Schur-Weyl Duality for the Clifford Group: Property

testing, de Finetti representations, and a robust Hudson theorem

David Gross (Cologne), Sepehr Nezami (Stanford),
Michael Walter (Amsterdam)

MuSoft

Research Center for Quantum Software

1/13



Schur-Weyl duality (CP)=t

0
UBt |xt, .. oxe) = Ulxa) © ... © Ulxe) @K \/ﬁ
R |1, - 14U = U

..,Xt> = |X7r_1(1),...,Xﬂ.—1(t)> x /
Schur-Weyl duality: These actions ‘@‘ - @
generate each other’'s commutant. ot (?ﬂ” _ ?Tr (2

Two symmetries that are ubiquituous in quantum information theory:
» i.i.d. quantum information: [p®*, R;] =0
» ecigenvalues, entropies, ...: p = UpUT

» randomized constructions: Epaar||1)(%]|%f]

See several other talks at this QIP. ..
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Clifford unitaries and stabilizer states CP = (Cd)=n

Clifford group: Unitaries Uc such that P Pauli = UCPUE Pauli.
For qubits, generated by CNOT, H, P.

Stabilizer states: States of the form |S) = Uc|0)®".
These are important classes of unitaries & states:
» QEC, MBQC, topological order, randomized benchmarking, ...

» can be highly entangled, but efficient to represent and compute with

» 2-design; 3-design for qubits = efficient random constructions

Motivates a Schur-Weyl duality for the Clifford group!
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Our results

“Schur-Weyl duality” for the Clifford group: We characterize precisely which
operators commute with U?t for all Clifford unitaries Uc.

Fewer unitaries ~ larger commutant (more than permutations).
Applications:

» Property testing |S)® s |op)®"
De Finetti theorems with increased symmetry ~ W¢ ~ 3¢ ps |S)S|®*

v

v

Higher moments of stabilizer states Es[|S)S|®]

v

t-designs from Clifford orbits

v

Robust Hudson theorem




Towards Schur-Weyl duality for the Clifford group

Plan:

© Write down permutation action in clever way.
@ Generalize.
© Prove it!
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Towards Schur-Weyl duality for the Clifford group

© Write down permutation action in clever way:

Permutation of t copies of (C9)®":

© © OO0 o o] ..,

— n=3
= O O O O O

R, =r2"  r,= Z |mx) (x|
X

Here, we think of 7 as t x t-permutation matrix, and |x) = |x1,...,X¢) is
computational basis of (C?)®t.
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Towards Schur-Weyl duality for the Clifford group

@ Generalize:

Ro=r§", ro=>_|0x) (x|

Allow all orthogonal and stochastic t x t-matrices O with entries in [Fy.
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Towards Schur-Weyl duality for the Clifford group

@ Generalize:

Ro=r3", ro=>_|0x) (x|

Allow all orthogonal and stochastic t x t-matrices O with entries in [Fy.

For qubits, an example is the 6 x 6 anti-identity:
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Rﬁ‘xl,...,X(g) ‘Xz ...—|-X6,...,X1—|-...—|-X5>

The operator Ry commutes with Ugf)(5 for every n-qubit Clifford unitary.
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Towards Schur-Weyl duality for the Clifford group

@ Generalize further:

Rr=r" = ) Iy
(y,x)eT

Allow all subspaces T C IE%t that are self-dual, i.e. y -y = x - x! and of
dimension t, and contain 1 = (1,...,1).

TFor qubits, require modulo 4 (‘doubly even’ code).
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Schur-Weyl duality for the Clifford group (Cd)y®n

Rr=r2" rr= Y |y)(x
(y,x)eT

Allow all subspaces T C Iﬁ‘ff that are self-dual, i.e. y - y = x- x and of
dimension t, and contain 1 = (1,...,1).

For n > t — 1, the operators R are [[i_3(d* + 1) many linearly
independent operators that span the commutant of {U®t}.

Sketch of proof: Phase space formalism. Compute
cardinalities and compare. []

Independent of n! Rich algebraic structure (see paper).
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Application 1: Higher moments of stabilizer states

E[ISXSI®] =~ 1 Rr

» When stabilizer states form t-design, reduces to >~ R, (Haar average)
» Summarizes all previous results on statistical properties
» ... but also holds for larger t!

We can also write t-th moment as weighted sum of certain CSS codes.
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Application 2: Stabilizer testing

Given t copies of an unknown state in (C9)®", decide if it is a stabilizer
state or e-far from it.

1>
lk_éb /ﬁ 7es(ro
I

ol

Idea: Use the anti-identity. Measure POVM element - 'd on t = 6 copies.

Let v be a pure state of n qubits. If v/ is a stabilizer state then this accepts
always. But if maxs|(1|S)|?> < 1 — €2, acceptance probability < 1 —£2/4.

» Power of test independent of n. Answers q. by Montanaro & de Wolf.
» Similar result for qudits & for testing if blackbox unitary is Clifford.

Why does it work? How to implement? 7713



Stabilizer testing using Bell difference sampling
Any state ¢ can be expanded in Pauli basis':
Y= Z Cva

> If pure, then py(v) = 27|cy(v)|? is a probability distribution.
» If stabilizer state, then support of py is stabilizer group (up to sign).

Key idea: Sample & verify!

How to sample? If 1 is real, can simply ) +—| H /7(=:=
measure in Bell basis (P, @ /) |®T) I |
(Bell sampling; Montanaro, Zhao et al). ) ——b A

TP.,:PV1®...®PV" where Poo =1, P =X, Pu=2, Pu=Y
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Stabilizer testing using Bell difference sampling

In general, need to take difference of two Bell measurement outcomes:

Fm——————— ) Bell Sampling

[Weyl lzH

[+) LA accept.
reject

) Wl ¢ J

» Constant-depth circuit, only need coherent two-qubit operations.

» Circuit is equivalent to measuring the anti-identity!

£

Proof of converse uses uncertainty relation. U T

9/13



Application 3: Stabilizer de Finetti theorems

Any tensor power |1))®" has S;-symmetry. De Finetti theorems provide
‘partial’ converse: If |W) has Si-symmetry, Vg & [ du(1)y®s for s < t.
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Application 3: Stabilizer de Finetti theorems
Any tensor power |1))®" has S;-symmetry. De Finetti theorems provide
‘partial’ converse: If |W) has Si-symmetry, Vg & [ du(1)y®s for s < t.

Stabilizer tensor powers have increased symmetry:

Ro|S)®" =|S)®" for all orthogonal and stochastic O

Assume that |W) € ((C9)®")®t has this symmetry, d > 2. Then:

|Ws — Z ps |SXS|®°||: < §2n(n+2) g—(t—s)/2
S

» Approximation is exponentially good, yet bona fide stabilizer states.
» Similar to Gaussian de Finetti (Leverrier et al). Applications to QKD?

Can reduce symmetry requirements at expense of approximation.
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Application 4: t-designs from Clifford orbits

When t > 2 or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in

the literature that this failure is relatively graceful (Zhu et al, Nezami-W).
E.g., Clifford orbit of non-stabilizer qutrit states can be 3-design!

We prove in general:

For every t, there exists ensemble of N = N(d, t) many fiducial states
in (C¥)®" such that corresponding Clifford orbits form t-design.

Clifod.
otk
» Number of fiducials does not depend on n! (

» Efficient construction? L, =t
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Application 5: Robust Hudson theorem

For odd d, every quantum state has a discrete Wigner function:

Wp(v) — d~2n Z e—27ri[v,w]/d tl’[pPV]

» Quasi-probability distribution on phase space IF?,”
> Discrete Hudson theorem: For pure states, W, > 0 iff v stabilizer

> Wigner negativity sn(v)) = _,.u,(v)<ol Wp(v)|: monotone in resource
theory of stabilizer computation; witness for contextuality

There exists a stabilizer state |S) such that [(S[)|?> > 1 — 9d?sn(1)).
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Summary and outlook arXiv:1712.08628

== = = = = = = = Bell Sampling

1
& !
(L= 1

) Weyl ]

) eyl .

Schur-Weyl duality for the Clifford group:
» clean algebraic description in terms of self-dual codes
> resolve open question in quantum property testing

» new tools for stabilizer states: moments, de Finetti, Hudson, ...

Thank you for your attention!

PhD & post-doc positions available @ QuSoft/University of Amsterdam
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https://arxiv.org/abs/1712.08628

