374660f_4$ vanishes on all rank ≤ 6 tensors in $\mathbb{C}^4 \otimes \mathbb{C}^4$, but not on the 2×2 matrix multiplication tensor.

Other examples: Bürgisser-I 2011, Bürgisser-I 2013, Bläser-Christandl-Zuiddam 2017

The Algebraic Peter-Weyl theorem

For a partition $\lambda = (\lambda_1, \lambda_2, \ldots)$, let $\ell(\lambda) := \max\{i \mid \lambda_i \neq 0\}$. And let $|\lambda| = \sum_i \lambda_i$. For any group G, the product $G \times G$ acts on G via $(g_1, g_2)g = g_1gg_2^{-1}$. Algebraic Peter-Weyl theorem for GL_n :

$$\mathbb{C}[\operatorname{GL}_{n}]_{d} \overset{\operatorname{GL}_{n} \times \operatorname{GL}_{n}}{\underset{\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}}{\overset{\lambda \in \mathbb{Z}^{n}}{\underset{|\lambda| = d}{\overset{|\lambda| = d}{\cong}}{\overset{|\lambda| = d}{\cong}}}} S_{\lambda}(\mathbb{C}^{n}) \otimes (S_{\lambda}(\mathbb{C}^{n}))^{*} \qquad \qquad \mathbb{C}[\mathbb{C}^{n \times n}]_{d} \overset{\operatorname{GL}_{n} \times \operatorname{GL}_{n}}{\underset{|\lambda| = d}{\bigoplus}} S_{\lambda}(\mathbb{C}^{n}) \otimes (S_{\lambda}(\mathbb{C}^{n}))^{*}$$

$$\mathbb{C}[\mathbb{C}^{n \times m}]_{d} \overset{\operatorname{GL}_{n} \times \operatorname{GL}_{n}}{\underset{|\lambda| = d}{\bigoplus}} S_{\lambda}(\mathbb{C}^{n}) \otimes (S_{\lambda}(\mathbb{C}^{n}))^{*}$$

For m = d, go to the right zero weight space:

$$\left(\mathbb{C}[\mathbb{C}^{n\times d}]_{d}\right)^{0} \stackrel{\mathrm{GL}_{n}\times\mathfrak{S}_{d}}{\simeq} \bigoplus_{\substack{\text{partition }\lambda\\\ell(\lambda)\leq\min(n,d)\\|\lambda|=d}} S_{\lambda}(\mathbb{C}^{n})\otimes[\lambda]^{*}$$

A basis for the LHS is given by degree d monomials in $x_{i,j}, i \in \{1, \dots, n\}, j \in \{1, \dots, d\}$, in which every j appears once. Hence: $(\mathbb{C}[\mathbb{C}^{n \times d}]_d)^0 \simeq \bigotimes^d \mathbb{C}^n$ via the isomorphism $x_{i_1,1}x_{i_2,2}\cdots x_{i_d,d} \mapsto e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_d}$.

• The restrictions $\ell(\lambda) \leq \min(n, d)$ and $|\lambda| = d$ are equivalent to λ being a partition of d into at most n parts.

• The irreducibles of the symmetric group are self-dual: $[\lambda]^* \simeq [\lambda]$.

Hence, we obtain Schur-Weyl duality:

$$\bigotimes^{d} \mathbb{C}^{n} \stackrel{\mathrm{GL}_{n} \times \mathfrak{S}_{d}}{\simeq} \bigoplus_{\lambda} S_{\lambda}(\mathbb{C}^{n}) \otimes [\lambda]$$

Kronecker coefficients

$$\begin{split} \mathsf{Sym}^{d}(\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}) &\simeq & \left(\otimes^{d}(\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}) \right)^{\mathfrak{S}_{d}} \simeq \left(\left(\bigotimes^{d}\mathbb{C}^{a} \right) \otimes \left(\otimes^{d}\mathbb{C}^{b} \right) \otimes \left(\bigotimes^{d}\mathbb{C}^{c} \right) \right)^{\mathfrak{S}_{d}} \\ &\simeq & \left(\left(\bigoplus_{\lambda} S^{\lambda}(\mathbb{C}^{a}) \otimes [\lambda] \right) \otimes \left(\bigoplus_{\mu} S^{\mu}(\mathbb{C}^{b}) \otimes [\mu] \right) \otimes \left(\bigoplus_{\nu} S^{\nu}(\mathbb{C}^{c}) \otimes [\nu] \right) \right)^{\mathfrak{S}_{d}} \\ &\simeq & \left(\bigoplus_{\lambda,\mu,\nu} S^{\lambda}(\mathbb{C}^{a}) \otimes S^{\mu}(\mathbb{C}^{b}) \otimes S^{\nu}(\mathbb{C}^{c}) \otimes [\lambda] \otimes [\mu] \otimes [\nu] \right)^{\mathfrak{S}_{d}} \\ &\simeq & \bigoplus_{\lambda,\mu,\nu} S^{\lambda}(\mathbb{C}^{a}) \otimes S^{\mu}(\mathbb{C}^{b}) \otimes S^{\nu}(\mathbb{C}^{c}) \otimes \left([\lambda] \otimes [\mu] \otimes [\nu] \right)^{\mathfrak{S}_{d}} \end{split}$$

Hence, $\dim \mathrm{HWV}_{\lambda,\mu,\nu}\left(\mathrm{Sym}^{d}(\mathbb{C}^{a}\otimes\mathbb{C}^{b}\otimes\mathbb{C}^{c})\right) = \dim\left(\left[\lambda\right]\otimes\left[\mu\right]\otimes\left[\nu\right]\right)^{\mathfrak{S}_{d}} = k(\lambda,\mu,\nu)$

- $k(\lambda, \mu, \nu)$ is called the Kronecker coefficient.
- Stanley's problem 10 (2000): Find a non-negative combinatorial interpretation for $k(\lambda, \mu, \nu)$
- Formally, we ask if the map $(\lambda, \mu, \nu) \mapsto k(\lambda, \mu, \nu)$ is in #P.
- The non-symmetrized version is understood:

 $\dim \mathsf{HWV}_{\lambda,\mu,\nu}\left(\bigotimes^d (\mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c)\right) = \dim([\lambda] \otimes [\mu] \otimes [\nu]) = \dim[\lambda] \cdot \dim[\mu] \cdot \dim[\nu]$ $\dim[\lambda] = \mathsf{number of standard tableaux of shape } \lambda.$

Example: $\lambda = (3, 1, 1)$

Summary

- $Z \subseteq X = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$
- $I(Z)_d = \{f \in \mathbb{C}[X] \mid f(Z = \{0\})\}$
- If $I(Z)_d \neq 0$, then $I(Z)_d$ contains some HWV
- $\mathsf{HWV}_{\lambda,\mu,\nu}(\mathbb{C}[X]_d) \simeq ([\lambda] \otimes [\mu] \otimes [\nu])^{\mathfrak{S}_d}$
- Explicit HWV, given partitions λ, μ, ν and permutations π, σ, τ : $\frac{1}{d!} \sum_{\kappa \in \mathfrak{S}_d} (\kappa \pi h_\lambda) \otimes (\kappa \sigma h_\mu) \otimes (\kappa \tau h_\nu)$

Thank you for your attention!