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Outline and philosophy

‘Quantum marginal problem‘ — ‘Null cone problem‘

(Geometry) (Invariant theory)

Two dual problems and an algorithm that solves them: Tensor scaling

Philosophy:
» An old duality,' recognized as such, leads to efficient new algorithms.

» ‘Computational invariant theory without computing invariants.’

fKnown since the 80s in algebraic geometry!
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Warm-up: Horn's problem

leta;>...2a,>0,61>...208,>0,7v1>...> 7, >0 be integers.
Horn's problem (Geometry): When 3 Hermitian n x n matrices A, B, C
with spectrum «, 3, v such that A+ B=C?

Horn proposed linear inequalities on «, 3, 7.

Saturation property (Invariant theory): 3A, B, C iff Littlewood-Richardson
coefficient CZB > 0 (Knutson-Tao)

» Horn inequalities sufficient

» lead to only known poly-time algorithm (Mulmuley)

Today's talk is about a generalization to tensors!

3/11



Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

XeV=(CY"=C"®...9C" x}@@ @\

~ [X] = [X) (X] e B(V)
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Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

XeV=(CY"=C"®...9C" x}@@ @\

~ [X] = [X) (X] e B(V)

Quantum marginals: n x n-matrices p,...,p%X that describe state of
g 1 Py
individual particles:

trpX A = (M ®I®...0 )X, X) VA 7

» o = MMy if we ‘flatten” X to n x n9~1 matrix My
» eigenvalues form probability distributions
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Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

XeV=(CY"=C"®...9C"

~ [X] = [X) (X] e B(V)

Quantum marginals: n X n-matrices p{(,. ..,

individual particles:

trlpf Al = (AL @1 ® ... )X, X)

Quantum marginal problem: Which (p{(,.

BB @)

pff that describe state of

VA1

Douglas R Hofstadter

.., pY) can arise?
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A natural group action X eV =(Cne

G=SL(n?actson V=(C"* by g1 ®...0 g4
\ G
Group orbit = states that we can obtain by ~ I—Q—@)\Q\

local operations and classical communication. $ S S
X |[D @ - D)

Which (p),...,pY) can arise in orbit (closure)?
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A natural group action X eV =(Cne

G =SL(n) actson V = (C")* by g1 ® ... @ gy
’ N E
Group orbit = states that we can obtain by A m\

local operations and classical communication. $ S S
X |[D @ - D)

Which (p),...,pY) can arise in orbit (closure)?

Given X, J[Y] € G- [X] such that p} =...=p) =

» Quantum version of stochastic tensor

» Every particle is maximally entangled with rest
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Quantum marginal polytopes

More generally, study

A(X) = {(p1,-- -, pa) : pi = spec(p] ), [Y] € G- [X]} € R"

» Convex (moment) polytopes (Kirwan/Mumford)

» Inequalities ‘known’, but ‘intractable’ for n > 4
(Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.)

» Can replace X = G - [X] by other X C P(V)...

Result (informal)

An efficient algorithm for deciding if a given point is in A(X).

Polytopes are of fundamental interest in quantum physics: related to entanglement

distillation, monogamy of entanglement, Pauli principle, ... (but also: next talk)
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Invariant theory

G = SL(n)? acts on V = (C")®9, so also on polynomials C[V/]

Given X, 3P € C[V]C such that P(X) # P(0)?

» If no: X € null cone (geometric invariant theory)
» Even interesting for X generic!
» Equivalent: G-X Z0

» Algorithms: generators of C[V]® or Hilbert-Mumford criterion &
Grobner bases — ‘intractable’ beyond small n.
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The Kempf-Ness theorem G = SL(n)4

Given X, J[Y] € G - [X] s.th.
p}/:...zp?;:%? Given X, is G- X #0?

The two problems are equivalent! (Kempf-Ness)

For all A= (A1,...,Ay) Hermitian & traceless:

I
At 2 Y .
*() Y E tr{p; Al = p \Y
x tHe H pt r[ i ] i n !

(=) Convexity properties. ..

Similar equivalence for entire polytope.
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Towards an algorithm

Interpret Kempf-Ness theorem as duality between two optimization problems
(a noncommutative version of Farkas' lemma)!

infgegds(g-X) =0

ds(Y) = ZLalle) — 112

infgecllg - X[ >0
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Towards an algorithm

Interpret Kempf-Ness theorem as duality between two optimization problems
(a noncommutative version of Farkas' lemma)!

infgegds(g-X)=0| «— |infgeqllg- X[ >0

ds(Y) = ZLalle) — 112

Idea: Construct sequence of tensors y© = x, Y1), . € G- X such that

YO>S YO > oo > YO =0 unless ds(Y®) -0

> either proves primal or disproves dual hypothesis

> elementary tensor scaling step: Wz 29, “
y(t+1) (np,.Y(t’)—l/2 .y ()
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Our result

A poly(%, input size)-time algorithm

|

>

Input: X € Vande >0
Output: g € G s.th. ds(g - X) < ¢, or certificate that X in null cone.

If & chosen suitably small: ds(g - X) < € implies that inf ds = 0

First exp-time algorithms for quantum marginal problem, asymptotic
support of Kronecker coefficients, convex optimization over moment
polytopes (~ Jeroen's talk), ...

Easily adapted to structured tensors (e.g., matrix product states)

Analysis via quantitative version of AM/GM inequality and new a priori
bounds on the complexity of invariants and highest weight vectors.
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Summary and outlook arXiv:1711.08039

dualit
‘Quantum marginal problem‘ <—>y ’Null cone problem

when are py,..., pg compatible? vanishing of invariants

Tensor scaling: Effective numerical (but rigorous) algorithm.

Computational invariant theory without computing invariants!

Many open questions:

> Poly-time algorithm? Quantum algorithm? poly(1) vs poly(log 1)
» Other groups and representations? Sym, A, ...
» C~ F?

» What are the ‘tractable’ problems in invariant theory?

Thank you for your attention!
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https://arxiv.org/abs/1711.08039

The tensor scaling algorithm

Input: X € V rational, ¢ > 0

> If any p,X is singular: Null cone %
Set Y0 .= Xx.
Fort=0,1,...,T:
> If ds(T(®)) < e: Success ©
» Choose i such that ||p,-Y(t) — 4> % and apply tensor scaling step:

v

v

y(t+1) (npy(‘>)71/2 L y(®

i

v

Null cone 4

Other target spectra: Adjust tensor scaling step (in particular, use Cholesky
square root) and randomize initial point.
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A general equivalence X CP(V)

All points in A(X') can be described via invariant theory:

A
V) C (C[X](k) = E S A(X)

(A highest weight, k degree)

> Can also study multiplicities g(A, k) := # Vi C C[X] (k).

» This leads to interesting computational problems:

(£>07]  [3s>0:g(sA, sk) > 07
(#-hard) (NP-hard) (our problem!)

Completely unlike Horn's problem: Knutson-Tao saturation property does
not hold, and hence we can hope for efficient algorithms!
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