Quantum marginal problem, tensor scaling, and invariant theory

Michael Walter (UvA \& QuSoft)

joint work with P. Bürgisser, C. Franks, A. Garg, R. Oliveira, A. Wigderson

Nederlands Mathematisch Congres 2018

Outline and philosophy

Quantum marginal problem
(Geometry)

Two dual problems and an algorithm that solves them: Tensor scaling

Philosophy:

- An old duality, ${ }^{\dagger}$ recognized as such, leads to efficient new algorithms.
- 'Computational invariant theory without computing invariants.'

[^0]
Warm-up: Horn's problem

Let $\alpha_{1} \geq \ldots \geq \alpha_{n} \geq 0, \beta_{1} \geq \ldots \geq \beta_{n} \geq 0, \gamma_{1} \geq \ldots \geq \gamma_{n} \geq 0$ be integers.

Horn's problem (Geometry): When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α, β, γ such that $A+B=C$?

Horn proposed linear inequalities on α, β, γ.
Saturation property (Invariant theory): $\exists A, B, C$ iff Littlewood-Richardson coefficient $c_{\alpha, \beta}^{\gamma}>0$ (Knutson-Tao)

- Horn inequalities sufficient
- lead to only known poly-time algorithm (Mulmuley)

Today's talk is about a generalization to tensors!

Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

$$
\begin{aligned}
& X \in V=\left(\mathbb{C}^{n}\right)^{\otimes d}=\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n} \\
\leadsto & {[X]=|X\rangle\langle X| \in \mathbb{P}(V) }
\end{aligned}
$$

Quantum marginals: $n \times n$-matrices $\rho_{1}^{X}, \ldots, \rho_{d}^{X}$ that describe state of individual particles:

$$
\operatorname{tr}\left[\rho_{1}^{X} A_{1}\right]=\left\langle\left(A_{1} \otimes I \otimes \ldots \otimes I\right) X, X\right\rangle \quad \forall A_{1}
$$

Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

$$
\begin{aligned}
& X \in V=\left(\mathbb{C}^{n}\right)^{\otimes d}=\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n} \\
\leadsto & {[X]=|X\rangle\langle X| \in \mathbb{P}(V) }
\end{aligned}
$$

Quantum marginals: $n \times n$-matrices $\rho_{1}^{X}, \ldots, \rho_{d}^{X}$ that describe state of individual particles:

$$
\operatorname{tr}\left[\rho_{1}^{X} A_{1}\right]=\left\langle\left(A_{1} \otimes I \otimes \ldots \otimes I\right) X, X\right\rangle \quad \forall A_{1}
$$

- $\rho_{1}^{X}=M_{1} M_{1}^{*}$ if we 'flatten' X to $n \times n^{d-1}$ matrix M_{1}
- eigenvalues form probability distributions

Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

$$
\begin{aligned}
& X \in V=\left(\mathbb{C}^{n}\right)^{\otimes d}=\mathbb{C}^{n} \otimes \ldots \otimes \mathbb{C}^{n} \\
\leadsto & {[X]=|X\rangle\langle X| \in \mathbb{P}(V) }
\end{aligned}
$$

Quantum marginals: $n \times n$-matrices $\rho_{1}^{X}, \ldots, \rho_{d}^{X}$ that describe state of individual particles:

$$
\operatorname{tr}\left[\rho_{1}^{X} A_{1}\right]=\left\langle\left(A_{1} \otimes I \otimes \ldots \otimes I\right) X, X\right\rangle \quad \forall A_{1}
$$

Quantum marginal problem: Which $\left(\rho_{1}^{X}, \ldots, \rho_{d}^{X}\right)$ can arise?

A natural group action
$X \in V=\left(\mathbb{C}^{n}\right)^{\otimes d}$
$G=\operatorname{SL}(n)^{d}$ acts on $V=\left(\mathbb{C}^{n}\right)^{\otimes d}$ by $g_{1} \otimes \ldots \otimes g_{d}$

Group orbit = states that we can obtain by local operations and classical communication.

Which $\left(\rho_{1}^{Y}, \ldots, \rho_{d}^{Y}\right)$ can arise in orbit (closure)?

- Quantum version of stochastic tensor
- Every particle is maximally entangled with rest

A natural group action

$$
X \in V=\left(\mathbb{C}^{n}\right)^{\otimes d}
$$

$G=\mathrm{SL}(n)^{d}$ acts on $V=\left(\mathbb{C}^{n}\right)^{\otimes d}$ by $g_{1} \otimes \ldots \otimes g_{d}$

Group orbit $=$ states that we can obtain by local operations and classical communication.

Which $\left(\rho_{1}^{Y}, \ldots, \rho_{d}^{Y}\right)$ can arise in orbit (closure)?

Problem 1

Given $X, \exists[Y] \in \overline{G \cdot[X]}$ such that $\rho_{1}^{Y}=\ldots=\rho_{d}^{Y}=\frac{l}{n}$?

- Quantum version of stochastic tensor
- Every particle is maximally entangled with rest

Quantum marginal polytopes

More generally, study

$$
\Delta(X)=\left\{\left(p_{1}, \ldots, p_{d}\right): p_{i}=\operatorname{spec}\left(\rho_{i}^{Y}\right),[Y] \in \overline{G \cdot[X]}\right\} \subseteq \mathbb{R}^{d n}
$$

- Convex (moment) polytopes (Kirwan/Mumford)
- Inequalities 'known', but 'intractable' for $n>4$ (Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.)

- Can replace $\mathcal{X}=\overline{G \cdot[X]}$ by other $\mathcal{X} \subseteq \mathbb{P}(V) \ldots$

Result (informal)

An efficient algorithm for deciding if a given point is in $\Delta(X)$.

Polytopes are of fundamental interest in quantum physics: related to entanglement distillation, monogamy of entanglement, Pauli principle, ... (but also: next talk)

Invariant theory

$G=\operatorname{SL}(n)^{d}$ acts on $V=\left(\mathbb{C}^{n}\right)^{\otimes d}$, so also on polynomials $\mathbb{C}[V]$

Problem 2

Given $X, \exists P \in \mathbb{C}[V]^{G}$ such that $P(X) \neq P(0)$?

- If no: $X \in$ null cone (geometric invariant theory)
- Even interesting for X generic!
- Equivalent: $\overline{G \cdot X} \not \ngtr 0$
- Algorithms: generators of $\mathbb{C}[V]^{G}$ or Hilbert-Mumford criterion \& Gröbner bases \rightarrow 'intractable' beyond small n.

Given $X, \exists[Y] \in \bar{G} \cdot[X]$ s.th.
$\rho_{1}^{Y}=\ldots=\rho_{d}^{\curlyvee}=\frac{1}{n}$?

Problem 2

Given X, is $\overline{G \cdot X} \not \supset 0$?

The two problems are equivalent! (Kempf-Ness)
(\Leftarrow)

$$
\begin{aligned}
& \text { For all } A=\left(A_{1}, \ldots, A_{d}\right) \text { Hermitian \& traceless: } \\
& 0=\frac{1}{2} \partial_{t}\left\|e^{A t} \cdot Y\right\|^{2}=\sum_{i=1}^{d} \operatorname{tr}\left[\rho_{i}^{Y} A_{i}\right] \Rightarrow \rho_{i}^{Y}=\frac{l}{n} \forall i
\end{aligned}
$$

(\Rightarrow) Convexity properties...
Similar equivalence for entire polytope.

Towards an algorithm

Interpret Kempf-Ness theorem as duality between two optimization problems (a noncommutative version of Farkas' lemma)!

$$
\begin{aligned}
& \inf _{g \in G} d s(g \cdot X)=0 \\
& d s(Y):=\sum_{i=1}^{d}\left\|\rho_{i}^{Y}-\frac{l}{n}\right\|^{2}
\end{aligned}
$$

Idea: Construct sequence of tensors $Y^{(0)}=X, Y^{(1)}, \ldots \in G \cdot X$ such that

- either proves primal or disproves dual hypothesis
- elementary tensor scaling step:

Towards an algorithm

Interpret Kempf-Ness theorem as duality between two optimization problems (a noncommutative version of Farkas' lemma)!

$$
\begin{aligned}
& \inf _{g \in G} d s(g \cdot X)=0 \\
& d s(Y):=\sum_{i=1}^{d}\left\|\rho_{i}^{Y}-\frac{l}{n}\right\|^{2}
\end{aligned}
$$

Idea: Construct sequence of tensors $Y^{(0)}=X, Y^{(1)}, \ldots \in G \cdot X$ such that

$$
\left\|Y^{(0)}\right\|>\left\|Y^{(1)}\right\|>\cdots>\left\|Y^{(t)}\right\| \rightarrow 0 \quad \text { unless } \quad d s\left(Y^{(t)}\right) \rightarrow 0
$$

- either proves primal or disproves dual hypothesis
- elementary tensor scaling step:

$$
Y^{(t+1)} \leftarrow\left(n \rho_{i}^{Y^{(t)}}\right)^{-1 / 2} \cdot Y^{(t)}
$$

Our result

Theorem

A poly $\left(\frac{1}{\varepsilon}\right.$, input size)-time algorithm

- Input: $X \in V$ and $\varepsilon>0$
- Output: $g \in G$ s.th. $d s(g \cdot X)<\varepsilon$, or certificate that X in null cone.
- If ε chosen suitably small: $d s(g \cdot X)<\varepsilon$ implies that $\inf d s=0$
- First exp-time algorithms for quantum marginal problem, asymptotic support of Kronecker coefficients, convex optimization over moment polytopes (\sim Jeroen's talk), ...
- Easily adapted to structured tensors (e.g., matrix product states)

Analysis via quantitative version of $A M / G M$ inequality and new a priori bounds on the complexity of invariants and highest weight vectors.

Summary and outlook

when are $\rho_{1}, \ldots, \rho_{d}$ compatible?

Null cone problem
vanishing of invariants

Tensor scaling: Effective numerical (but rigorous) algorithm.
Computational invariant theory without computing invariants!

Many open questions:

- Poly-time algorithm? Quantum algorithm? poly $\left(\frac{1}{\varepsilon}\right)$ vs poly $\left(\log \frac{1}{\varepsilon}\right)$
- Other groups and representations? Sym, \wedge, \ldots
- $\mathbb{C} \sim \mathbb{F}$?
- What are the 'tractable' problems in invariant theory?

Thank you for your attention!

The tensor scaling algorithm

Input: $X \in V$ rational, $\varepsilon>0$

- If any ρ_{i}^{X} is singular: Null cone $\frac{2}{}$
- Set $Y^{(0)}:=X$.
- For $t=0,1, \ldots, T$:
- If $d s\left(T^{(t)}\right)<\varepsilon$: Success ©
- Choose i such that $\left\|\rho_{i}^{Y^{(t)}}-\frac{l}{n}\right\|>\frac{\varepsilon}{\sqrt{d}}$ and apply tensor scaling step:

$$
Y^{(t+1)} \leftarrow\left(n \rho_{i}^{Y^{(t)}}\right)^{-1 / 2} \cdot Y^{(t)}
$$

- Null cone

Other target spectra: Adjust tensor scaling step (in particular, use Cholesky square root) and randomize initial point.

A general equivalence

All points in $\Delta(\mathcal{X})$ can be described via invariant theory:

$$
V_{\lambda} \subseteq \mathbb{C}[\mathcal{X}]_{(k)} \quad \Rightarrow \quad \frac{\lambda}{k} \in \Delta(\mathcal{X})
$$

(λ highest weight, k degree)

- Can also study multiplicities $g(\lambda, k):=\# V_{\lambda} \subseteq \mathbb{C}[\mathcal{X}]_{(k)}$.
- This leads to interesting computational problems:

$$
\begin{array}{cc}
g=? & g>0 ? \\
\text { (\#-hard) } & \text { (NP-hard) }
\end{array}
$$

Completely unlike Horn's problem: Knutson-Tao saturation property does not hold, and hence we can hope for efficient algorithms!

[^0]: ${ }^{\dagger}$ Known since the 80s in algebraic geometry!

