Random stabilizer tensors — duality and applications J

Michael Walter

joint work with David Gross and Sepehr Nezami

RUHR
UNIVERSITAT
BOCHUM

Random Tensors @ IHP, October 2024

1/22



Plan for today

@ Introduction
Schur-Weyl, Paulis, Cliffords, stabilizers

~

@ "Schur-Weyl" or Howe-Kashiwara-Vergne duality for
the Clifford group

commutant of tensor power action Au\x

1B

N >
© Applications l%>

property testing, de Finetti, . ..
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Schur-Weyl duality (CP)=t

Two symmetries that are ubiquituous in quantum information theory:

T~ Iy
UP Y Ixt,...,xe) = Ulx1) @ ...® U|xe) @x_ \
Xp—1(t \/

= — U -[ul-

RW‘Xl,...,Xt>:‘Xﬂ—l(l),..., o ()) \
@\ m
PR = B U

> i.i.d. quantum information: [p®!, R;] =0

> eigenvalues, entropies, ...: p = UpUT

» randomized constructions: EHaar[|¢>(z/1]®t]
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Schur-Weyl duality (CP)=t

Two symmetries that are ubiquituous in quantum information theory:

USt xt, .y xe) = Ux) @ ... ® U Jxe) @x/— \/—@
Rrlxt, -y xt) = |X7r*1(1)7 ooo aX7r*1(t)> @\: — @‘
@’ WAN

Schur-Weyl duality: These actions
generate each other's commutant. Pt ‘Pﬂ, = TETF ot

I

» i.i.d. quantum information: [p®t R;] =0
> eigenvalues, entropies, ...: p= UpUT
> randomized constructions: Epaar[|¥)(|%*] o Y rcs, Rr
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Derandomization and designs

Randomized constructions often rely on Haar measure. Simple to analyze,
often near-optimal — but inefficient!

A unitary t-design {U;} has same t-th moments as Haar measure on U(D):
E(Uj @ U))*] = Euaarl(U ® UN)™']

A state t-design {¢;} has same t-th moments as “Haar measure” on P(CP):

Eill)Xwi¥*] = Evtaarl [ )0 ']
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Derandomization and designs

Randomized constructions often rely on Haar measure. Simple to analyze,
often near-optimal — but inefficient!

A unitary t-design {U;} has same t-th moments as Haar measure on U(D):
E(Uj @ U))*] = Euaarl(U ® UN)™']

A state t-design {¢;} has same t-th moments as “Haar measure” on P(CP):

Eill)Xwi¥*] = Evtaarl [ )0 ']

We now discuss a well-known source of t-designs (for small t). ..
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Pauli operators and discrete phase space (C2)®n

Discrete phase space for n qubits: F3" > v = (q, p).

Pauli operators:
PV:PV1®...®P\,” where PO():I, P01:X, P10:Z, P11: Y

» commutation relations: P, P, = (—1)["""’]

PvaO(Pv—I—wmodZ
» generate Pauli group

» orthogonal operator basis: can expand p =>", ¢, Py
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Pauli operators and discrete phase space (Cd)®n

Discrete phase space for n qubits: F3" > v = (q, p).
Pauli operators:
PV:PV1®...®P\,” where PQ():I, P01:X, Plozz, P11: Y

» commutation relations: P, P, = (—1)["""’]

PvaO(Pv—I—wmodZ
» generate Pauli group

» orthogonal operator basis: can expand p =>", ¢, Py

Qudits: phase space ]Ff,” corresponding to ‘shift’ and ‘clock’ operators:

Xlq) =g +1 (mod d))
Z|q) = &M% q)

N}
o = N

S
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Clifford unitaries and stabilizer states (Cd)®n

Clifford group: Unitaries U¢ such that P Pauli = UCPUTC o Pauli.
For qubits, generated by

CNOT, H=1(1}), S5=(}9).
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Clifford group: Unitaries U¢ such that P Pauli = UCPUTC o Pauli.
For qubits, generated by

CNOT, H=1(1}), S5=(}9).

Stabilizer states: States of the form |S) = Uc |0)®".
Equivalently, stabilized by maximal commutative subgroup G of Pauli group:

[SHSI=d™" > P

PeG
E.g., |00) 4 |11) defined by G = (XX, ZZ).
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Clifford unitaries and stabilizer states (Cd)®n

Clifford group: Unitaries U¢ such that P Pauli = UCPUTC o Pauli.
For qubits, generated by

CNOT, H=_(14), S=(%)
Stabilizer states: States of the form |S) = Uc |0)®".
Equivalently, stabilized by maximal commutative subgroup G of Pauli group:
SHS|=d" > P
PeG
E.g., |00) 4 |11) defined by G = (XX, ZZ).

These are very widely used in quantum information (error correction, crypto,
randomized constructions & protocols, topological order, scrambling, ...). Why?

» have rich algebraic structure and can be highly entangled
» efficient to compute with on classical computers [Gottesman-knill]

» same low moments as Haar measure
6/ 22



Cliffords and stabilizers in phase space (Cd)en

Clifford unitaries realize classical dynamics on discrete phase space:

» for any symplectic matrix I', exists Clifford Ur s.th. UrPxUlJ-r o Pry
» any Clifford unitary is of form Uc o« UrP,

> closely related to “oscillator” or Weil representation of Sp(2n,[Fy)

Stabilizer states can also be described in phase space. For any state [¢),

V={veFy | P ) )}

is an isotropic subspace ([v, w] = 0 for all v,w € V). For stabilizer states,
V is of maximal dimension n, i.e., Lagrangian.
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Cliffords and stabilizers in phase space (Cd)en

Clifford unitaries realize classical dynamics on discrete phase space:

» for any symplectic matrix I', exists Clifford Ur s.th. UrPxUlJ-r o Pry
» any Clifford unitary is of form Uc o« UrP,

> closely related to “oscillator” or Weil representation of Sp(2n,[Fy)

Stabilizer states can also be described in phase space. For any state [¢),

V={veFy | P ) )}

is an isotropic subspace ([v, w] = 0 for all v,w € V). For stabilizer states,
V is of maximal dimension n, i.e., Lagrangian.

This structure is at the heart of the theory and many applications. . .
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The result

“Schur-Weyl"” or Howe-Kashiwara-Vergne duality for the Clifford group: We
characterize precisely which operators commute with U?t for all Clifford Uc.

Fewer unitaries ~ larger commutant (more than permutations).

Many applications by many authors:

» Higher moments of stabilizer states Es[|S)S|®"]
» Random tensor networks and Clifford circuits [Nezami-W, Apel et al, Li et al, ...]
» Efficient constructions of unitary t-designs [Haferkamp et al]
» Property testing 1S)FE s |9)®"

» Lower bounds on T-gates required for pseudorandomness [Grewal et al, ...]
» De Finetti theorems with increased symmetry Wy ~ > ps |S)S|®*

Robust Hudson theorem )



Towards Schur-Weyl duality for the Clifford group

Plan:
© Write down permutation action.
@ Generalize.
© Prove that done!
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Towards Schur-Weyl duality for the Clifford group

@ Write down permutation action:
Permutation of t copies of (C9)®":

O o ol-»@ oo

Here, we think of 7 as t x t-permutation matrix, and |x) = |xq,...

standard basis of (C9)®¢.

s Xt) is
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Towards Schur-Weyl duality for the Clifford group

@ Generalize:

Ro=rg", ro=>_|0x) (x|

X

Allow all orthogonal and stochastic t x t-matrices O with entries in [Fy.
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Towards Schur-Weyl duality for the Clifford group
@ Generalize:

Ro=r3", ro=>_|Ox) (x|

Allow all orthogonal and stochastic t x t-matrices O with entries in F.

For qubits, an example is the 6 x 6 anti-identity:

011111
- 101111
g— 110111
111011 |>
111101
111110
RG‘XL...,X6>—‘Xz—i-...—|—X6,...,X1—|-...—|-X5>

The unitary Ry commutes with UE@‘5 for every n-qubit Clifford unitary.

9/22



Towards Schur-Weyl duality for the Clifford group

© Generalize further:

Rr=r{" rr= ) [y
(y,x)eT

Allow all subspaces T C F2f that are self-dual codes, i.e. y -y’ = x - x" and
of maximal dimension t. Moreover, require |y| = |x| (for qubits, modulo 4).

9/22



Towards Schur-Weyl duality for the Clifford group

© Generalize further:

Rr=r{" rr= ) [y
(y,x)eT

Allow all subspaces T C F2f that are self-dual codes, i.e. y -y’ = x - x" and
of maximal dimension t. Moreover, require |y| = |x| (for qubits, modulo 4).

For qubits, an example is the following code for t = 4:

0000 1111
T r0W5Pa”(1100 1100>v
1010 1010
Ry = 47" (154 4 X4 4 y®t 4 78407 = gm0y~ pit

The projector R commutes with U?“ for every n-qubit Clifford unitary.
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Schur-Weyl duality for the Clifford group (Cd)en

Rr=r3" rr= Y |y (x|
(y,x)eT

Allow all subspaces T C F2f that are self-dual codes, i.e. y -y’ = x - x" and
of maximal dimension t. Moreover, require |y| = |x| (for qubits, modulo 4).

Theorem (Gross-Nezami-W)

For n > t — 1, the operators Ry are a basis of the commutant of {UZ*}.
There are [} (dk + 1) such operators.

» Commutant stabilizes for large n (just like for
ordinary Schur-Weyl)!

» For n < t — 1, still spans. [Nebe-Scheeren]

» Commutant only has semigroup structure!
10/ 22



Why should the theorem be true? (C2)®n

Rr=r2" rr= Y ly){x
(y,x)eT

When is Rt in the commutant? Need that T C 3

» subspace: CNOT®! rfl@z CNOT®! = Z Iy (x| @ ly+y') (x+x'|= r?z
(y.x),(y'x")ET
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Why should the theorem be true? (C2)®n

Rr=rf" rr= > |y x|
(y:x)eT
When is Rt in the commutant? Need that T C 3
» subspace: CNOT®! r$2 CNOT®! = STy (x| @ ly+y') (x+X| =r$?
(y:x),(y' . x")eT
> self-dual:

H®t rr H®t :Z |y/> <X’| o—t Z (71)y.y’+x-x’: Z |y/> <X’ _

y' X (y,x)eT (y' x)eTt
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Why should the theorem be true? (C2)®n

Rr=rf", rr= Y |y x|
(yx)eT
When is Rt in the commutant? Need that T C 3
> subspace: CNOT®* rf2 CNOT® =~ |y) (x| @ |y +y') (x+x'|=rF?
(y:x),(y'x)eT
> self-dual: H* rr H®'=Y" |y/) (x| = rr
(y'x)eT+

» modulo 4: S®* ry ST® = Z M= y) (x| = rr
(yx)eT
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Why should the theorem be true? (C2)®n

Rr=r?" = > Iy

(y,x)eT

When is Rt in the commutant? Need that T C F3t is

» subspace: CNOT®! r$2 CNOT®! = STy (x| @ ly+y') (x+X| =r$?
(y:x),(y' . x")eT

> self-dual: HO' rr H2 =" |y) (X'| = rr
(' X)ET+

> modulo 4: §¥trp STt =37\ 7 i y) (x| = rr

Remainder of proof: Show that Rt's linearly independent. Compute dimension of
commutant (#group orbits) & number of subspaces as above (Witt's lemma). [
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Application 1: Higher moments of stabilizer states

ENISYSI®] & Y7 Rr

» When stabilizer states form t-design, reduces to Y. R; (Haar average)
» Summarizes all previous results on statistical properties

> ... but applies to any t-th moment!

Many applications: Improved bounds for randomized benchmarking [Heisen et ai,
low-rank matrix recovery (kueng et all; studies of dynamics in random Clifford
circuits [ietal, ...1; random tensor network toy models of holography ezamiw,
Apel et al, ...1; analysis of thrifty shadow estimation (Heisen-w, zhou-Liu]; . . .

12 /22



Property testing and symmetry

Property testing asks us to decide if an unknown state p has some property
or is far from so. E.g., how can we test if a state is pure?
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Property testing and symmetry

Property testing asks us to decide if an unknown state p has some property
or is far from so. E.g., how can we test if a state is pure?

Idea: If p = [¢)¥] is pure then Ry 2)p® = p®2, and only then.

This symmetry can be tested using the well-known swap test:

LO)ﬂ & m—@

» We accept if we get “0". This happens with probability %(1 + tr p?).

» This test uses only t = 2 copies and its power does not depend on the
dimensionality — those are the best tests. ..
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Application 2: Stabilizer testing

Given t copies of an unknown state in (C9)®", decide if it is a stabilizer
state or e-far from it.

>
lulr> f7< vas(mo
oo

Vol
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Application 2: Stabilizer testing

Given t copies of an unknown state in (C9)®", decide if it is a stabilizer
state or e-far from it.

>
16> /7‘<’ ves(ro
[

Vol

Idea: Stabilizer tensor powers have an even larger symmetry:
Ro|S)®" = |S)®" for all orthogonal and stochastic O

E.g., for qubits have the anti-identity id.
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Application 2: Stabilizer testing

Given t copies of an unknown state in (C9)®", decide if it is a stabilizer
state or e-far from it.
>
l‘{;—> {7<3 s (ro
oo
ol

Idea: Stabilizer tensor powers have an even larger symmetry:
Ro|S)®" = |S)®" for all orthogonal and stochastic O

E.g., for qubits have the anti-identity id. If we measure R on t = 6 copies:

Let ¢ be a pure state of n qubits. If ¢ is a stabilizer state then this accepts
always. But if maxs|(|S)|> < 1 — &2, acceptance probability < 1 —£2/4.

» Power of test independent of n. Answers q. by Montanaro & de Wolf.
» Similar result for qudits & for testing if blackbox unitary is Clifford.
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Stabilizer testing using Bell difference sampling

Why does the preceding test work? How to implement it?
Any state 1 can be expanded in Pauli basis:
)= Z cvPy
v

> If pure, then py(v) = 2"|c,|? is a probability distribution.
> If stabilizer state, then support of py, is stabilizer group (up to signs).

Key idea: Sample & verify!

e mmmm e — =
How to sample? If ¢ is real, can simply 1) — I
measure in Bell basis (P, @ ) |®T) | |_|—:
(Bell sampling; Montanaro, Zhao et al). [¥) : 7 d]




Stabilizer testing using Bell difference sampling

In general, need to take 'difference’ of two Bell measurement outcomes:

Fem———————— ) Bell Sampling

[Weyl I:n

|w> |—KA, accept
ject

) war I

» Fully transversal circuit, only need coherent two-qubit operations.

» Circuit is equivalent to measuring the anti-identity! .
gl

Proof of converse uses uncertainty relation and some (
symplectic Fourier analysis.
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Further applications to learning and testing

These techniques have found further applications in learning and testing
properties of quantum states. Here is a fun one [Grewal-lyerKretschmer-Liang]:

Any Clifford4+T quantum circuit family preparing a pseudorandom ensemble
of quantum states must contain Q(n) T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random
states by any polynomial-time algorithm.
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properties of quantum states. Here is a fun one [Grewal-lyerKretschmer-Liang]:

Any Clifford4+T quantum circuit family preparing a pseudorandom ensemble
of quantum states must contain Q(n) T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random
states by any polynomial-time algorithm. Their result is proved as follows:

» The initial state ]0)®" has a stabilizer group of cardinality 2".
» Each T-gate reduces size of stabilizer subgroup by at most a factor %.
> Hence, if < § T-gates, output state [¢) has nontrivial stabilizer group.

> Then py is supported on a proper subspace (dual of isotropic subspace).
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Further applications to learning and testing

These techniques have found further applications in learning and testing
properties of quantum states. Here is a fun one [Grewal-lyerKretschmer-Liang]:

Any Clifford4+T quantum circuit family preparing a pseudorandom ensemble
of quantum states must contain Q(n) T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random
states by any polynomial-time algorithm. Their result is proved as follows:

» The initial state ]0)®" has a stabilizer group of cardinality 2".

» Each T-gate reduces size of stabilizer subgroup by at most a factor %.
> Hence, if < § T-gates, output state [¢) has nontrivial stabilizer group.
> Then py is supported on a proper subspace (dual of isotropic subspace).

In contrast, for Haar random |1)) it has weight < % on any proper subspace.
Bell sampling allows distinguishing these two cases.

17 / 22



Application 3: Stabilizer de Finetti theorems

Any tensor power |1/)®* has S;-symmetry. De Finetti theorems provide
‘partial’ converse: If |W) has S;-symmetry, Vs & [ du(1)yp®s for s < t.
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Application 3: Stabilizer de Finetti theorems

Any tensor power |1/)®* has S;-symmetry. De Finetti theorems provide
‘partial’ converse: If |W) has S;-symmetry, Vs & [ du(1)yp®s for s < t.

As mentioned, stabilizer tensor powers have increased symmetry:

Ro|S)%t =|S)®t for all orthogonal and stochastic O

Assume that [W) € ((C?)®")®t has this symmetry. Then:

st — Z Ps ’5><5’®SH1 S d2n(n+2)d—(t_s)/2
S

» Approximation is exponentially good and by stabilizer tensor powers.
» Similar to Gaussian de Finetti [Leverrier et 2. Applications to QKD?

Can reduce symmetry requirements at expense of goodness.
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Why does it work? Asymptotic orthogonality

The ordinary de Finetti theorem can be seen using the following facts:
> If |W) is permutation symmetric, it is supported on span{|)®*}.

» Tensor powers of distinct states become “asymptotically orthogonal™.

Our stabilizer de Finetti theorem is proved similarly:
> If |W) has ortho-stochastic symmetry, it is supported on span{|S)®*}.
» For any two distinct stabilizer states, it holds that [(S]S')|? < %.
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Why does it work? Asymptotic orthogonality

The ordinary de Finetti theorem can be seen using the following facts:
> If |W) is permutation symmetric, it is supported on span{|)®*}.
» Tensor powers of distinct states become “asymptotically orthogonal™.

Our stabilizer de Finetti theorem is proved similarly:
> If |W) has ortho-stochastic symmetry, it is supported on span{|S)®*}.
» For any two distinct stabilizer states, it holds that [(S]S')|? < %.

Here we used asymptotic orthogonality for large t. How about large D/n?

19 /22



Towards a Weingarten calculus for the Clifford group?

Any t-th moment of compact G C U(D) is captured by the superoperator

Ma.:(p) ZZ/GU®tpU®t’T-

This is the orthogonal projection onto the commutant.
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Towards a Weingarten calculus for the Clifford group?

Any t-th moment of compact G C U(D) is captured by the superoperator

Ma.:(p) ZZ/GU®tpU®t’T-

This is the orthogonal projection onto the commutant.
» For the unitary group, commutant is spanned by R; for m € 5¢, and

tr Rera' — D#cycles(nfla) _ Dt_‘SCayley(WvU).
» For the Clifford group, it is spanned by Rt for certain T C F2f, and
trRT,-RT/ — pdim(TnT’).

The off-diagonal entries are 1/D suppressed also in the latter. This allows
evaluating t-th moments in leading order [Haferkamp et al, Helsen-w, ...].
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Towards a Weingarten calculus for the Clifford group?

Any t-th moment of compact G C U(D) is captured by the superoperator

Ma.:(p) ZZ/GU®tpU®t’T-

This is the orthogonal projection onto the commutant.
» For the unitary group, commutant is spanned by R; for m € 5¢, and

tr Rera' — D#cycles(nfla) _ Dt_‘SCayley(WvU).
» For the Clifford group, it is spanned by Rt for certain T C F2f, and
trRT,-RT/ — pdim(TnT’).

The off-diagonal entries are 1/D suppressed also in the latter. This allows
evaluating t-th moments in leading order [Haferkamp et al, Helsen-w, ...].

For the unitary group, Weingarten calculus inverts the Gram matrix exactly,
using representation theory [coins). How about the Clifford group?
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Application 4: t-designs from Cliffords

When t > 2 or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in
the literature that this failure is relatively graceful znu et ai, Nezami-w). We find:

For every t, there exists ensemble of N = N(d, t) many fiducial states
in (C?)®" such that corresponding Clifford orbits form t-design.

//\) Clfed
» Number of fiducials does not depend on n! (@

et
>t

21 /22



Application 4: t-designs from Cliffords

When t > 2 or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in
the literature that this failure is relatively graceful znu et ai, Nezami-w). We find:

For every t, there exists ensemble of N = N(d, t) many fiducial states
in (C?)®" such that corresponding Clifford orbits form t-design.
A Gl

a
» Number of fiducials does not depend on n! ((/D“"“
et
l>®t

Relatedly, Haferkamp et al proved the following beautiful result:

One obtains an e-approximate unitary design by alternating @(t“) T-gates
with random Clifford unitaries.

Proof uses techniques from the previous slide to control spectral gaps. A

recent breakthrough achieves linear depth O(t) using different techniques.
21 /22



Summary and outlook

Pauli & Clifford unitaries, stabilizer states in (C?)®":
» best understood via finite geometries in F2"

Schur-Weyl duality for the Clifford group:
» clean algebraic description in terms of self-dual codes
» new tools for widely used objects and associated random ensembles
» already found some exciting applications, let's find more

Thank you for your attention!
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Application 5: Robust Hudson theorem

Recall: For odd d, every quantum state has a discrete Wigner function:

Wp(v) —d2n Z e—27ri[v,w]/d tl’[va]

w

» Quasi-probability distribution on phase space IE‘(%”
> Discrete Hudson theorem: For pure states, W, > 0 iff v stabilizer

> Wigner negativity sn(y)) = >_y.w, (v)<ol W,(v)|: monotone in resource
theory of stabilizer computation; witness for contextuality

There exists a stabilizer state |S) such that [(S|1))[? > 1 — 9d?sn(v)).

1/4



Application 6: Typical entanglement of stabilizer states
Tripartite stabilizer states decompose into EPR and GHZ entanglement:

2A b
X [~

How about typical stabilizer states?
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Application 6: Typical entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

In random stabilizer tensor network states: g = O(1) w.h.p.

> can distill ~ 2/(A: B) EPR pairs Lo

. . . AA\
» mutual information is entanglement measure
@

» generalizes result by Leung & Smith "Ax %5)

(qubits, single tensor)

2/4



Bounding the amount of GHZ entanglement

A <
g \
m(‘

I(A:B)=2c+g

Diagnose via third moment of partial transpose:

glogd = S(A) + S(B) + S(C) + logtr(pap)°®
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Bounding the amount of GHZ entanglement

oA b
- % )
ey, 2 C

SgTssesm

I(A:B)=2c+g

Diagnose via third moment of partial transpose:

glogd = S(A) + S(B) 4+ S(C) + logtr(p5)3
Compute via replica trick: For single stabilizer state

tr(pa8)® = tr |S)(SI53c (Roa® Ro15® Rac)
where ¢ = (1 2 3) three-cycle, hence

Eltr(p8)3] oc 37 (trrrre)™ (tr rrre—1)"® (tr rrrng)"™
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Bounding the amount of GHZ entanglement

oA b
- % P
gy — €

S

I(A:B)=2c+g

Diagnose via third moment of partial transpose:

glogd = S(A) + S(B) 4+ S(C) + logtr(p5)3
Compute via replica trick: For single stabilizer state

tr(ppg)® = tr [S)(SI58c (Roa® Ro1,5@ Rac)

where ( = (1 2 3) three-cycle, hence

Eltr(p8)3] oc 37 (trrrre)™ (tr rrre—1)"® (tr rrrng)"™

Similarly for tensor networks ~» classical statistical model!
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Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

E[g] < 3n+ log Etr(p15)3]
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Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

El[g] < 3n+ log E[tr(p )%

Since qubit stabilizers are three-design:

Eltr(px2)’] = > 2 —n(d(¢,m) +d(¢, ) + d(id, 7))

TES3

where d(m, 7) = minimum number of swaps needed for m < 7.
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Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

El[g] < 3n+ log E[tr(p )%

Since qubit stabilizers are three-design:

Eltr(px2)’] = > 2 —n(d(¢,m) +d(¢, ) + d(id, 7))

TES3

where d(m, 7) = minimum number of swaps needed for 7 <+ 7. Thus:

Eltr(pf8)’] <3-273" 43. 274" = E[g] <log3 [
S~ N~
swaps id,¢,¢1

Ford > 2, {T} = {even} U {odd}. Calculation completely analogous!
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