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Plan for today

1 Introduction
Schur-Weyl, Paulis, Cliffords, stabilizers

2 “Schur-Weyl” or Howe-Kashiwara-Vergne duality for
the Clifford group
commutant of tensor power action

2 Applications
property testing, de Finetti, . . .
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Schur-Weyl duality (CD)⊗t

Two symmetries that are ubiquituous in quantum information theory:

U⊗t |x1, . . . , xt⟩ = U |x1⟩ ⊗ . . .⊗ U |xt⟩
Rπ |x1, . . . , xt⟩ = |xπ−1(1), . . . , xπ−1(t)⟩

▶ i.i.d. quantum information: [ρ⊗t ,Rπ] = 0
▶ eigenvalues, entropies, . . . : ρ ≡ UρU†

▶ randomized constructions: EHaar[|ψ⟩⟨ψ|⊗t ]
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Schur-Weyl duality: These actions
generate each other’s commutant.

▶ i.i.d. quantum information: [ρ⊗t ,Rπ] = 0
▶ eigenvalues, entropies, . . . : ρ ≡ UρU†

▶ randomized constructions: EHaar[|ψ⟩⟨ψ|⊗t ] ∝
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Derandomization and designs

Randomized constructions often rely on Haar measure. Simple to analyze,
often near-optimal – but inefficient!

A unitary t-design {Uj} has same t-th moments as Haar measure on U(D):

Ej [(Uj ⊗ U†
j )⊗t ] = EHaar[(U ⊗ U†)⊗t ]

A state t-design {ψj} has same t-th moments as “Haar measure” on P(CD):
Ej [|ψj⟩⟨ψj |⊗t ] = EHaar[|ψ⟩⟨ψ|⊗t ]

We now discuss a well-known source of t-designs (for small t). . .
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Pauli operators and discrete phase space (C2)⊗n

Discrete phase space for n qubits: F2n
2 ∋ v = (q,p).

Pauli operators:

Pv = Pv1 ⊗ . . .⊗ Pvn where P00 = I, P01 = X , P10 = Z , P11 = Y

▶ commutation relations: PvPw = (−1)[v ,w ]PwPv ∝ Pv+w mod 2
▶ generate Pauli group
▶ orthogonal operator basis: can expand ρ =

∑
v cvPv

Qudits: phase space F2n
d corresponding to ‘shift’ and ‘clock’ operators:

X |q⟩ = |q + 1 (mod d)⟩
Z |q⟩ = e2πiq/d |q⟩
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Clifford unitaries and stabilizer states (Cd)⊗n

Clifford group: Unitaries UC such that P Pauli ⇒ UCPU†
C ∝ Pauli.

For qubits, generated by

CNOT, H = 1√
2
( 1 1

1 −1
)
, S = ( 1 0

0 i ).

Stabilizer states: States of the form |S⟩ = UC |0⟩⊗n.
Equivalently, stabilized by maximal commutative subgroup G of Pauli group:

|S⟩⟨S| = d−n ∑
P∈G

P

E.g., |00⟩+ |11⟩ defined by G = ⟨XX ,ZZ ⟩.

These are very widely used in quantum information (error correction, crypto,
randomized constructions & protocols, topological order, scrambling, . . . ). Why?

▶ have rich algebraic structure and can be highly entangled
▶ efficient to compute with on classical computers [Gottesman-Knill]

▶ same low moments as Haar measure
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Cliffords and stabilizers in phase space (Cd)⊗n

Clifford unitaries realize classical dynamics on discrete phase space:
▶ for any symplectic matrix Γ, exists Clifford UΓ s.th. UΓPxU†

Γ ∝ PΓx
▶ any Clifford unitary is of form UC ∝ UΓPv
▶ closely related to “oscillator” or Weil representation of Sp(2n,Fd)

Stabilizer states can also be described in phase space. For any state |ψ⟩,

V = {v ∈ F2n
d | Pv |ψ⟩ ∝ |ψ⟩}

is an isotropic subspace ([v ,w ] = 0 for all v ,w ∈ V ). For stabilizer states,
V is of maximal dimension n, i.e., Lagrangian.

This structure is at the heart of the theory and many applications. . .
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The result

“Schur-Weyl” or Howe-Kashiwara-Vergne duality for the Clifford group: We
characterize precisely which operators commute with U⊗t

C for all Clifford UC .

Fewer unitaries ; larger commutant (more than permutations).

Many applications by many authors:
▶ Higher moments of stabilizer states ES [|S⟩⟨S|⊗t ]
▶ Random tensor networks and Clifford circuits [Nezami-W, Apel et al, Li et al, . . . ]

▶ Efficient constructions of unitary t-designs [Haferkamp et al]

▶ Property testing |S⟩⊗t ←→ |ψ⟩⊗t

▶ Lower bounds on T -gates required for pseudorandomness [Grewal et al, . . . ]

▶ De Finetti theorems with increased symmetry Ψs ≈
∑

S pS |S⟩⟨S|⊗s

▶ Robust Hudson theorem
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Towards Schur-Weyl duality for the Clifford group

Plan:
1 Write down permutation action.
2 Generalize.
3 Prove that done!
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Towards Schur-Weyl duality for the Clifford group

1 Write down permutation action:

Permutation of t copies of (Cd)⊗n:

Rπ = r⊗n
π , rπ =

∑
x
|πx⟩ ⟨x|

Here, we think of π as t × t-permutation matrix, and |x⟩ = |x1, . . . , xt⟩ is
standard basis of (Cd)⊗t .
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Towards Schur-Weyl duality for the Clifford group

2 Generalize:

RO = r⊗n
O , rO =

∑
x
|Ox⟩ ⟨x|

Allow all orthogonal and stochastic t × t-matrices O with entries in Fd .

For qubits, an example is the 6× 6 anti-identity:

id =

 0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

,
Rid |x1, . . . , x6⟩ = |x2 + . . .+ x6, . . . , x1 + . . .+ x5⟩

The unitary Rid commutes with U⊗6
C for every n-qubit Clifford unitary.
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Towards Schur-Weyl duality for the Clifford group

3 Generalize further:

RT = r⊗n
T , rT =

∑
(y ,x)∈T

|y⟩ ⟨x|

Allow all subspaces T ⊆ F2t
d that are self-dual codes, i.e. y · y ′ = x · x ′ and

of maximal dimension t. Moreover, require |y | = |x| (for qubits, modulo 4).

For qubits, an example is the following code for t = 4:

T = rowspan
( 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

)
,

RT = 4−n
(
I⊗4 + X⊗4 + Y ⊗4 + Z⊗4

)⊗n
= 4−n ∑

P
P⊗4

The projector RT commutes with U⊗4
C for every n-qubit Clifford unitary.
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Schur-Weyl duality for the Clifford group (Cd)⊗n

RT = r⊗n
T , rT =

∑
(y ,x)∈T

|y⟩ ⟨x|

Allow all subspaces T ⊆ F2t
d that are self-dual codes, i.e. y · y ′ = x · x ′ and

of maximal dimension t. Moreover, require |y | = |x| (for qubits, modulo 4).

Theorem (Gross-Nezami-W)
For n ≥ t − 1, the operators RT are a basis of the commutant of {U⊗t

C }.
There are

∏t−2
k=0(dk + 1) such operators.

▶ Commutant stabilizes for large n (just like for
ordinary Schur-Weyl)!

▶ For n < t − 1, still spans. [Nebe-Scheeren]

▶ Commutant only has semigroup structure!
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Why should the theorem be true? (C2)⊗n

RT = r⊗n
T , rT =

∑
(y ,x)∈T

|y⟩ ⟨x|

When is RT in the commutant? Need that T ⊆ F2t
2 is. . .

▶ subspace: CNOT⊗t r⊗2
T CNOT⊗t =

∑
(y ,x),(y ′,x′)∈T

|y⟩⟨x| ⊗ |y +y ′⟩⟨x+x ′|= r⊗2
T

▶ self-dual: H⊗t rT H⊗t =
∑

(y ′,x′)∈T ⊥

|y ′⟩ ⟨x ′| = rT

▶ modulo 4: S⊗t rT S†,⊗t =
∑

(y ,x)∈T i |y |−|x| |y⟩ ⟨x| = rT

Remainder of proof: Show that RT ’s linearly independent. Compute dimension of
commutant (#group orbits) & number of subspaces as above (Witt’s lemma).
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Application 1: Higher moments of stabilizer states

Result (t-th moment)
E [|S⟩⟨S|⊗t ] ∝

∑
T RT

▶ When stabilizer states form t-design, reduces to
∑
π Rπ (Haar average)

▶ Summarizes all previous results on statistical properties
▶ . . . but applies to any t-th moment!

Many applications: Improved bounds for randomized benchmarking [Helsen et al],
low-rank matrix recovery [Kueng et al]; studies of dynamics in random Clifford
circuits [Li et al, . . . ]; random tensor network toy models of holography [Nezami-W,

Apel et al, . . . ]; analysis of thrifty shadow estimation [Helsen-W, Zhou-Liu]; . . .
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Property testing and symmetry

Property testing asks us to decide if an unknown state ρ has some property
or is far from so. E.g., how can we test if a state is pure?

Idea: If ρ = |ψ⟩⟨ψ| is pure then R(1 2)ρ
⊗2 = ρ⊗2 , and only then.

This symmetry can be tested using the well-known swap test:

When t 3 reduces to Haaraverage
quiteuseful improvedboundsfor RB Helsenet al low rank
matrixrecovery kungetal tensornetworktogmodelsofholography
NezamiW

gracefulfailureof tdesign for 4,5 I EHaa.lk
t

EskIsXs10t ol1
Peopertytestingsymmetry

DamanikW

Lm To test if interounStatesispure t 2copies suffice
Reason If 5 14 4 then Raz g g no swaptest
107 Etp El El accept ifoutcome o
g f Praccept N Msymg
g E I trs
If g pure alwaysaccept performance independentofdimension888
Ifg e farfrompure Xmax t E thenPraccept 1 Ze te

Whatother properties can be tested using t 0 1 copies
howabout if a purestate is a stabilisestate

Idea Ro s 15Mt Worthystock 0 81598
measure III on 6 copies 8

needed

similartestforClifford'ness

▶ We accept if we get “0”. This happens with probability 1
2(1 + tr ρ2).

▶ This test uses only t = 2 copies and its power does not depend on the
dimensionality – those are the best tests. . .
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Application 2: Stabilizer testing

Given t copies of an unknown state in (Cd)⊗n, decide if it is a stabilizer
state or ε-far from it.

Idea: Stabilizer tensor powers have an even larger symmetry:
RO |S⟩⊗t = |S⟩⊗t for all orthogonal and stochastic O

E.g., for qubits have the anti-identity id. If we measure Rid on t = 6 copies:

Result
Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts
always. But if maxS |⟨ψ|S⟩|2 ≤ 1− ε2, acceptance probability ≤ 1− ε2/4.

▶ Power of test independent of n. Answers q. by Montanaro & de Wolf.
▶ Similar result for qudits & for testing if blackbox unitary is Clifford.
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Stabilizer testing using Bell difference sampling

Why does the preceding test work? How to implement it?

Any state ψ can be expanded in Pauli basis:

ψ =
∑

v
cvPv

▶ If pure, then pψ(v) = 2n|cv |2 is a probability distribution.
▶ If stabilizer state, then support of pψ is stabilizer group (up to signs).

Key idea: Sample & verify!

How to sample? If ψ is real, can simply
measure in Bell basis (Pv ⊗ I) |Φ+⟩
(Bell sampling; Montanaro, Zhao et al).
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Stabilizer testing using Bell difference sampling

In general, need to take ‘difference’ of two Bell measurement outcomes:

▶ Fully transversal circuit, only need coherent two-qubit operations.
▶ Circuit is equivalent to measuring the anti-identity!

Proof of converse uses uncertainty relation and some
symplectic Fourier analysis.
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Further applications to learning and testing

These techniques have found further applications in learning and testing
properties of quantum states. Here is a fun one [Grewal-Iyer-Kretschmer-Liang]:

Theorem
Any Clifford+T quantum circuit family preparing a pseudorandom ensemble
of quantum states must contain Ω(n) T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random
states by any polynomial-time algorithm. Their result is proved as follows:

▶ The initial state |0⟩⊗n has a stabilizer group of cardinality 2n.
▶ Each T-gate reduces size of stabilizer subgroup by at most a factor 1

4 .
▶ Hence, if < n

2 T-gates, output state |ψ⟩ has nontrivial stabilizer group.
▶ Then pψ is supported on a proper subspace (dual of isotropic subspace).

In contrast, for Haar random |ψ⟩ it has weight ≤ 2
3 on any proper subspace.

Bell sampling allows distinguishing these two cases.
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These techniques have found further applications in learning and testing
properties of quantum states. Here is a fun one [Grewal-Iyer-Kretschmer-Liang]:

Theorem
Any Clifford+T quantum circuit family preparing a pseudorandom ensemble
of quantum states must contain Ω(n) T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random
states by any polynomial-time algorithm. Their result is proved as follows:
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Application 3: Stabilizer de Finetti theorems

Any tensor power |ψ⟩⊗t has St-symmetry. De Finetti theorems provide
‘partial’ converse: If |Ψ⟩ has St-symmetry, Ψs ≈

∫
dµ(ψ)ψ⊗s for s ≪ t.

As mentioned, stabilizer tensor powers have increased symmetry:

RO |S⟩⊗t = |S⟩⊗t for all orthogonal and stochastic O

Result
Assume that |Ψ⟩ ∈ ((Cd)⊗n)⊗t has this symmetry. Then:

∥Ψs −
∑

S
pS |S⟩⟨S|⊗s∥1 ≲ d2n(n+2)d−(t−s)/2

▶ Approximation is exponentially good and by stabilizer tensor powers.
▶ Similar to Gaussian de Finetti [Leverrier et al]. Applications to QKD?

Can reduce symmetry requirements at expense of goodness.
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Why does it work? Asymptotic orthogonality

The ordinary de Finetti theorem can be seen using the following facts:
▶ If |Ψ⟩ is permutation symmetric, it is supported on span{|ψ⟩⊗t}.
▶ Tensor powers of distinct states become “asymptotically orthogonal”.

Our stabilizer de Finetti theorem is proved similarly:
▶ If |Ψ⟩ has ortho-stochastic symmetry, it is supported on span{|S⟩⊗t}.
▶ For any two distinct stabilizer states, it holds that |⟨S|S ′⟩|2 ≤ 1

d .

Here we used asymptotic orthogonality for large t. How about large D/n?
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Towards a Weingarten calculus for the Clifford group?

Any t-th moment of compact G ⊆ U(D) is captured by the superoperator

MG,t(ρ) :=
∫

G
U⊗tρU⊗t,†.

This is the orthogonal projection onto the commutant.
▶ For the unitary group, commutant is spanned by Rπ for π ∈ St , and

tr R†
πRσ = D#cycles(π−1σ) = Dt−δCayley(π,σ).

▶ For the Clifford group, it is spanned by RT for certain T ⊆ F2t
d , and

tr R†
T RT ′ = Ddim(T∩T ′).

The off-diagonal entries are 1/D suppressed also in the latter. This allows
evaluating t-th moments in leading order [Haferkamp et al, Helsen-W, . . . ].

For the unitary group, Weingarten calculus inverts the Gram matrix exactly,
using representation theory [Collins]. How about the Clifford group?
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Application 4: t-designs from Cliffords

When t > 2 or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in
the literature that this failure is relatively graceful [Zhu et al, Nezami-W]. We find:

Result
For every t, there exists ensemble of N = N(d , t) many fiducial states
in (Cd)⊗n such that corresponding Clifford orbits form t-design.

▶ Number of fiducials does not depend on n!

Relatedly, Haferkamp et al proved the following beautiful result:

Theorem
One obtains an ε-approximate unitary design by alternating Õ(t4) T-gates
with random Clifford unitaries.

Proof uses techniques from the previous slide to control spectral gaps. A
recent breakthrough achieves linear depth O(t) using different techniques.
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Summary and outlook

Pauli & Clifford unitaries, stabilizer states in (Cd)⊗n:
▶ best understood via finite geometries in F2n

d

Schur-Weyl duality for the Clifford group:
▶ clean algebraic description in terms of self-dual codes
▶ new tools for widely used objects and associated random ensembles
▶ already found some exciting applications, let’s find more

Thank you for your attention!
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Application 5: Robust Hudson theorem

Recall: For odd d , every quantum state has a discrete Wigner function:

Wρ(v) = d−2n ∑
w

e−2πi[v ,w ]/d tr[ρPv ]

▶ Quasi-probability distribution on phase space F2n
d

▶ Discrete Hudson theorem: For pure states, Wψ ≥ 0 iff ψ stabilizer
▶ Wigner negativity sn(ψ) =

∑
v :Wρ(v)<0|Wρ(v)|: monotone in resource

theory of stabilizer computation; witness for contextuality

Result (Robust Hudson)
There exists a stabilizer state |S⟩ such that |⟨S|ψ⟩|2 ≥ 1− 9d2 sn(ψ).

1 / 4



Application 6: Typical entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

Result (Nezami-W)
In random stabilizer tensor network states: g = O(1) w.h.p.

▶ can distill ≃ 1
2 I(A : B) EPR pairs

▶ mutual information is entanglement measure
▶ generalizes result by Leung & Smith

(qubits, single tensor)
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Bounding the amount of GHZ entanglement

I(A : B) = 2c + g

Diagnose via third moment of partial transpose:

g log d = S(A) + S(B) + S(C) + log tr(ρTB
AB)3

Compute via replica trick: For single stabilizer state

tr(ρTB
AB)3 = tr |S⟩⟨S|⊗3

ABC

(
Rζ,A ⊗ Rζ−1,B ⊗ Rid,C

)
where ζ = (1 2 3) three-cycle, hence

E[tr(ρTB
AB)3] ∝

∑
T

(
tr rT rζ

)nA(
tr rT rζ−1

)nB (
tr rT rid

)nC

Similarly for tensor networks ; classical statistical model!
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Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

E[g ] ≤ 3n + log E[tr(ρTB
AB)3]

Since qubit stabilizers are three-design:

E[tr(ρTB
AB)3] =

∑
π∈S3

2−n
(

d(ζ, π) + d(ζ−1, π) + d(id, π)
)

where d(π, τ) = minimum number of swaps needed for π ↔ τ . Thus:

E[tr(ρTB
AB)3] ≤ 3 · 2−3n︸ ︷︷ ︸

swaps

+3 · 2−4n︸ ︷︷ ︸
id,ζ,ζ−1

⇒ E[g ] ≲ log 3

For d > 2, {T} = {even} ∪ {odd}. Calculation completely analogous!
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