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Outline and philosophy

Quantum marginal problem ←→ Null cone problem

(Geometry) (Invariant theory)

Two dual problems and an algorithm that solves them: Tensor scaling

Philosophy:
I An old duality,† recognized as such, leads to efficient new algorithms.
I ‘Computational invariant theory without computing invariants.’

†Known since the 80s in algebraic geometry!
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Warm-up: Horn’s problem

Let α1 ≥ . . . ≥ αn ≥ 0, β1 ≥ . . . ≥ βn ≥ 0, γ1 ≥ . . . ≥ γn ≥ 0 be integers.

Horn’s problem (Geometry): When ∃ Hermitian n × n matrices A, B, C
with spectrum α, β, γ such that A + B = C ?

Horn proposed linear inequalities on α, β, γ.

Saturation property (Invariant theory): ∃A,B,C iff Littlewood-Richardson
coefficient cγα,β > 0 (Knutson-Tao)

I Horn inequalities sufficient
I lead to only known poly-time algorithm (Mulmuley)

Today’s talk is about a generalization to tensors!
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Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

X ∈ V = (Cn)⊗d = Cn ⊗ . . .⊗ Cn

; [X ] = |X 〉 〈X | ∈ P(V )

Quantum marginals: n × n-matrices ρX
1 ,. . . ,ρX

d that describe state of
individual particles:

tr[ρX
1 A1] = 〈(A1 ⊗ I ⊗ . . .⊗ I)X ,X 〉 ∀A1
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I ρX
1 = M1M∗1 if we ‘flatten’ X to n × nd−1 matrix M1

I eigenvalues form probability distributions
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d that describe state of
individual particles:

tr[ρX
1 A1] = 〈(A1 ⊗ I ⊗ . . .⊗ I)X ,X 〉 ∀A1

Quantum marginal problem: Which (ρX
1 , . . . , ρ

X
d ) can arise?
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A natural group action X ∈ V = (Cn)⊗d

G = SL(n)d acts on V = (Cn)⊗d by g1 ⊗ . . .⊗ gd

Group orbit = states that we can obtain by
local operations and classical communication.

Which (ρY
1 , . . . , ρ

Y
d ) can arise in orbit (closure)?

Problem 1
Given X , ∃[Y ] ∈ G · [X ] such that ρY

1 = . . . = ρY
d = I

n?

I Quantum version of stochastic tensor
I Every particle is maximally entangled with rest
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Quantum marginal polytopes

More generally, study

∆(X ) = {(p1, . . . , pd ) : pi = spec(ρY
i ), [Y ] ∈ G · [X ]} ⊆ Rdn

I Convex (moment) polytopes (Kirwan/Mumford)
I Inequalities ‘known’, but ‘intractable’ for n > 4

(Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.)
I Can replace X = G · [X ] by other X ⊆ P(V ). . .

Result (informal)
An efficient algorithm for deciding if a given point is in ∆(X ).

Polytopes are of fundamental interest in quantum physics: related to entanglement
distillation, monogamy of entanglement, Pauli principle, . . . (but also: next talk)
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Invariant theory

G = SL(n)d acts on V = (Cn)⊗d , so also on polynomials C[V ]

Problem 2
Given X , ∃P ∈ C[V ]G such that P(X ) 6= P(0)?

I If no: X ∈ null cone (geometric invariant theory)
I Even interesting for X generic!
I Equivalent: G · X 63 0

I Algorithms: generators of C[V ]G or Hilbert-Mumford criterion &
Gröbner bases → ‘intractable’ beyond small n.
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The Kempf-Ness theorem G = SL(n)d

Problem 1
Given X , ∃[Y ] ∈ G · [X ] s.th.
ρY

1 = . . . = ρY
d = I

n?
Problem 2
Given X , is G · X 63 0?

The two problems are equivalent! (Kempf-Ness)

(⇐)

For all A = (A1, . . . ,Ad ) Hermitian & traceless:

0 = 1
2∂t‖eAt · Y ‖2 =

d∑
i=1

tr[ρY
i Ai ] ⇒ ρY

i = I
n ∀i

(⇒) Convexity properties. . .

Similar equivalence for entire polytope.
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Towards an algorithm

Interpret Kempf-Ness theorem as duality between two optimization problems
(a noncommutative version of Farkas’ lemma)!

infg∈G ds(g · X ) = 0 ←→ infg∈G‖g · X‖ > 0

ds(Y ) :=
∑d

i=1‖ρY
i − I

n‖
2

Idea: Construct sequence of tensors Y (0) = X , Y (1), . . .∈ G · X such that

‖Y (0)‖ > ‖Y (1)‖ > · · · > ‖Y (t)‖ → 0 unless ds(Y (t))→ 0

I either proves primal or disproves dual hypothesis
I elementary tensor scaling step:

Y (t+1) ← (nρY (t)
i )−1/2 · Y (t)
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Our result

Theorem
A poly(1

ε , input size)-time algorithm
I Input: X ∈ V and ε > 0
I Output: g ∈ G s.th. ds(g · X ) < ε, or certificate that X in null cone.

I If ε chosen suitably small: ds(g · X ) < ε implies that inf ds = 0
I First exp-time algorithms for quantum marginal problem, asymptotic

support of Kronecker coefficients, convex optimization over moment
polytopes (; Jeroen’s talk), . . .

I Easily adapted to structured tensors (e.g., matrix product states)

Analysis via quantitative version of AM/GM inequality and new a priori
bounds on the complexity of invariants and highest weight vectors.
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Summary and outlook arXiv:1711.08039

Quantum marginal problem duality←→ Null cone problem

when are ρ1, . . . , ρd compatible? vanishing of invariants

Tensor scaling: Effective numerical (but rigorous) algorithm.

Computational invariant theory without computing invariants!

Many open questions:
I Poly-time algorithm? Quantum algorithm? poly( 1

ε ) vs poly(log 1
ε )

I Other groups and representations? Sym,
∧
, . . .

I C; F?
I What are the ‘tractable’ problems in invariant theory?

Thank you for your attention!
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The tensor scaling algorithm

Input: X ∈ V rational, ε > 0
I If any ρX

i is singular: Null cone �
I Set Y (0) := X .
I For t = 0, 1, . . . ,T :

I If ds(T (t)) < ε: Success ,
I Choose i such that ‖ρY (t)

i − I
n‖ >

ε√
d and apply tensor scaling step:

Y (t+1) ← (nρY (t)

i )−1/2 · Y (t)

I Null cone �

Other target spectra: Adjust tensor scaling step (in particular, use Cholesky
square root) and randomize initial point.
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A general equivalence X ⊆ P(V )

All points in ∆(X ) can be described via invariant theory:

Vλ ⊆ C[X ](k) ⇒ λ

k ∈ ∆(X )

(λ highest weight, k degree)

I Can also study multiplicities g(λ, k) := #Vλ ⊆ C[X ](k).
I This leads to interesting computational problems:

g =? g > 0? ∃s > 0 : g(sλ, sk) > 0?

(#-hard) (NP-hard) (our problem!)

Completely unlike Horn’s problem: Knutson-Tao saturation property does
not hold, and hence we can hope for efficient algorithms!
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