Random stabilizer tensors - duality and applications

Michael Walter

joint work with David Gross and Sepehr Nezami

Random Tensors @ IHP, October 2024

Plan for today

Introduction

Schur-Weyl, Paulis, Cliffords, stabilizers

Schur-Weyl" or Howe-Kashiwara-Vergne duality for the Clifford group commutant of tensor power action

Applications

property testing, de Finetti, ...

Schur-Weyl duality

$$(\mathbb{C}^D)^{\otimes t}$$

Two symmetries that are ubiquituous in quantum information theory:

$$U^{\otimes t} |x_1, \dots, x_t\rangle = U |x_1\rangle \otimes \dots \otimes U |x_t\rangle$$

$$R_{\pi} |x_1, \dots, x_t\rangle = |x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(t)}\rangle$$

- i.i.d. quantum information: $[\rho^{\otimes t}, R_{\pi}] = 0$
- eigenvalues, entropies, ...: $\rho \equiv U \rho U^{\dagger}$
- randomized constructions: $E_{\text{Haar}}[|\psi\rangle\langle\psi|^{\otimes t}]$

Schur-Weyl duality

$$(\mathbb{C}^D)^{\otimes t}$$

Two symmetries that are ubiquituous in quantum information theory:

$$U^{\otimes t} |x_1, \dots, x_t\rangle = U |x_1\rangle \otimes \dots \otimes U |x_t\rangle$$

$$R_{\pi} |x_1, \dots, x_t\rangle = |x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(t)}\rangle$$

$$I_{\pi} |x_1, \dots, x_t\rangle = |x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(t)}\rangle$$

$$I_{\pi} |x_1, \dots, x_t\rangle = |x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(t)}\rangle$$

$$I_{\pi} |x_1, \dots, x_t\rangle = |x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(t)}\rangle$$

$$I_{\pi^{-1}} |x_1, \dots, x_t\rangle = |x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(t)}\rangle$$

- ► i.i.d. quantum information: $[\rho^{\otimes t}, R_{\pi}] = 0$
- eigenvalues, entropies, \ldots : $\rho \equiv U \rho U^{\dagger}$
- ► randomized constructions: $E_{\text{Haar}}[|\psi\rangle\langle\psi|^{\otimes t}] \propto \sum_{\pi \in S_t} R_{\pi}$

Derandomization and designs

Randomized constructions often rely on *Haar measure*. Simple to analyze, often near-optimal – but inefficient!

A unitary *t*-design $\{U_j\}$ has same *t*-th moments as Haar measure on U(D):

$$E_j[(U_j\otimes U_j^\dagger)^{\otimes t}]=E_{\mathsf{Haar}}[(U\otimes U^\dagger)^{\otimes t}]$$

A state *t*-design $\{\psi_j\}$ has same *t*-th moments as "Haar measure" on $\mathbb{P}(\mathbb{C}^D)$: $E_j[|\psi_j\rangle\langle\psi_j|^{\otimes t}] = E_{\text{Haar}}[|\psi\rangle\langle\psi|^{\otimes t}]$

We now discuss a well-known source of *t*-designs (for small *t*)...

Derandomization and designs

Randomized constructions often rely on *Haar measure*. Simple to analyze, often near-optimal – but inefficient!

A unitary *t*-design $\{U_j\}$ has same *t*-th moments as Haar measure on U(D):

$$E_j[(U_j\otimes U_j^\dagger)^{\otimes t}]=E_{\mathsf{Haar}}[(U\otimes U^\dagger)^{\otimes t}]$$

A state *t*-design $\{\psi_j\}$ has same *t*-th moments as "Haar measure" on $\mathbb{P}(\mathbb{C}^D)$: $E_j[|\psi_j\rangle\langle\psi_j|^{\otimes t}] = E_{\mathsf{Haar}}[|\psi\rangle\langle\psi|^{\otimes t}]$

We now discuss a well-known source of t-designs (for small t)...

Pauli operators and discrete phase space

Discrete phase space for *n* qubits: $\mathbb{F}_2^{2n} \ni \mathbf{v} = (\mathbf{q}, \mathbf{p})$.

Pauli operators:

 $P_{\mathbf{v}} = P_{v_1} \otimes \ldots \otimes P_{v_n}$ where $P_{00} = I$, $P_{01} = X$, $P_{10} = Z$, $P_{11} = Y$

- ► commutation relations: $P_{\mathbf{v}}P_{\mathbf{w}} = (-1)^{[\mathbf{v},\mathbf{w}]}P_{\mathbf{w}}P_{\mathbf{v}} \propto P_{\mathbf{v}+\mathbf{w} \mod 2}$
- generate Pauli group
- orthogonal operator basis: can expand $\rho = \sum_{\mathbf{v}} c_{\mathbf{v}} P_{\mathbf{v}}$

Qudits: phase space \mathbb{F}_d^{2n} corresponding to 'shift' and 'clock' operators:

$$X |q\rangle = |q+1 \pmod{d}$$

 $Z |q\rangle = e^{2\pi i q/d} |q\rangle$

Pauli operators and discrete phase space

Discrete phase space for *n* qubits: $\mathbb{F}_2^{2n} \ni \mathbf{v} = (\mathbf{q}, \mathbf{p})$.

Pauli operators:

 $P_{\mathbf{v}} = P_{v_1} \otimes \ldots \otimes P_{v_n}$ where $P_{00} = I$, $P_{01} = X$, $P_{10} = Z$, $P_{11} = Y$

- ► commutation relations: $P_{\mathbf{v}}P_{\mathbf{w}} = (-1)^{[\mathbf{v},\mathbf{w}]}P_{\mathbf{w}}P_{\mathbf{v}} \propto P_{\mathbf{v}+\mathbf{w} \mod 2}$
- generate Pauli group
- orthogonal operator basis: can expand $\rho = \sum_{\mathbf{v}} c_{\mathbf{v}} P_{\mathbf{v}}$

Qudits: phase space \mathbb{F}_d^{2n} corresponding to 'shift' and 'clock' operators:

$$egin{aligned} X \ket{q} &= \ket{q+1 \pmod{d}} \ Z \ket{q} &= e^{2\pi \mathrm{i} q/d} \ket{q} \end{aligned}$$

Clifford unitaries and stabilizer states

Clifford group: Unitaries U_C such that P Pauli $\Rightarrow U_C P U_C^{\dagger} \propto$ Pauli. For qubits, generated by

CNOT,
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}.$$

Stabilizer states: States of the form $|S\rangle = U_C |0\rangle^{\otimes n}$.

Equivalently, stabilized by maximal commutative subgroup G of Pauli group:

$$|S\rangle\langle S| = d^{-n}\sum_{P\in G}P$$

E.g., $|00\rangle + |11\rangle$ defined by $G = \langle XX, ZZ \rangle$.

These are very widely used in quantum information (error correction, crypto, randomized constructions & protocols, topological order, scrambling, ...). Why?

- have rich algebraic structure and can be highly entangled
- efficient to compute with on *classical* computers [Gottesman-Knill]
- same low moments as Haar measure

Clifford unitaries and stabilizer states

Clifford group: Unitaries U_C such that P Pauli $\Rightarrow U_C P U_C^{\dagger} \propto$ Pauli. For qubits, generated by

CNOT,
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$.

Stabilizer states: States of the form $|S\rangle = U_C |0\rangle^{\otimes n}$.

Equivalently, stabilized by maximal commutative subgroup G of Pauli group:

$$|S\rangle\langle S| = d^{-n}\sum_{P\in G}P$$

E.g., $|00\rangle + |11\rangle$ defined by $G = \langle XX, ZZ \rangle$.

These are very widely used in quantum information (error correction, crypto, randomized constructions & protocols, topological order, scrambling, ...). Why?

- have rich algebraic structure and can be highly entangled
- efficient to compute with on *classical* computers [Gottesman-Knill]
- same low moments as Haar measure

Clifford unitaries and stabilizer states

Clifford group: Unitaries U_C such that P Pauli $\Rightarrow U_C P U_C^{\dagger} \propto$ Pauli. For qubits, generated by

CNOT,
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$.

Stabilizer states: States of the form $|S\rangle = U_C |0\rangle^{\otimes n}$.

Equivalently, stabilized by maximal commutative subgroup G of Pauli group:

$$|S\rangle\langle S| = d^{-n}\sum_{P\in G}P$$

E.g., |00
angle+|11
angle defined by $G=\langle XX,ZZ
angle.$

These are very widely used in quantum information (error correction, crypto, randomized constructions & protocols, topological order, scrambling, ...). Why?

- have rich algebraic structure and can be highly entangled
- efficient to compute with on *classical* computers [Gottesman-Knill]
- same low moments as Haar measure

Cliffords and stabilizers in phase space

 $(\mathbb{C}^d)^{\otimes n}$

Clifford unitaries realize *classical dynamics* on discrete phase space:

- ► for any symplectic matrix Γ , exists Clifford U_{Γ} s.th. $U_{\Gamma}P_{x}U_{\Gamma}^{\dagger} \propto P_{\Gamma x}$
- \blacktriangleright any Clifford unitary is of form $U_C \propto U_{\Gamma} P_{\bm{v}}$
- ▶ closely related to "oscillator" or Weil representation of $Sp(2n, \mathbb{F}_d)$

Stabilizer states can also be described in phase space. For any state $|\psi\rangle$,

$$V = \{ \mathbf{v} \in \mathbb{F}_d^{2n} \mid P_{\mathbf{v}} \ket{\psi} \propto \ket{\psi} \}$$

is an isotropic subspace ($[\boldsymbol{v}, \boldsymbol{w}] = 0$ for all $\boldsymbol{v}, \boldsymbol{w} \in V$). For stabilizer states, V is of maximal dimension n, i.e., Lagrangian.

This structure is at the heart of the theory and many applications...

Cliffords and stabilizers in phase space

 $(\mathbb{C}^d)^{\otimes n}$

Clifford unitaries realize *classical dynamics* on discrete phase space:

- ► for any symplectic matrix Γ , exists Clifford U_{Γ} s.th. $U_{\Gamma}P_{x}U_{\Gamma}^{\dagger} \propto P_{\Gamma x}$
- any Clifford unitary is of form $U_C \propto U_{\Gamma} P_{\nu}$
- ▶ closely related to "oscillator" or Weil representation of $Sp(2n, \mathbb{F}_d)$

Stabilizer states can also be described in phase space. For any state $|\psi\rangle$,

$$V = \{ \mathbf{v} \in \mathbb{F}_d^{2n} \mid P_{\mathbf{v}} \ket{\psi} \propto \ket{\psi} \}$$

is an isotropic subspace ($[\mathbf{v}, \mathbf{w}] = 0$ for all $\mathbf{v}, \mathbf{w} \in V$). For stabilizer states, V is of maximal dimension n, i.e., Lagrangian.

This structure is at the heart of the theory and many applications...

The result

"Schur-Weyl" or Howe-Kashiwara-Vergne duality for the Clifford group: We characterize precisely which operators commute with $U_C^{\otimes t}$ for all Clifford U_C .

Fewer unitaries \rightsquigarrow larger commutant (more than permutations).

Many applications by many authors:

- Higher moments of stabilizer states
- Random tensor networks and Clifford circuits
- Efficient constructions of unitary <u>t-designs</u>
- Property testing
- ► Lower bounds on *T*-gates required for pseudorandomness [Grewal et al, ...]
- De Finetti theorems with increased symmetry $\Psi_s \approx \sum_S p_S |S\rangle \langle S|^{\otimes s}$
- Robust Hudson theorem

[Haferkamp et al]

[Nezami-W. Apel et al. Li et al. ...]

Plan:

- Write down permutation action.
- Ø Generalize.
- Prove that done!

• Write down permutation action:

Permutation of t copies of $(\mathbb{C}^d)^{\otimes n}$:

$$R_{\pi} = r_{\pi}^{\otimes n}, \quad r_{\pi} = \sum_{oldsymbol{x}} |\pi oldsymbol{x}
angle \langle oldsymbol{x} |$$

Here, we think of π as $t \times t$ -permutation matrix, and $|\mathbf{x}\rangle = |x_1, \dots, x_t\rangle$ is standard basis of $(\mathbb{C}^d)^{\otimes t}$.

Ø Generalize:

$$R_{O} = r_{O}^{\otimes n}, \quad r_{O} = \sum_{\mathbf{x}} |O\mathbf{x}\rangle \langle \mathbf{x}|$$

Allow all orthogonal and stochastic $t \times t$ -matrices O with entries in \mathbb{F}_d .

For qubits, an example is the 6×6 anti-identity:

$$\overline{\mathsf{id}} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix},$$
$$R_{\overline{\mathsf{id}}} | \mathbf{x}_1, \dots, \mathbf{x}_6 \rangle = | \mathbf{x}_2 + \dots + \mathbf{x}_6, \dots, \mathbf{x}_1 + \dots + \mathbf{x}_5 \rangle$$

The unitary $R_{\overline{id}}$ commutes with $U_C^{\otimes 6}$ for every *n*-qubit Clifford unitary.

Ø Generalize:

$$R_{O} = r_{O}^{\otimes n}, \quad r_{O} = \sum_{\mathbf{x}} |O\mathbf{x}\rangle \langle \mathbf{x}|$$

Allow all orthogonal and stochastic $t \times t$ -matrices O with entries in \mathbb{F}_d .

For qubits, an example is the 6×6 anti-identity:

$$\overline{\mathsf{id}} = \begin{pmatrix} \begin{smallmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix},$$
$$R_{\overline{\mathsf{id}}} | \mathbf{x}_1, \dots, \mathbf{x}_6 \rangle = | \mathbf{x}_2 + \dots + \mathbf{x}_6, \dots, \mathbf{x}_1 + \dots + \mathbf{x}_5 \rangle$$

The unitary $R_{\overline{id}}$ commutes with $U_C^{\otimes 6}$ for every *n*-qubit Clifford unitary.

Generalize further:

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

Allow all subspaces $T \subseteq \mathbb{F}_d^{2t}$ that are self-dual codes, i.e. $\mathbf{y} \cdot \mathbf{y}' = \mathbf{x} \cdot \mathbf{x}'$ and of maximal dimension t. Moreover, require $|\mathbf{y}| = |\mathbf{x}|$ (for qubits, modulo 4).

For qubits, an example is the following code for t = 4:

$$T = \operatorname{rowspan} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix},$$

$$R_T = 4^{-n} \left(I^{\otimes 4} + X^{\otimes 4} + Y^{\otimes 4} + Z^{\otimes 4} \right)^{\otimes n} = 4^{-n} \sum_P P^{\otimes 4}$$

The projector R_T commutes with $U_C^{\otimes 4}$ for every *n*-qubit Clifford unitary.

Generalize further:

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

Allow all subspaces $T \subseteq \mathbb{F}_d^{2t}$ that are self-dual codes, i.e. $\mathbf{y} \cdot \mathbf{y}' = \mathbf{x} \cdot \mathbf{x}'$ and of maximal dimension t. Moreover, require $|\mathbf{y}| = |\mathbf{x}|$ (for qubits, modulo 4).

For qubits, an example is the following code for t = 4:

$$T = \operatorname{rowspan} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix},$$

$$R_T = 4^{-n} \left(I^{\otimes 4} + X^{\otimes 4} + Y^{\otimes 4} + Z^{\otimes 4} \right)^{\otimes n} = 4^{-n} \sum_P P^{\otimes 4}$$

The projector R_T commutes with $U_C^{\otimes 4}$ for every *n*-qubit Clifford unitary.

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

Allow all subspaces $T \subseteq \mathbb{F}_d^{2t}$ that are self-dual codes, i.e. $\mathbf{y} \cdot \mathbf{y}' = \mathbf{x} \cdot \mathbf{x}'$ and of maximal dimension t. Moreover, require $|\mathbf{y}| = |\mathbf{x}|$ (for qubits, modulo 4).

Theorem (Gross-Nezami-W)

For $n \ge t - 1$, the operators R_T are a basis of the commutant of $\{U_C^{\otimes t}\}$. There are $\prod_{k=0}^{t-2} (d^k + 1)$ such operators.

- Commutant stabilizes for large n (just like for ordinary Schur-Weyl)!
- For n < t 1, still spans. [Nebe-Scheeren]
- Commutant only has semigroup structure!

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

When is R_T in the commutant? Need that $T \subseteq \mathbb{F}_2^{2t}$ is...

► subspace: $CNOT^{\otimes t} r_T^{\otimes 2} CNOT^{\otimes t} = \sum_{(\mathbf{y}, \mathbf{x}), (\mathbf{y}', \mathbf{x}') \in T} |\mathbf{y}\rangle \langle \mathbf{x}| \otimes |\mathbf{y} + \mathbf{y}'\rangle \langle \mathbf{x} + \mathbf{x}'| = r_T^{\otimes 2}$

► self-dual:
$$H^{\otimes t} r_T H^{\otimes t} = \sum_{(\mathbf{y}', \mathbf{x}') \in T^{\perp}} |\mathbf{y}'\rangle \langle \mathbf{x}'| = r_T$$

▶ modulo 4: $S^{\otimes t} r_T S^{\dagger, \otimes t} = \sum_{(y, x) \in T} i^{|y| - |x|} |y\rangle \langle x| = r_T$

Remainder of proof: Show that R_{τ} 's linearly independent. Compute dimension of commutant (#group orbits) & number of subspaces as above (Witt's lemma).

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

When is R_T in the commutant? Need that $T \subseteq \mathbb{F}_2^{2t}$ is...

- ► subspace: $\text{CNOT}^{\otimes t} r_T^{\otimes 2} \text{CNOT}^{\otimes t} = \sum_{(\mathbf{y}, \mathbf{x}), (\mathbf{y}', \mathbf{x}') \in T} |\mathbf{y}\rangle \langle \mathbf{x}| \otimes |\mathbf{y} + \mathbf{y}'\rangle \langle \mathbf{x} + \mathbf{x}'| = r_T^{\otimes 2}$
- self-dual:

$$H^{\otimes t} r_{T} H^{\otimes t} = \sum_{\mathbf{y}', \mathbf{x}'} |\mathbf{y}'\rangle \langle \mathbf{x}'| 2^{-t} \sum_{(\mathbf{y}, \mathbf{x}) \in T} (-1)^{\mathbf{y} \cdot \mathbf{y}' + \mathbf{x} \cdot \mathbf{x}'} = \sum_{(\mathbf{y}', \mathbf{x}') \in T^{\perp}} |\mathbf{y}'\rangle \langle \mathbf{x}'| = r_{T}$$

▶ modulo 4: $S^{\otimes t} r_T S^{\dagger, \otimes t} = \sum_{(y,x) \in T} i^{|y| - |x|} |y\rangle \langle x| = r_T$

Remainder of proof: Show that R_T 's linearly independent. Compute dimension of commutant (#group orbits) & number of subspaces as above (Witt's lemma).

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

When is R_T in the commutant? Need that $T \subseteq \mathbb{F}_2^{2t}$ is...

► subspace: $\text{CNOT}^{\otimes t} r_T^{\otimes 2} \text{CNOT}^{\otimes t} = \sum_{(\boldsymbol{y}, \boldsymbol{x}), (\boldsymbol{y}', \boldsymbol{x}') \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x} | \otimes |\boldsymbol{y} + \boldsymbol{y}' \rangle \langle \boldsymbol{x} + \boldsymbol{x}' | = r_T^{\otimes 2}$

► self-dual:
$$H^{\otimes t} r_T H^{\otimes t} = \sum_{(\mathbf{y}', \mathbf{x}') \in T^{\perp}} |\mathbf{y}'\rangle \langle \mathbf{x}'| = r_T$$

$$\blacktriangleright \text{ modulo 4: } S^{\otimes t} r_T S^{\dagger, \otimes t} = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} i^{|\boldsymbol{y}| - |\boldsymbol{x}|} |\boldsymbol{y}\rangle \langle \boldsymbol{x}| = r_T$$

Remainder of proof: Show that R_T 's linearly independent. Compute dimension of commutant (#group orbits) & number of subspaces as above (Witt's lemma). \Box

$$R_T = r_T^{\otimes n}, \quad r_T = \sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}|$$

When is R_T in the commutant? Need that $T \subseteq \mathbb{F}_2^{2t}$ is...

► subspace: $\text{CNOT}^{\otimes t} r_T^{\otimes 2} \text{CNOT}^{\otimes t} = \sum_{(\boldsymbol{y}, \boldsymbol{x}), (\boldsymbol{y}', \boldsymbol{x}') \in T} |\boldsymbol{y}\rangle \langle \boldsymbol{x}| \otimes |\boldsymbol{y} + \boldsymbol{y}'\rangle \langle \boldsymbol{x} + \boldsymbol{x}'| = r_T^{\otimes 2}$

► self-dual:
$$H^{\otimes t} r_T H^{\otimes t} = \sum_{(\mathbf{y}', \mathbf{x}') \in T^{\perp}} |\mathbf{y}'\rangle \langle \mathbf{x}'| = r_T$$

► modulo 4: $S^{\otimes t} r_T S^{\dagger, \otimes t} = \sum_{(y, x) \in T} i^{|y| - |x|} |y\rangle \langle x| = r_T$

Remainder of proof: Show that R_T 's linearly independent. Compute dimension of commutant (#group orbits) & number of subspaces as above (Witt's lemma). \Box

Application 1: Higher moments of stabilizer states

Result (t-th moment)

$E[|S\rangle\langle S|^{\otimes t}]\propto \sum_T R_T$

- When stabilizer states form *t*-design, reduces to $\sum_{\pi} R_{\pi}$ (Haar average)
- Summarizes all previous results on statistical properties
- ... but applies to any t-th moment!

Many applications: Improved bounds for randomized benchmarking [Helsen et al], low-rank matrix recovery [Kueng et al]; studies of dynamics in random Clifford circuits [Li et al, ...]; random tensor network toy models of holography [Nezami-W, Apel et al, ...]; analysis of thrifty shadow estimation [Helsen-W, Zhou-Liu]; ...

Property testing and symmetry

Property testing asks us to decide if an unknown state ρ has some property or is far from so. E.g., how can we test if a state is pure?

Idea: If $\rho = |\psi\rangle\!\langle\psi|$ is pure then $R_{(1\ 2)}\rho^{\otimes 2} = \rho^{\otimes 2}$, and only then.

This symmetry can be tested using the well-known swap test:

- We accept if we get "0". This happens with probability $\frac{1}{2}(1 + \operatorname{tr} \rho^2)$.
- This test uses only t = 2 copies and its power does not depend on the dimensionality those are the best tests...

Property testing and symmetry

Property testing asks us to decide if an unknown state ρ has some property or is far from so. E.g., how can we test if a state is pure?

Idea: If $\rho = |\psi\rangle\!\langle\psi|$ is pure then $R_{(1\ 2)}\rho^{\otimes 2} = \rho^{\otimes 2}$, and only then.

This symmetry can be tested using the well-known swap test:

- We accept if we get "0". This happens with probability $\frac{1}{2}(1 + \operatorname{tr} \rho^2)$.
- ► This test uses only t = 2 copies and its power does not depend on the dimensionality those are the best tests...

Application 2: Stabilizer testing

Given t copies of an unknown state in $(\mathbb{C}^d)^{\otimes n}$, decide if it is a stabilizer state or ε -far from it.

Idea: Stabilizer tensor powers have an even larger symmetry:

 $R_O |S\rangle^{\otimes t} = |S\rangle^{\otimes t}$ for all orthogonal and stochastic O

E.g., for qubits have the anti-identity \overline{id} . If we measure $R_{\overline{id}}$ on t = 6 copies:

Result

Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts always. But if $\max_S |\langle \psi | S \rangle|^2 \leq 1 - \varepsilon^2$, acceptance probability $\leq 1 - \varepsilon^2/4$.

Power of test independent of *n*. Answers q. by Montanaro & de Wolf.
Similar result for qudits & for testing if blackbox unitary is Clifford.

Application 2: Stabilizer testing

Given t copies of an unknown state in $(\mathbb{C}^d)^{\otimes n}$, decide if it is a stabilizer state or ε -far from it.

Idea: Stabilizer tensor powers have an even larger symmetry:

 $R_O \ket{S}^{\otimes t} = \ket{S}^{\otimes t}$ for all orthogonal and stochastic O

E.g., for qubits have the anti-identity \overline{id} . If we measure $R_{\overline{id}}$ on t = 6 copies:

Result

Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts always. But if $\max_{S} |\langle \psi | S \rangle|^2 \leq 1 - \varepsilon^2$, acceptance probability $\leq 1 - \varepsilon^2/4$.

Power of test independent of *n*. Answers q. by Montanaro & de Wolf.
Similar result for qudits & for testing if blackbox unitary is Clifford.

Application 2: Stabilizer testing

Given t copies of an unknown state in $(\mathbb{C}^d)^{\otimes n}$, decide if it is a stabilizer state or ε -far from it.

Idea: Stabilizer tensor powers have an even larger symmetry:

 $R_O \ket{S}^{\otimes t} = \ket{S}^{\otimes t}$ for all orthogonal and stochastic O

E.g., for qubits have the anti-identity id. If we measure R_{id} on t = 6 copies:

Result

Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts always. But if $\max_{S} |\langle \psi | S \rangle|^2 \leq 1 - \varepsilon^2$, acceptance probability $\leq 1 - \varepsilon^2/4$.

- ▶ Power of test independent of *n*. Answers q. by Montanaro & de Wolf.
- Similar result for qudits & for testing if blackbox unitary is Clifford.

Stabilizer testing using Bell difference sampling

Why does the preceding test work? How to implement it?

Any state ψ can be expanded in Pauli basis:

$$\psi = \sum_{\mathbf{v}} c_{\mathbf{v}} P_{\mathbf{v}}$$

• If pure, then $p_{\psi}(\mathbf{v}) = 2^n |c_{\mathbf{v}}|^2$ is a probability distribution.

• If stabilizer state, then support of p_{ψ} is stabilizer group (up to signs).

Key idea: Sample & verify!

How to sample? If ψ is real, can simply measure in Bell basis $(P_{\mathbf{v}} \otimes I) |\Phi^+\rangle$ (Bell sampling; Montanaro, Zhao *et al*).

Stabilizer testing using Bell difference sampling

In general, need to take 'difference' of two Bell measurement outcomes:

- ► Fully transversal circuit, only need coherent two-qubit operations.
- Circuit is equivalent to measuring the anti-identity!

Proof of converse uses uncertainty relation and some symplectic Fourier analysis.

Further applications to learning and testing

These techniques have found further applications in learning and testing properties of quantum states. Here is a fun one [Grewal-Iyer-Kretschmer-Liang]:

Theorem

Any Clifford+T quantum circuit family preparing a pseudorandom ensemble of quantum states must contain $\Omega(n)$ T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random states by any polynomial-time algorithm. Their result is proved as follows:

• The initial state $|0\rangle^{\otimes n}$ has a stabilizer group of cardinality 2^n .

- Each T-gate reduces size of stabilizer subgroup by at most a factor $\frac{1}{4}$.
- \blacktriangleright Hence, if $<\frac{n}{2}$ T-gates, output state $|\psi\rangle$ has nontrivial stabilizer group.

• Then p_{ψ} is supported on a proper subspace (dual of isotropic subspace). In contrast, for Haar random $|\psi\rangle$ it has weight $\leq \frac{2}{3}$ on any proper subspace. Bell sampling allows distinguishing these two cases.

Further applications to learning and testing

These techniques have found further applications in learning and testing properties of quantum states. Here is a fun one [Grewal-Iyer-Kretschmer-Liang]:

Theorem

Any Clifford+T quantum circuit family preparing a pseudorandom ensemble of quantum states must contain $\Omega(n)$ T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random states by any polynomial-time algorithm. Their result is proved as follows:

- The initial state $|0\rangle^{\otimes n}$ has a stabilizer group of cardinality 2^n .
- Each T-gate reduces size of stabilizer subgroup by at most a factor $\frac{1}{4}$.
- ▶ Hence, if $< \frac{n}{2}$ T-gates, output state $|\psi\rangle$ has nontrivial stabilizer group.
- Then p_{ψ} is supported on a proper subspace (dual of isotropic subspace).

In contrast, for Haar random $|\psi\rangle$ it has weight $\leq \frac{2}{3}$ on any proper subspace. Bell sampling allows distinguishing these two cases.

Further applications to learning and testing

These techniques have found further applications in learning and testing properties of quantum states. Here is a fun one [Grewal-Iyer-Kretschmer-Liang]:

Theorem

Any Clifford+T quantum circuit family preparing a pseudorandom ensemble of quantum states must contain $\Omega(n)$ T-gates.

A pseudorandom ensemble is one that is indistinguishable from Haar random states by any polynomial-time algorithm. Their result is proved as follows:

- The initial state $|0\rangle^{\otimes n}$ has a stabilizer group of cardinality 2^n .
- Each T-gate reduces size of stabilizer subgroup by at most a factor $\frac{1}{4}$.
- ▶ Hence, if $< \frac{n}{2}$ T-gates, output state $|\psi\rangle$ has nontrivial stabilizer group.

► Then p_{ψ} is supported on a proper subspace (dual of isotropic subspace). In contrast, for Haar random $|\psi\rangle$ it has weight $\leq \frac{2}{3}$ on any proper subspace. Bell sampling allows distinguishing these two cases.

Application 3: Stabilizer de Finetti theorems

Any tensor power $|\psi\rangle^{\otimes t}$ has S_t -symmetry. De Finetti theorems provide 'partial' converse: If $|\Psi\rangle$ has S_t -symmetry, $\Psi_s \approx \int d\mu(\psi)\psi^{\otimes s}$ for $s \ll t$.

As mentioned, stabilizer tensor powers have increased symmetry:

 $R_O |S\rangle^{\otimes t} = |S\rangle^{\otimes t}$ for all orthogonal and stochastic O

Result

Assume that $|\Psi\rangle \in ((\mathbb{C}^d)^{\otimes n})^{\otimes t}$ has this symmetry. Then:

$$\|\Psi_s - \sum_S p_S |S
angle \langle S|^{\otimes s} \|_1 \lesssim d^{2n(n+2)} d^{-(t-s)/2}$$

- Approximation is exponentially good and by stabilizer tensor powers.
- Similar to Gaussian de Finetti [Leverrier et al]. Applications to QKD? Can reduce symmetry requirements at expense of goodness.

Application 3: Stabilizer de Finetti theorems

Any tensor power $|\psi\rangle^{\otimes t}$ has S_t -symmetry. De Finetti theorems provide 'partial' converse: If $|\Psi\rangle$ has S_t -symmetry, $\Psi_s \approx \int d\mu(\psi)\psi^{\otimes s}$ for $s \ll t$.

As mentioned, stabilizer tensor powers have increased symmetry:

 $R_O \ket{S}^{\otimes t} = \ket{S}^{\otimes t}$ for all orthogonal and stochastic O

Result

Assume that $|\Psi\rangle \in ((\mathbb{C}^d)^{\otimes n})^{\otimes t}$ has this symmetry. Then:

$$\|\Psi_s - \sum_S p_S |S
angle S|^{\otimes s} \|_1 \lesssim d^{2n(n+2)} d^{-(t-s)/2}$$

- Approximation is exponentially good and by stabilizer tensor powers.
- Similar to Gaussian de Finetti [Leverrier et al]. Applications to QKD?
 Can reduce symmetry requirements at expense of goodness.

Why does it work? Asymptotic orthogonality

The ordinary de Finetti theorem can be seen using the following facts:

- If $|\Psi\rangle$ is permutation symmetric, it is supported on span{ $|\psi\rangle^{\otimes t}$ }.
- ► Tensor powers of distinct states become "asymptotically orthogonal".

Our stabilizer de Finetti theorem is proved similarly:

- If $|\Psi\rangle$ has ortho-stochastic symmetry, it is supported on span $\{|S\rangle^{\otimes t}\}$.
- For any two distinct *stabilizer* states, it holds that $|\langle S|S'\rangle|^2 \leq \frac{1}{d}$.

Here we used asymptotic orthogonality for large t. How about large D/n?

Why does it work? Asymptotic orthogonality

The ordinary de Finetti theorem can be seen using the following facts:

- If $|\Psi\rangle$ is permutation symmetric, it is supported on span{ $|\psi\rangle^{\otimes t}$ }.
- ► Tensor powers of distinct states become "asymptotically orthogonal".

Our stabilizer de Finetti theorem is proved similarly:

- If $|\Psi\rangle$ has ortho-stochastic symmetry, it is supported on span $\{|S\rangle^{\otimes t}\}$.
- For any two distinct *stabilizer* states, it holds that $|\langle S|S'\rangle|^2 \leq \frac{1}{d}$.

Here we used asymptotic orthogonality for large t. How about large D/n?

Towards a Weingarten calculus for the Clifford group?

Any *t*-th moment of compact $G \subseteq U(D)$ is captured by the superoperator

$$\mathcal{M}_{G,t}(
ho) := \int_{G} U^{\otimes t}
ho U^{\otimes t,\dagger}.$$

This is the orthogonal projection onto the commutant.

For the unitary group, commutant is spanned by R_{π} for $\pi \in S_t$, and tr $R_{\pi}^{\dagger}R_{\sigma} = D^{\# cycles(\pi^{-1}\sigma)} = D^{t-\delta_{Cayley}(\pi,\sigma)}$.

▶ For the *Clifford group*, it is spanned by R_T for certain $T \subseteq \mathbb{F}_d^{2t}$, and tr $R_T^{\dagger}R_{T'} = D^{\dim(T \cap T')}$.

The off-diagonal entries are 1/D suppressed also in the latter. This allows evaluating *t*-th moments in leading order [Haferkamp et al, Helsen-W, ...].

For the unitary group, Weingarten calculus inverts the Gram matrix exactly, using representation theory [Collins]. How about the Clifford group?

Towards a Weingarten calculus for the Clifford group?

Any *t*-th moment of compact $G \subseteq U(D)$ is captured by the superoperator

$$\mathcal{M}_{G,t}(
ho) := \int_{\mathcal{G}} U^{\otimes t}
ho U^{\otimes t,\dagger}.$$

This is the orthogonal projection onto the commutant.

▶ For the *unitary group*, commutant is spanned by R_{π} for $\pi \in S_t$, and

tr
$$R_{\pi}^{\dagger}R_{\sigma} = D^{\# \mathsf{cycles}(\pi^{-1}\sigma)} = D^{t-\delta_{\mathsf{Cayley}}(\pi,\sigma)}$$

▶ For the *Clifford group*, it is spanned by R_T for certain $T \subseteq \mathbb{F}_d^{2t}$, and

$$\operatorname{tr} R_T^{\dagger} R_{T'} = D^{\dim(T \cap T')}.$$

The off-diagonal entries are 1/D suppressed also in the latter. This allows evaluating *t*-th moments in leading order [Haferkamp et al, Helsen-W, ...].

For the unitary group, Weingarten calculus inverts the Gram matrix exactly, using representation theory [Collins]. How about the Clifford group?

Towards a Weingarten calculus for the Clifford group?

Any *t*-th moment of compact $G \subseteq U(D)$ is captured by the superoperator

$$\mathcal{M}_{G,t}(\rho) := \int_{\mathcal{G}} U^{\otimes t} \rho U^{\otimes t,\dagger}.$$

This is the orthogonal projection onto the commutant.

▶ For the *unitary group*, commutant is spanned by R_{π} for $\pi \in S_t$, and

tr
$${\it R}^{\dagger}_{\pi}{\it R}_{\sigma}={\it D}^{\#{\sf cycles}(\pi^{-1}\sigma)}={\it D}^{t-\delta_{{\sf Cayley}}(\pi,\sigma)}$$

▶ For the *Clifford group*, it is spanned by R_T for certain $T \subseteq \mathbb{F}_d^{2t}$, and

$$\operatorname{tr} R_T^{\dagger} R_{T'} = D^{\dim(T \cap T')}.$$

The off-diagonal entries are 1/D suppressed also in the latter. This allows evaluating *t*-th moments in leading order [Haferkamp et al, Helsen-W, ...].

For the unitary group, Weingarten calculus inverts the Gram matrix exactly, using representation theory [Collins]. How about the Clifford group?

Application 4: t-designs from Cliffords

When t > 2 or 3 (qubits), stabilizer states fail to be *t*-design. Yet, hints in the literature that this failure is relatively *graceful* [Zhu *et al*, Nezami-W]. We find:

Result

For every t, there exists ensemble of N = N(d, t) many fiducial states in $(\mathbb{C}^d)^{\otimes n}$ such that corresponding Clifford orbits form t-design.

▶ Number of fiducials does not depend on *n*!

Relatedly, Haferkamp et al proved the following beautiful result:

Theorem

One obtains an ε -approximate unitary design by alternating $\tilde{O}(t^4)$ T-gates with random Clifford unitaries.

Proof uses techniques from the previous slide to control spectral gaps. A recent breakthrough achieves linear depth O(t) using different techniques.

Application 4: t-designs from Cliffords

When t > 2 or 3 (qubits), stabilizer states fail to be *t*-design. Yet, hints in the literature that this failure is relatively *graceful* [Zhu *et al*, Nezami-W]. We find:

Result

For every t, there exists ensemble of N = N(d, t) many fiducial states in $(\mathbb{C}^d)^{\otimes n}$ such that corresponding Clifford orbits form t-design.

▶ Number of fiducials does not depend on *n*!

Relatedly, Haferkamp et al proved the following beautiful result:

Theorem

One obtains an ε -approximate unitary design by alternating $\tilde{O}(t^4)$ T-gates with random Clifford unitaries.

Proof uses techniques from the previous slide to control spectral gaps. A recent breakthrough achieves linear depth O(t) using different techniques.

Summary and outlook

Pauli & Clifford unitaries, stabilizer states in $(\mathbb{C}^d)^{\otimes n}$:

• best understood via finite geometries in \mathbb{F}_d^{2n}

Schur-Weyl duality for the Clifford group:

- clean algebraic description in terms of self-dual codes
- new tools for widely used objects and associated random ensembles
- already found some exciting applications, let's find more

Thank you for your attention!

Application 5: Robust Hudson theorem

Recall: For odd *d*, every quantum state has a discrete Wigner function:

$$W_{
ho}(\mathbf{v}) = d^{-2n} \sum_{\mathbf{w}} e^{-2\pi i [\mathbf{v}, \mathbf{w}]/d} \operatorname{tr}[\rho P_{\mathbf{v}}]$$

- Quasi-probability distribution on phase space \mathbb{F}_d^{2n}
- ▶ Discrete Hudson theorem: For pure states, $W_{\psi} \ge 0$ iff ψ stabilizer
- ► Wigner negativity sn(ψ) = ∑_{v:W_ρ(v)<0} |W_ρ(v)|: monotone in resource theory of stabilizer computation; witness for contextuality

Result (Robust Hudson)

There exists a stabilizer state $|S\rangle$ such that $|\langle S|\psi\rangle|^2 \ge 1 - 9d^2 \operatorname{sn}(\psi)$.

Application 6: Typical entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

Result (Nezami-W)

In random stabilizer tensor network states: $g={\it O}(1)$ w.h.p.

- can distill $\simeq \frac{1}{2}I(A:B)$ EPR pairs
- mutual information is entanglement measure
- generalizes result by Leung & Smith (qubits, single tensor)

Application 6: Typical entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

Result (Nezami-W)

In random stabilizer tensor network states: $\mathit{g}=\mathit{O}(1)$ w.h.p.

- can distill $\simeq \frac{1}{2}I(A:B)$ EPR pairs
- mutual information is entanglement measure
- generalizes result by Leung & Smith (qubits, single tensor)

Application 6: Typical entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

Result (Nezami-W)

In random stabilizer tensor network states: g = O(1) w.h.p.

- can distill $\simeq \frac{1}{2}I(A:B)$ EPR pairs
- mutual information is entanglement measure
- generalizes result by Leung & Smith (qubits, single tensor)

$$I(A:B)=2c+g$$

Diagnose via third moment of partial transpose:

$$g \log d = S(A) + S(B) + S(C) + \frac{\log \operatorname{tr}(\rho_{AB}^{T_B})^3}{\log \operatorname{tr}(\rho_{AB}^{T_B})^3}$$

Compute via replica trick: For single stabilizer state

$$\operatorname{tr}(
ho_{AB}^{T_B})^3 = \operatorname{tr} |S\rangle\langle S|_{ABC}^{\otimes 3} \left(R_{\zeta,A}\otimes R_{\zeta^{-1},B}\otimes R_{\operatorname{id},C}\right)$$

where $\zeta = (1 \ 2 \ 3)$ three-cycle, hence

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] \propto \sum_{T} (\operatorname{tr} r_T r_{\zeta})^{n_A} (\operatorname{tr} r_T r_{\zeta^{-1}})^{n_B} (\operatorname{tr} r_T r_{\operatorname{id}})^{n_C}$$

Similarly for tensor networks \rightsquigarrow *classical statistical model*!

$$I(A:B)=2c+g$$

Diagnose via third moment of partial transpose:

$$g \log d = S(A) + S(B) + S(C) + \frac{\log \operatorname{tr}(\rho_{AB}^{T_B})^3}{\log \operatorname{tr}(\rho_{AB}^{T_B})^3}$$

Compute via replica trick: For single stabilizer state

$$\operatorname{tr}(\rho_{AB}^{T_B})^3 = \operatorname{tr} \left| S \right\rangle \langle S|_{ABC}^{\otimes 3} \left(R_{\zeta,A} \otimes R_{\zeta^{-1},B} \otimes R_{\operatorname{id},C} \right) \right\rangle$$

where $\zeta = (1 \ 2 \ 3)$ three-cycle, hence

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] \propto \sum_{\mathcal{T}} (\operatorname{tr} r_{\mathcal{T}} r_{\zeta})^{n_A} (\operatorname{tr} r_{\mathcal{T}} r_{\zeta^{-1}})^{n_B} (\operatorname{tr} r_{\mathcal{T}} r_{\operatorname{id}})^{n_C}$$

Similarly for tensor networks \rightsquigarrow *classical statistical model*!

$$I(A:B)=2c+g$$

Diagnose via third moment of partial transpose:

$$g \log d = S(A) + S(B) + S(C) + \frac{\log \operatorname{tr}(\rho_{AB}^{T_B})^3}{\log \operatorname{tr}(\rho_{AB}^{T_B})^3}$$

Compute via replica trick: For single stabilizer state

$$\operatorname{tr}(\rho_{AB}^{T_B})^3 = \operatorname{tr} \left| S \right\rangle \langle S|_{ABC}^{\otimes 3} \left(R_{\zeta,A} \otimes R_{\zeta^{-1},B} \otimes R_{\operatorname{id},C} \right) \right\rangle$$

where $\zeta = (1 \ 2 \ 3)$ three-cycle, hence

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] \propto \sum_{T} (\operatorname{tr} r_T r_{\zeta})^{n_A} (\operatorname{tr} r_T r_{\zeta^{-1}})^{n_B} (\operatorname{tr} r_T r_{\operatorname{id}})^{n_C}$$

Similarly for tensor networks ~> classical statistical model!

For simplicity, assume A, B, C each n qubits.

$\mathbb{E}[g] \leq 3n + \log \frac{\mathbb{E}[tr(\rho_{AB}^{T_B})^3]}{\mathbb{E}[tr(\rho_{AB}^{T_B})^3]}$

Since qubit stabilizers are three-design:

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] = \sum_{\pi \in S_3} 2^{-n(d(\zeta,\pi) + d(\zeta^{-1},\pi) + d(\operatorname{id},\pi))}$$

where $d(\pi, \tau) = \text{minimum number of swaps needed for } \pi \leftrightarrow \tau$. Thus:

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{\mathcal{T}_B})^3] \leq 3 \cdot \underbrace{2^{-3n}}_{\operatorname{swaps}} + 3 \cdot \underbrace{2^{-4n}}_{\operatorname{id},\zeta,\zeta^{-1}} \quad \Rightarrow \quad \mathbb{E}[g] \lesssim \log 3 \quad \Box$$

For d > 2, $\{T\} = \{even\} \cup \{odd\}$. Calculation completely analogous!

For simplicity, assume A, B, C each n qubits.

 $\mathbb{E}[g] \leq 3n + \log \mathbb{E}[tr(\rho_{AB}^{T_B})^3]$

Since qubit stabilizers are three-design:

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] = \sum_{\pi \in S_3} 2^{-n(d(\zeta,\pi) + d(\zeta^{-1},\pi) + d(\operatorname{id},\pi))}$$

where $d(\pi, \tau) =$ minimum number of swaps needed for $\pi \leftrightarrow \tau$. Thus:

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] \leq 3 \cdot \underbrace{2^{-3n}}_{\operatorname{swaps}} + 3 \cdot \underbrace{2^{-4n}}_{\operatorname{id},\zeta,\zeta^{-1}} \quad \Rightarrow \quad \mathbb{E}[g] \lesssim \log 3 \quad \Box$$

For d > 2, $\{T\} = \{even\} \cup \{odd\}$. Calculation completely analogous!

For simplicity, assume A, B, C each n qubits.

 $\mathbb{E}[g] \leq 3n + \log \mathbb{E}[tr(\rho_{AB}^{T_B})^3]$

Since qubit stabilizers are three-design:

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{T_B})^3] = \sum_{\pi \in S_3} 2^{-n} \left(\frac{d(\zeta, \pi) + d(\zeta^{-1}, \pi) + d(\operatorname{id}, \pi)}{2} \right)$$

where $d(\pi, \tau) =$ minimum number of swaps needed for $\pi \leftrightarrow \tau$. Thus:

$$\mathbb{E}[\operatorname{tr}(\rho_{AB}^{\mathcal{T}_B})^3] \leq 3 \cdot \underbrace{2^{-3n}}_{\operatorname{swaps}} + 3 \cdot \underbrace{2^{-4n}}_{\operatorname{id},\zeta,\zeta^{-1}} \quad \Rightarrow \quad \mathbb{E}[g] \lesssim \log 3 \quad \Box$$

For d > 2, $\{T\} = \{even\} \cup \{odd\}$. Calculation completely analogous!