Schur-Weyl Duality for the Clifford Group

Michael Walter

A Boulder, June 2018
joint work with David Gross (Cologne) and Sepehr Nezami (Stanford)

Schur-Weyl duality

$$
\begin{aligned}
U^{\otimes t}\left|x_{1}, \ldots, x_{t}\right\rangle & =U\left|x_{1}\right\rangle \otimes \ldots \otimes U\left|x_{t}\right\rangle \\
R_{\pi}\left|x_{1}, \ldots, x_{t}\right\rangle & =\left|x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}}(t)\right\rangle
\end{aligned}
$$

Schur-Weyl duality: These actions generate each other's commutant.

Two symmetries that are ubiquituous in quantum information theory:

- i.i.d. quantum information: $\left[\rho^{\otimes t}, R_{\pi}\right]=0$
- eigenvalues, entropies, $\ldots: \rho \equiv U \rho U^{\dagger}$
- randomized constructions: $E_{\text {Haar }}\left[|\psi\rangle\left\langle\left.\psi\right|^{\otimes t}\right]\right.$

Clifford unitaries and stabilizer states $\quad \mathbb{C}^{D}=\left(\mathbb{C}^{d}\right)^{\otimes n}$

Clifford group: Unitaries U_{C} such that P Pauli $\Rightarrow U_{C} P U_{C}^{\dagger}$ Pauli. For qubits, generated by

$$
\text { CNOT, } \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right), \quad P=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) .
$$

Stabilizer states: States of the form $|S\rangle=U_{C}|0\rangle^{\otimes n}$.
Equivalently, states that are stabilized by maximal subgroup of Paulis.

These are important classes of unitaries \& states:

- QEC, MBQC, topological order, randomized benchmarking, ...
- can be highly entangled, but efficient to represent and compute with
- 2-design; 3-design for qubits \Rightarrow efficient random constructions

Motivates a Schur-Weyl duality for the Clifford group!

Our results

"Schur-Weyl duality" for the Clifford group: We characterize precisely which operators commute with $U_{C}^{\otimes t}$ for all Clifford unitaries U_{C}.

Fewer unitaries \sim larger commutant (more than permutations).
Applications:

- Property testing

$$
\begin{gathered}
|S\rangle^{\otimes t} \longleftrightarrow|\psi\rangle^{\otimes t} \\
\Psi_{s} \approx \sum_{S} p_{S}|S\rangle\left\langle\left. S\right|^{\otimes s}\right.
\end{gathered}
$$

- De Finetti theorems with increased symmetry
- Higher moments of stabilizer states
- t-designs from Clifford orbits
- Robust Hudson theorem

Towards Schur-Weyl duality for the Clifford group
Plan:
(1) Write down permutation action in clever way.
(2) Generalize.
(3) Prove it!

Towards Schur-Weyl duality for the Clifford group

(1) Write down permutation action in clever way:

Permutation of t copies of $\left(\mathbb{C}^{d}\right)^{\otimes n}$:

Here, we think of π as $t \times t$-permutation matrix, and $|\boldsymbol{x}\rangle=\left|x_{1}, \ldots, x_{t}\right\rangle$ is computational basis of $\left(\mathbb{C}^{d}\right)^{\otimes t}$.

Towards Schur-Weyl duality for the Clifford group
(2) Generalize:

$$
R_{O}=r_{O}^{\otimes n}, \quad r_{O}=\sum_{x}|O \boldsymbol{x}\rangle\langle\boldsymbol{x}|
$$

Allow all orthogonal and stochastic $t \times t$-matrices O with entries in \mathbb{F}_{d}.

For qubits, an example is the 6×6 anti-identity:

The unitary $R_{\text {id }}$ commutes with $U_{C}^{\otimes 6}$ for every n-qubit Clifford unitary.

Towards Schur-Weyl duality for the Clifford group

(2) Generalize:

$$
R_{O}=r_{O}^{\otimes n}, \quad r_{O}=\sum_{\mathbf{x}}|O \boldsymbol{x}\rangle\langle\boldsymbol{x}|
$$

Allow all orthogonal and stochastic $t \times t$-matrices O with entries in \mathbb{F}_{d}.
For qubits, an example is the 6×6 anti-identity:

$$
\begin{aligned}
\overline{\mathrm{id}} & =\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right), \\
R_{\overline{\mathrm{id}}}\left|x_{1}, \ldots, x_{6}\right\rangle & =\left|x_{2}+\ldots \ldots+x_{6}, \ldots, x_{1}+\ldots+x_{5}\right\rangle
\end{aligned}
$$

The unitary R_{id} commutes with $U_{C}^{\otimes 6}$ for every n-qubit Clifford unitary.

Towards Schur-Weyl duality for the Clifford group

(3) Generalize further:

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

Allow all subspaces $T \subseteq \mathbb{F}_{d}^{2 t}$ that are self-dual codes, i.e. $\boldsymbol{y} \cdot \boldsymbol{y}^{\prime}=\boldsymbol{x} \cdot \boldsymbol{x}^{\prime}$ and of maximal dimension t. Moreover, require $|\boldsymbol{y}|=|\boldsymbol{x}|$ (for qubits, modulo 4).

For qubits, an example is the following code for $t=4$:

The projector R_{T} commutes with $U_{C}^{\otimes 4}$ for every n-qubit Clifford unitary.

Towards Schur-Weyl duality for the Clifford group

(3) Generalize further:

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

Allow all subspaces $T \subseteq \mathbb{F}_{d}^{2 t}$ that are self-dual codes, i.e. $\boldsymbol{y} \cdot \boldsymbol{y}^{\prime}=\boldsymbol{x} \cdot \boldsymbol{x}^{\prime}$ and of maximal dimension t. Moreover, require $|\boldsymbol{y}|=|\boldsymbol{x}|$ (for qubits, modulo 4).

For qubits, an example is the following code for $t=4$:

$$
\begin{aligned}
T & =\operatorname{ran}\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right), \\
R_{T} & =2^{-n}\left(I^{\otimes 4}+X^{\otimes 4}+Y^{\otimes 4}+Z^{\otimes 4}\right)
\end{aligned}
$$

The projector R_{T} commutes with $U_{C}^{\otimes 4}$ for every n-qubit Clifford unitary.

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

Allow all subspaces $T \subseteq \mathbb{F}_{d}^{2 t}$ that are self-dual codes, i.e. $\boldsymbol{y} \cdot \boldsymbol{y}^{\prime}=\boldsymbol{x} \cdot \boldsymbol{x}^{\prime}$ and of maximal dimension t. Moreover, require $|\boldsymbol{y}|=|\boldsymbol{x}|$ (for qubits, modulo 4).

Theorem

For $n \geq t-1$, the operators R_{T} are $\prod_{k=0}^{t-2}\left(d^{k}+1\right)$ many linearly independent operators that span the commutant of $\left\{U_{C}^{\otimes t}\right\}$.

Independent of n (just like in ordinary Schur-Weyl duality)! Rich algebraic structure (see paper).

Why should the theorem be true?

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\boldsymbol{y}, \mathbf{x}) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

When is R_{T} in the commutant? Need that $T \subseteq \mathbb{F}_{2}^{2 t}$ is. . .

- Subspace: $\mathrm{CNOT}^{\otimes t} r_{T}^{\otimes 2} \mathrm{CNOT}^{\otimes t}=\sum|\boldsymbol{y}\rangle\langle\boldsymbol{x}| \otimes\left|\boldsymbol{y}+\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}+\boldsymbol{x}^{\prime}\right|=r_{T}^{\otimes 2}$ $(y, x),\left(y^{\prime}, x^{\prime}\right) \in T$
- Self-dual: $H^{\otimes t} r_{T} H^{\otimes t}=\sum\left|y^{\prime}\right\rangle\left\langle x^{\prime}\right|=r_{T}$

Why should the theorem be true?

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\mathbf{y}, \mathbf{x}) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

When is R_{T} in the commutant? Need that $T \subseteq \mathbb{F}_{2}^{2 t}$ is. . .

- Subspace: $\mathrm{CNOT}^{\otimes t} r_{T}^{\otimes 2} \mathrm{CNOT}^{\otimes t}=\sum|\boldsymbol{y}\rangle\langle\boldsymbol{x}| \otimes\left|\boldsymbol{y}+\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}+\boldsymbol{x}^{\prime}\right|=r_{T}^{\otimes 2}$

$$
(y, x),\left(y^{\prime}, x^{\prime}\right) \in T
$$

- Self-dual:

$$
H^{\otimes t} r_{T} H^{\otimes t}=\sum_{\boldsymbol{y}^{\prime}, x^{\prime}}\left|\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}^{\prime}\right| 2^{-t} \sum_{(\boldsymbol{y}, x) \in T}(-1)^{\boldsymbol{y} \cdot \boldsymbol{y}^{\prime}+x \cdot x^{\prime}}=\sum_{\left(\boldsymbol{y}^{\prime}, x^{\prime}\right) \in T \perp}\left|\boldsymbol{y}^{\prime}\right\rangle\left\langle\mathbf{x}^{\prime}\right|=r_{T}
$$

Why should the theorem be true?

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\boldsymbol{y}, x) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

When is R_{T} in the commutant? Need that $T \subseteq \mathbb{F}_{2}^{2 t}$ is. . .

- Subspace: $\mathrm{CNOT}^{\otimes t} r_{T}^{\otimes 2} \mathrm{CNOT}^{\otimes t}=\sum|\boldsymbol{y}\rangle\langle\boldsymbol{x}| \otimes\left|\boldsymbol{y}+\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}+\boldsymbol{x}^{\prime}\right|=r_{T}^{\otimes 2}$

$$
(y, x), \overline{\left(y^{\prime}, x^{\prime}\right) \in T}
$$

- Self-dual: $H^{\otimes t} r_{T} H^{\otimes t}=\sum\left|\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}^{\prime}\right|=r_{T}$

$$
\left(y^{\prime}, x^{\prime}\right) \in T^{\perp}
$$

- Modulo 4: $\quad P^{\otimes t} r_{T} P^{\dagger, \otimes t}=\sum_{(\boldsymbol{y}, \boldsymbol{x}) \in T^{j|\boldsymbol{y}|-|\boldsymbol{x}|}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|=r_{T}, ~}$

Why should the theorem be true?

$$
R_{T}=r_{T}^{\otimes n}, \quad r_{T}=\sum_{(\boldsymbol{y}, \mathbf{x}) \in T}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|
$$

When is R_{T} in the commutant? Need that $T \subseteq \mathbb{F}_{2}^{2 t}$ is. . .

- Subspace: $\mathrm{CNOT}^{\otimes t} r_{T}^{\otimes 2} \mathrm{CNOT}^{\otimes t}=\sum|\boldsymbol{y}\rangle\langle\boldsymbol{x}| \otimes\left|\boldsymbol{y}+\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}+\boldsymbol{x}^{\prime}\right|=r_{T}^{\otimes 2}$ $(y, x),\left(y^{\prime}, x^{\prime}\right) \in T$
- Self-dual: $H^{\otimes t} r_{T} H^{\otimes t}=\sum\left|\boldsymbol{y}^{\prime}\right\rangle\left\langle\boldsymbol{x}^{\prime}\right|=r_{T}$

$$
\left(y^{\prime}, x^{\prime}\right) \in T^{\perp}
$$

- Modulo 4: $\quad P^{\otimes t} r_{T} P^{\dagger, \otimes t}=\sum_{(\boldsymbol{y}, \mathbf{x}) \in T^{i|y|-|x|}|\boldsymbol{y}\rangle\langle\boldsymbol{x}|=r_{T}, ~}$

Remainder of proof: Show that R_{T} 's linearly independent. Compute dimension of commutant (\#group orbits) \& number of subspaces as above (Witt's lemma).

Application 1: Higher moments of stabilizer states

Result (t-th moment)

$E\left[|S\rangle\left\langle\left. S\right|^{\otimes t}\right] \propto \sum_{T} R_{T}\right.$

- When stabilizer states form t-design, reduces to $\sum_{\pi} R_{\pi}$ (Haar average)
- Summarizes all previous results on statistical properties
- ... but works for any t-th moment!

Many applications: Improved bounds for randomized benchmarking (Helsen et al) and low-rank matrix recovery (Kueng et al); analytical studies of scrambling in Clifford circuits; toy models of holography (Nezami-W); ...

We can also write t-th moment as weighted sum of certain CSS codes.

Application 2: Typical tripartite entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states?
Or even tensor networks?

- can distill $\simeq \frac{1}{2} l(A: B)$ EPR pairs
- mutual information is entanglement measure
- generalizes result by Debbie \& Graeme
(qubits, single tensor)

Application 2: Typical tripartite entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

In random stabilizer tensor network states: $g=O(1)$ w.h.p.

- can distill $\simeq \frac{1}{2} I(A: B)$ EPR pairs
- mutual information is entanglement measure
- generalizes result by Debbie \& Graeme
(qubits, single tensor)

Application 2: Typical tripartite entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

Result

In random stabilizer tensor network states: $g=O(1)$ w.h.p.

- can distill $\simeq \frac{1}{2} l(A: B)$ EPR pairs
- mutual information is entanglement measure
- generalizes result by Debbie \& Graeme (qubits, single tensor)

Bounding the amount of GHZ entanglement

$$
I(A: B)=2 c+g
$$

Diagnose via third moment of partial transpose:

$$
g \log d=S(A)+S(B)+S(C)+\log \operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}
$$

Compute via replica trick: For single stabilizer state

where $\zeta=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ three-cycle, hence

$$
\mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right] \propto \sum_{T}\left(\operatorname{tr} r_{T} r_{C}\right)^{n_{A}}\left(\operatorname{tr} r_{T} r_{S-1}\right)^{n_{B}}\left(\operatorname{tr} r_{T} r_{d}\right)^{n_{C}}
$$

Bounding the amount of GHZ entanglement

$$
I(A: B)=2 c+g
$$

Diagnose via third moment of partial transpose:

$$
g \log d=S(A)+S(B)+S(C)+\log \operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}
$$

Compute via replica trick: For single stabilizer state

$$
\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}=\operatorname{tr}|S\rangle\left\langle\left. S\right|_{A B C} ^{\otimes 3} \quad\left(R_{\zeta, A} \otimes R_{\zeta^{-1}, B} \otimes R_{\mathrm{id}, C}\right)\right.
$$

where $\zeta=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ three-cycle, hence

$$
\mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right] \propto \sum_{T}\left(\operatorname{tr} r_{T} r_{\zeta}\right)^{n_{A}}\left(\operatorname{tr} r_{T} r_{\zeta^{-1}}\right)^{n_{B}}\left(\operatorname{tr} r_{T} r_{\mathrm{id}}\right)^{n_{C}}
$$

Bounding the amount of GHZ entanglement

$$
I(A: B)=2 c+g
$$

Diagnose via third moment of partial transpose:

$$
g \log d=S(A)+S(B)+S(C)+\log \operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}
$$

Compute via replica trick: For single stabilizer state

$$
\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}=\operatorname{tr}|S\rangle\left\langle\left. S\right|_{A B C} ^{\otimes 3} \quad\left(R_{\zeta, A} \otimes R_{\zeta^{-1}, B} \otimes R_{\mathrm{id}, C}\right)\right.
$$

where $\zeta=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ three-cycle, hence

$$
\mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right] \propto \sum_{T}\left(\operatorname{tr} r_{T} r_{\zeta}\right)^{n_{A}}\left(\operatorname{tr} r_{T} r_{\zeta^{-1}}\right)^{n_{B}}\left(\operatorname{tr} r_{T} r_{\mathrm{id}}\right)^{n_{C}}
$$

Similarly for tensor networks \leadsto classical statistical model!

Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

$$
\mathbb{E}[g] \leq 3 n+\log \mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right]
$$

Since qubit stabilizers are three-design:

where $d(\pi, \tau)=$ minimum number of swaps needed for $\pi \leftrightarrow \tau$. Thus:

Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

$$
\mathbb{E}[g] \leq 3 n+\log \mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right]
$$

Since qubit stabilizers are three-design:

$$
\mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right]=\sum_{\pi \in S_{3}} 2^{-n\left(d(\zeta, \pi)+d\left(\zeta^{-1}, \pi\right)+d(\mathrm{id}, \pi)\right)}
$$

where $d(\pi, \tau)=$ minimum number of swaps needed for $\pi \leftrightarrow \tau$.

For $d>2,\{T\}=\{$ even $\} \cup\{$ odd $\}$. Calculation completely analogous!

Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

$$
\mathbb{E}[g] \leq 3 n+\log \mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right]
$$

Since qubit stabilizers are three-design:

$$
\mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right]=\sum_{\pi \in S_{3}} 2^{-n\left(d(\zeta, \pi)+d\left(\zeta^{-1}, \pi\right)+d(\mathrm{id}, \pi)\right)}
$$

where $d(\pi, \tau)=$ minimum number of swaps needed for $\pi \leftrightarrow \tau$. Thus:

$$
\mathbb{E}\left[\operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}\right] \leq 3 \cdot \underbrace{2^{-3 n}}_{\text {swaps }}+3 \cdot \underbrace{2^{-4 n}}_{\text {id }, \zeta, \zeta^{-1}} \Rightarrow \mathbb{E}[g] \lesssim \log 3
$$

For $d>2,\{T\}=\{$ even $\} \cup\{$ odd $\}$. Calculation completely analogous!

Application 3: Stabilizer testing

Given t copies of an unknown state in $\left(\mathbb{C}^{d}\right)^{\otimes n}$, decide if it is a stabilizer state or ε-far from it.

Idea: Use the anti-identity. Measure POVM element $\frac{1+R_{\text {id }}}{2}$ on $t=6$ copies.

Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts always. But if $\max _{S}|\langle\psi \mid S\rangle|^{2} \leq 1-\varepsilon^{2}$, acceptance probability $\leq 1-\varepsilon^{2} / 4$.

- Power of test independent of n. Answers q. by Montanaro \& de Wolf.
- Similar result for qudits \& for testing if blackbox unitary is Clifford.

Application 3: Stabilizer testing

Given t copies of an unknown state in $\left(\mathbb{C}^{d}\right)^{\otimes n}$, decide if it is a stabilizer state or ε-far from it.

Idea: Use the anti-identity. Measure POVM element $\frac{1+R_{\text {id }}}{2}$ on $t=6$ copies.

Result

Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts always. But if $\max s|\langle\psi \mid S\rangle|^{2} \leq 1-\varepsilon^{2}$, acceptance probability $\leq 1-\varepsilon^{2} / 4$.

- Power of test independent of n. Answers q. by Montanaro \& de Wolf.
- Similar result for qudits \& for testing if blackbox unitary is Clifford. Why does it work? How to implement?

Stabilizer testing using Bell difference sampling

Any state ψ can be expanded in Pauli basis ${ }^{\dagger}$:

$$
\psi=\sum_{\boldsymbol{v}} c_{\psi} P_{\mathbf{v}}
$$

- If pure, then $p_{\psi}(\boldsymbol{v})=2^{n}\left|c_{\psi}(\boldsymbol{v})\right|^{2}$ is a probability distribution.
- If stabilizer state, then support of p_{ψ} is stabilizer group (up to sign).

Key idea: Sample \& verify!

How to sample? If ψ is real, can simply measure in Bell basis $\left(P_{\boldsymbol{v}} \otimes I\right)\left|\Phi^{+}\right\rangle$ (Bell sampling; Montanaro, Zhao et al).

$$
{ }^{\dagger} P_{v}=P_{v_{1}} \otimes \ldots \otimes P_{v_{n}} \text { where } P_{00}=I, P_{01}=X, P_{10}=Z, P_{11}=Y
$$

Stabilizer testing using Bell difference sampling

In general, need to take difference of two Bell measurement outcomes:

- Fully transversal circuit, only need coherent two-qubit operations.
- Circuit is equivalent to measuring the anti-identity!

Proof of converse uses uncertainty relation.

Application 4: Stabilizer de Finetti theorems

Any tensor power $|\psi\rangle^{\otimes t}$ has S_{t}-symmetry. De Finetti theorems provide 'partial' converse: If $|\Psi\rangle$ has S_{t}-symmetry, $\Psi_{s} \approx \int d \mu(\psi) \psi^{\otimes s}$ for $s \ll t$.

Stabilizer tensor powers have increased symmetry:

Assume that $|\Psi\rangle \in\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)^{\otimes t}$ has this symmetry. Then:

- Approximation is exponentially good, yet bona fide stabilizer states.
- Similar to Gaussian de Finetti (Leverrier et al). Applications to QKD?

Application 4: Stabilizer de Finetti theorems

Any tensor power $|\psi\rangle^{\otimes t}$ has S_{t}-symmetry. De Finetti theorems provide 'partial' converse: If $|\Psi\rangle$ has S_{t}-symmetry, $\Psi_{s} \approx \int d \mu(\psi) \psi^{\otimes s}$ for $s \ll t$.

Stabilizer tensor powers have increased symmetry:

$$
R_{O}|S\rangle^{\otimes t}=|S\rangle^{\otimes t} \quad \text { for all orthogonal and stochastic } O
$$

Result

Assume that $|\Psi\rangle \in\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)^{\otimes t}$ has this symmetry. Then:

$$
\| \Psi_{s}-\sum_{S} p_{S}|S\rangle\left\langle\left. S\right|^{\otimes s} \|_{1} \lesssim d^{2 n(n+2)} d^{-(t-s) / 2}\right.
$$

- Approximation is exponentially good, yet bona fide stabilizer states.
- Similar to Gaussian de Finetti (Leverrier et al). Applications to QKD?

Can reduce symmetry requirements at expense of approximation.

Application 5: t-designs from Clifford orbits

When $t>2$ or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in the literature that this failure is relatively graceful (Zhu et al, Nezami-W). E.g., Clifford orbit of non-stabilizer qutrit states can be 3-design!

We prove in general:

For every t, there exists ensemble of $N=N(d, t)$ many fiducial states
in $\left(\mathbb{C}^{d}\right)^{\otimes n}$ such that corresponding Clifford orbits form t-design.

- Number of fiducials does not depend on n !
- Efficient construction?

Application 5: t-designs from Clifford orbits

When $t>2$ or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in the literature that this failure is relatively graceful (Zhu et al, Nezami-W). E.g., Clifford orbit of non-stabilizer qutrit states can be 3-design!

We prove in general:

Result

For every t, there exists ensemble of $N=N(d, t)$ many fiducial states in $\left(\mathbb{C}^{d}\right)^{\otimes n}$ such that corresponding Clifford orbits form t-design.

- Number of fiducials does not depend on n !
- Efficient construction?

Application 6: Robust Hudson theorem

For odd d, every quantum state has a discrete Wigner function:

$$
W_{\rho}(\boldsymbol{v})=d^{-2 n} \sum_{\boldsymbol{w}} e^{-2 \pi i[\boldsymbol{v}, \boldsymbol{w}] / d} \operatorname{tr}\left[\rho P_{\boldsymbol{v}}\right]
$$

- Quasi-probability distribution on phase space $\mathbb{F}_{d}^{2 n}$
- Discrete Hudson theorem: For pure states, $W_{\psi} \geq 0$ iff ψ stabilizer
- Wigner negativity $\operatorname{sn}(\psi)=\sum_{\boldsymbol{v}: W_{\rho}(\boldsymbol{v})<0}\left|W_{\rho}(\boldsymbol{v})\right|:$ monotone in resource theory of stabilizer computation; witness for contextuality

Result (Robust Hudson)

There exists a stabilizer state $|S\rangle$ such that $|\langle S \mid \psi\rangle|^{2} \geq 1-9 d^{2} \operatorname{sn}(\psi)$.

Summary and outlook

Schur-Weyl duality for the Clifford group:

- clean algebraic description in terms of self-dual codes
- resolve open question in quantum property testing
- new tools for stabilizer states: moments, de Finetti, Hudson, ...

Thank you for your attention!

