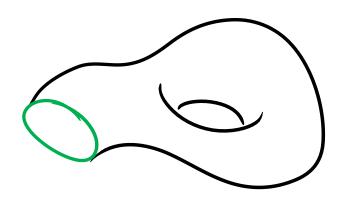
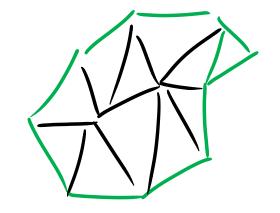
Topologically ordered models in higher dimensions



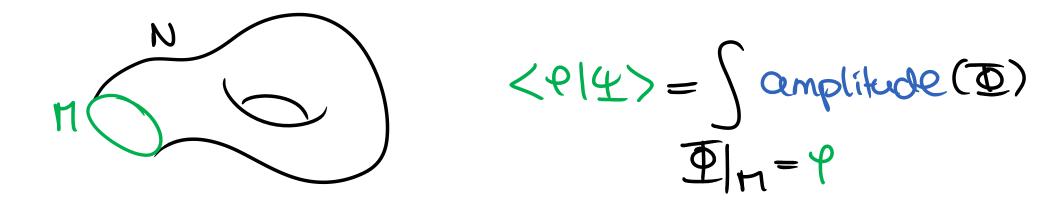
Michael Walter Stanford University



Conference on Quantum Groups and Quantum Information Theory (July 2015)

QFT & Topology

Quantum states from space-time path integral (Feynman):

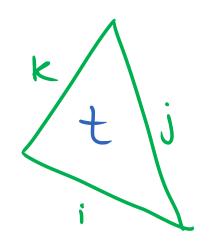


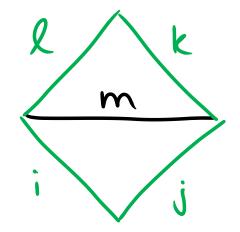
If independent of metric: TQFT, quantum invariants (Witten, ...)

Effective theory for topological q. phases, "topological order" (Wen, ...) -> David's talk

Today: Construction of lattice models with topological order

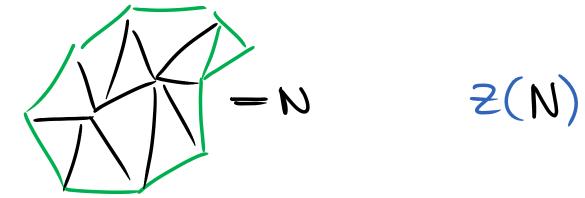
1D States from 2D Triangulations





1D States from 2D Triangulations

Tensor network for any triangulated surface N^2 :

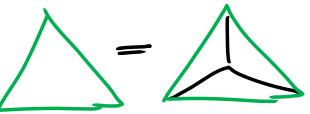


$$\Xi(N) \in \mathcal{H}(\partial N) = \times \mathbb{C}^{I}$$

...independent of the bulk triangulation iff:

[Pachner]

$$\Rightarrow = \Rightarrow \Rightarrow \Rightarrow$$



tijk is "topo. tensor"

Example: Ising Tensor

$$I = \mathbb{Z}_2 \qquad tijk = \begin{cases} \sqrt{2} & \text{(itj+k=0)} \\ 0 & \text{(otherwise)} \end{cases}$$

This defines a topological tensor. E.g.:

$$T^{2}$$

$$j = 2$$

$$\xi(\pi^{2}) = 2$$

$$D^{2}: \begin{cases} x_{6} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{$$

1D: Construction of Lattice Model

Given tijk and triangulated M1...

Hilbert space:

$$H(M) = \times C^{\perp}$$
edges e

 $\in M$

$$H = -\sum_{\text{vedex } V} H_V$$

Hamiltonian:
$$H = -\sum_{v \in lex \ v} H_v$$
 where $H_v = 2(\underbrace{i'}_{i \text{ v} \text{ is}})$

local operator!

The H_V are commuting projectors!

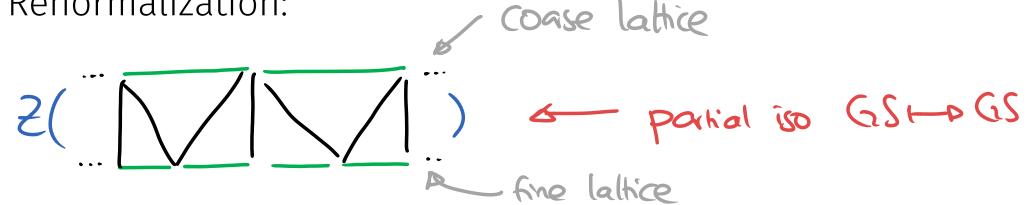
1D: Ground Space & Renormalization

$$P_0 = \prod H_V = 2(M \times [O_1]) = 2(M \times [O_1])$$
tensor retwork

GS dimension:

$$h P_0 = 2(M \times S^{\Lambda})$$
 so topo invariant

Renormalization:



$$I = \mathbb{Z}_2 \quad t_{ijk} = \int_{\mathbb{Z}}^{\mathbb{T}} (i+j+k=0)$$

Hilbert space:

Hamiltonian:

$$H_{V} = 2\left(\frac{1}{2}\left(\mathbb{I}\otimes\mathbb{I} + \mathbb{X}\otimes\mathbb{X}\right)\right)$$

$$P_0=2(M/I)$$
 — GS= Spon { leven>, lood>}

Indeed,
$$+ R = 2(S^1 \times S^1) = 2$$
 as computed before.

$$I = \mathbb{Z}_2 \quad t_{ijk} = \int_{\mathbb{Z}}^{\mathbb{T}} (i + j + k = 0)$$

locally indistinguishable

However, superpositions can be locally distinguished!

leven
$$\pm 10000$$
 = 1 ± 500 where $1\pm 5 = \frac{105\pm 115}{52}$

"Topological Bit"

More generally: "No topological order in 1D."

A fin.-dim. algebra basis (a) iet

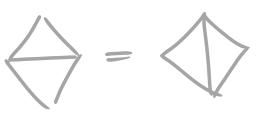
$$a_i a_j = \sum_{k} t_{ij}^k a_k$$

Associativity:

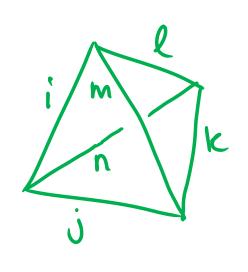
$$(a_i a_j) a_k = a_i (a_j a_k)$$

$$(a_i a_j) a_k = a_i (a_j a_k)$$

$$\sum_{m} t_{ij}^m t_{mk}^m = \sum_{n} t_{in}^n t_{jk}^n$$



Going Up: 2D States from 3D Triangulations



Gism tensor for tetrahedra

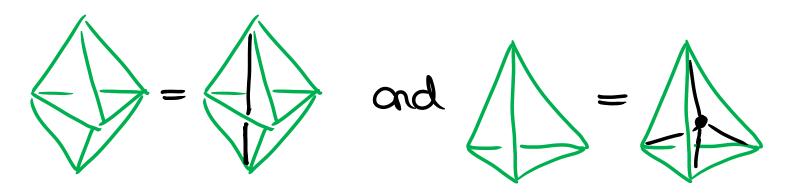
Going Up: 2D States from 3D Triangulations

Tensor network for each triangulated N^{3} :

$$Z(N) \in \mathcal{H}(\partial N) = \times \mathbb{C}^{\mathsf{T}} \otimes \times \mathbb{C}^{\mathsf{H}}$$

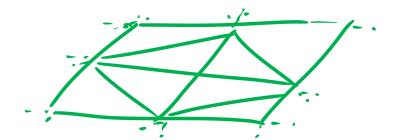
eagle e thank t

...independent of the bulk triangulation iff:



2D: Construction of Lattice Model

Given Gim and triangulated M²...



Hilbert space:

$$H(M) = \times C^{T} \otimes \times C^{H}$$
edges e this f
 eM

Hamiltonian:

$$H = -\sum_{v \in \mathbb{R}} H_v$$
 where $H_v = 2$

$$H_r = 2($$

local operator!

The H_V are commuting projectors! (As before...)

2D: Ground Space & Renormalization

$$P_0 = \prod_{v} H_v = 2(M \times [0,1]) \sim 1$$
 tensor network

GS degeneracy:

$$h P_0 = 2(M \times S^{\Lambda})$$
 so topo invariant

Renormalization:

Logical operators = strings. Excitations well-understood, also on TN level_{15/20}

Going Up: Algebra vs Topology

Associativity:

$$(a_i \cdot a_j) \cdot a_k = a_i \cdot (a_j \cdot a_k)$$

Categorification

Associator:

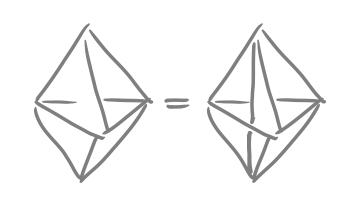
Monoidal tensor categories

2D: Topological Tensors from Fusion Categories [Barrett-Westbury]

spherical fusion category Rep(%)

ij... € I simple objects, Pijk € Hom (ij®h) basis «ijh associator → structure constants Gim

Pentagon equation:

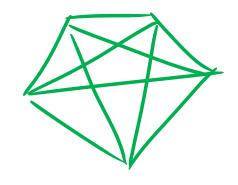


Going Up: Topological Tensors in *n*D

Degrees of freedom on n-skeleton of M° :

Lijch...
$$\in$$
 T on edges $f \in H(G_N)$ on triangles $\Phi \in K(fg,hk)$ on tetrahedra

Tensor for *n+1*-simplex:



$$\square \longrightarrow \mathcal{H}(\partial N) \ni \mathcal{Z}(N) \quad \text{for any } N^{n+1}$$

Topological invariance from n+1-Pachner moves (boundary of n+2-simplex).

Associativity:

$$(a_i \cdot a_j) \cdot a_k = a_i \cdot (a_j \cdot a_k)$$

Associator:

Pentagonator:

$$\Box$$

• • •

Higher Category Theory

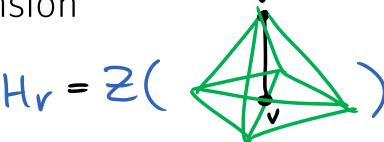
Summary

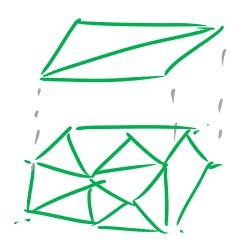
Topological lattice models in arbitrary dimension

- Input: labels, "topological tensor" satisfying coherence equations
- Topological ground state degeneracy
- Tensor network, RG map

2D: Recover all known topologically ordered models

3D: New models from tricats Sahinoglu-W.





Many open questions: New phases from exotic ncats? Mathematical structure of the excitations? Classification?

Thank you for your attention