

<u>Michael Walter</u> in collaboration with Matthias Christandl (ETH), Roman Schmied, Philipp Treutlein (Basel)

BASEL

Motivation

 $N \approx 1000$ two-level systems Bose statistics

various directions, several times

Motivation

Motivation

BEC experiment measurement quantum state $N_{\uparrow}, N_{\downarrow} \longrightarrow \rho_N$

 $N \approx 1000$ two-level systems Bose statistics

pseudo-spin J=N/2 various directions, several times

Angular Momentum Wigner Function

Angular Momentum Wigner Function

 ρ_N

Examples

N=10

coherent state $|\uparrow \dots \uparrow\rangle$

coherent mixture

 $|\uparrow \dots \uparrow\rangle \langle\uparrow \dots \uparrow| \\ +|\downarrow \dots \downarrow\rangle \langle\downarrow \dots \downarrow|$

cat state

 $|\uparrow\ldots\uparrow
angle+|\downarrow\ldots\downarrow
angle$

Reduced Density Matrix

$$\rho_n = \operatorname{Tr}_{N-n}(\rho_N)$$

Wigner function coefficients

moments of one-body observables

$$(\rho_{k,q})_{k\leq k_{\max}}$$

cut off at $k_{\max} = n$

 $\langle (O_1)^k \rangle_{\rho_N}$

up to $k_{\max} = n$

cut off at $k_{\max} = n$

up to $k_{\max} = n$

Filtered Backprojection Method Schmied and Treutlein, New J. Phys (2011)

measurement axes $\vec{e}^{(r)}$ measurement results $J^{(r)}, M^{(r)}$

Filtered Backprojection Method Schmied and Treutlein, New J. Phys (2011)

measurement axes $\vec{e}^{(r)}$ measurement results $J^{(r)}, M^{(r)}$

Properties

- asymptotically correct
- numerically stable
- for low k, insensitive to fluctuations in J, M
 (do not need state resolution)

$$\hat{W}^{(\text{fbp})}(\psi) = \sum_{k=0}^{k_{\text{max}}} \sum_{q} \hat{\rho}_{k,q}^{(\text{fbp})} Y_{k,q}(\psi)$$

Results

pseudo-spin squeezed state of N = 1250(45)⁸⁷Rb atoms on an atom chip

Riedel et al, Nature (2010)

Schmied and Treutlein, New J. Phys (2011)

Positivity

reconstructed (reduced) density matrix can have <u>negative</u> eigenvalues

 $n = k_{\max}$

Semidefinite Program for N-Extendibility

minimize $\varepsilon = \|\hat{\rho}_n - \hat{\rho}_n^{(\text{fbp})}\|_1$ subject to $\exists \rho_N \ge 0$: $\hat{\rho}_n = \text{Tr}_{N-n}(\rho_N)$

efficient

Results

pseudo-spin squeezed state, N = 1250(45)

Conclusion

Work in progress: MLE for moments, error bars