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Schur-Weyl duality (CD)⊗t

U⊗t |x1, . . . , xt〉 = U |x1〉 ⊗ . . .⊗ U |xt〉
Rπ |x1, . . . , xt〉 = |xπ−1(1), . . . , xπ−1(t)〉

Schur-Weyl duality: These actions
generate each other’s commutant.

Two symmetries that are ubiquituous in quantum information theory:
I i.i.d. quantum information: [ρ⊗t ,Rπ] = 0
I eigenvalues, entropies, . . . : ρ ≡ UρU†
I randomized constructions: EHaar[|ψ〉〈ψ|⊗t ]
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Clifford unitaries and stabilizer states CD = (Cd)⊗n

Clifford group: Unitaries UC such that P Pauli ⇒ UCPU†C Pauli.
For qubits, generated by

CNOT, H = 1√
2
( 1 1

1 −1
)
, P = ( 1 0

0 i ).

Stabilizer states: States of the form |S〉 = UC |0〉⊗n.
Equivalently, states that are stabilized by maximal subgroup of Paulis.

These are important classes of unitaries & states:
I QEC, MBQC, topological order, randomized benchmarking, . . .
I can be highly entangled, but efficient to represent and compute with
I 2-design; 3-design for qubits ⇒ efficient random constructions

Motivates a Schur-Weyl duality for the Clifford group!
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Our results

“Schur-Weyl duality” for the Clifford group: We characterize precisely which
operators commute with U⊗t

C for all Clifford unitaries UC .

Fewer unitaries ; larger commutant (more than permutations).

Applications:

I Property testing |S〉⊗t ←→ |ψ〉⊗t

I De Finetti theorems with increased symmetry Ψs ≈
∑

S pS |S〉〈S|⊗s

I Higher moments of stabilizer states ES [|S〉〈S|⊗t ]
I t-designs from Clifford orbits

I Robust Hudson theorem
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Towards Schur-Weyl duality for the Clifford group

Plan:
1 Write down permutation action in clever way.
2 Generalize.
3 Prove it!
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Towards Schur-Weyl duality for the Clifford group

1 Write down permutation action in clever way:

Permutation of t copies of (Cd )⊗n:

Rπ = r⊗n
π , rπ =

∑
x
|πx〉 〈x|

Here, we think of π as t × t-permutation matrix, and |x〉 = |x1, . . . , xt〉 is
computational basis of (Cd )⊗t .
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Towards Schur-Weyl duality for the Clifford group

2 Generalize:

RO = r⊗n
O , rO =

∑
x
|Ox〉 〈x|

Allow all orthogonal and stochastic t × t-matrices O with entries in Fd .

For qubits, an example is the 6× 6 anti-identity:

id =

 0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

,
Rid |x1, . . . , x6〉 = |x2 + . . .+ x6, . . . , x1 + . . .+ x5〉

The unitary Rid commutes with U⊗6
C for every n-qubit Clifford unitary.
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Towards Schur-Weyl duality for the Clifford group

3 Generalize further:

RT = r⊗n
T , rT =

∑
(y ,x)∈T

|y〉 〈x|

Allow all subspaces T ⊆ F2t
d that are self-dual codes, i.e. y · y ′ = x · x ′ and

of maximal dimension t. Moreover, require |y | = |x| (for qubits, modulo 4).

For qubits, an example is the following code for t = 4:

T = ran
( 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

)
,

RT = 2−n
(
I⊗4 + X⊗4 + Y⊗4 + Z⊗4

)
The projector RT commutes with U⊗4

C for every n-qubit Clifford unitary.
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Schur-Weyl duality for the Clifford group (Cd)⊗n

RT = r⊗n
T , rT =

∑
(y ,x)∈T

|y〉 〈x|

Allow all subspaces T ⊆ F2t
d that are self-dual codes, i.e. y · y ′ = x · x ′ and

of maximal dimension t. Moreover, require |y | = |x| (for qubits, modulo 4).

Theorem
For n ≥ t − 1, the operators RT are

∏t−2
k=0(dk + 1) many linearly

independent operators that span the commutant of {U⊗t
C }.

Independent of n (just like in ordinary Schur-Weyl
duality)! Rich algebraic structure (see paper).
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Why should the theorem be true? (C2)⊗n

RT = r⊗n
T , rT =

∑
(y ,x)∈T

|y〉 〈x|

When is RT in the commutant? Need that T ⊆ F2t
2 is. . .

I Subspace: CNOT⊗t r⊗2
T CNOT⊗t =

∑
(y ,x),(y ′,x′)∈T

|y〉〈x| ⊗ |y +y ′〉〈x +x ′|= r⊗2
T

I Self-dual: H⊗t rT H⊗t =
∑

(y ′,x′)∈T⊥
|y ′〉 〈x ′| = rT

I Modulo 4: P⊗t rT P†,⊗t =
∑

(y ,x)∈T i |y |−|x| |y〉 〈x| = rT

Remainder of proof: Show that RT ’s linearly independent. Compute dimension of
commutant (#group orbits) & number of subspaces as above (Witt’s lemma).
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Application 1: Higher moments of stabilizer states

Result (t-th moment)
E [|S〉〈S|⊗t ] ∝

∑
T RT

I When stabilizer states form t-design, reduces to
∑
π Rπ (Haar average)

I Summarizes all previous results on statistical properties
I . . . but works for any t-th moment!

Many applications: Improved bounds for randomized benchmarking (Helsen
et al) and low-rank matrix recovery (Kueng et al); analytical studies of
scrambling in Clifford circuits; toy models of holography (Nezami-W); . . .

We can also write t-th moment as weighted sum of certain CSS codes.

8 / 18



Application 2: Typical tripartite entanglement of stabilizer states

Tripartite stabilizer states decompose into EPR and GHZ entanglement:

How about typical stabilizer states? Or even tensor networks?

Result
In random stabilizer tensor network states: g = O(1) w.h.p.

I can distill ' 1
2 I(A : B) EPR pairs

I mutual information is entanglement measure
I generalizes result by Debbie & Graeme

(qubits, single tensor)
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Bounding the amount of GHZ entanglement

I(A : B) = 2c + g

Diagnose via third moment of partial transpose:

g log d = S(A) + S(B) + S(C) + log tr(ρTB
AB)3

Compute via replica trick: For single stabilizer state

tr(ρTB
AB)3 = tr |S〉〈S|⊗3

ABC

(
Rζ,A ⊗ Rζ−1,B ⊗ Rid,C

)
where ζ = (1 2 3) three-cycle, hence

E[tr(ρTB
AB)3] ∝

∑
T
(
tr rT rζ

)nA(tr rT rζ−1
)nB(tr rT rid

)nC

Similarly for tensor networks ; classical statistical model!
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Bounding the amount of GHZ entanglement

For simplicity, assume A, B, C each n qubits.

E[g ] ≤ 3n + logE[tr(ρTB
AB)3]

Since qubit stabilizers are three-design:

E[tr(ρTB
AB)3] =

∑
π∈S3

2
−n
(
d(ζ, π) + d(ζ−1, π) + d(id, π)

)

where d(π, τ) = minimum number of swaps needed for π ↔ τ . Thus:

E[tr(ρTB
AB)3] ≤ 3 · 2−3n︸ ︷︷ ︸

swaps
+3 · 2−4n︸ ︷︷ ︸

id,ζ,ζ−1

⇒ E[g ] . log 3

For d > 2, {T} = {even} ∪ {odd}. Calculation completely analogous!
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Application 3: Stabilizer testing

Given t copies of an unknown state in (Cd )⊗n, decide if it is a stabilizer
state or ε-far from it.

Idea: Use the anti-identity. Measure POVM element 1+Rid
2 on t = 6 copies.

Result
Let ψ be a pure state of n qubits. If ψ is a stabilizer state then this accepts
always. But if maxS |〈ψ|S〉|2 ≤ 1− ε2, acceptance probability ≤ 1− ε2/4.

I Power of test independent of n. Answers q. by Montanaro & de Wolf.
I Similar result for qudits & for testing if blackbox unitary is Clifford.

Why does it work? How to implement? 12 / 18
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Stabilizer testing using Bell difference sampling

Any state ψ can be expanded in Pauli basis†:

ψ =
∑

v
cψPv

I If pure, then pψ(v) = 2n|cψ(v)|2 is a probability distribution.
I If stabilizer state, then support of pψ is stabilizer group (up to sign).

Key idea: Sample & verify!

How to sample? If ψ is real, can simply
measure in Bell basis (Pv ⊗ I) |Φ+〉
(Bell sampling; Montanaro, Zhao et al).

†Pv = Pv1 ⊗ . . . ⊗ Pvn where P00 = I, P01 = X , P10 = Z , P11 = Y
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Stabilizer testing using Bell difference sampling

In general, need to take difference of two Bell measurement outcomes:

I Fully transversal circuit, only need coherent two-qubit operations.
I Circuit is equivalent to measuring the anti-identity!

Proof of converse uses uncertainty relation.
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Application 4: Stabilizer de Finetti theorems

Any tensor power |ψ〉⊗t has St-symmetry. De Finetti theorems provide
‘partial’ converse: If |Ψ〉 has St-symmetry, Ψs ≈

∫
dµ(ψ)ψ⊗s for s � t.

Stabilizer tensor powers have increased symmetry:

RO |S〉⊗t = |S〉⊗t for all orthogonal and stochastic O

Result
Assume that |Ψ〉 ∈ ((Cd )⊗n)⊗t has this symmetry. Then:

‖Ψs −
∑

S
pS |S〉〈S|⊗s‖1 . d2n(n+2)d−(t−s)/2

I Approximation is exponentially good, yet bona fide stabilizer states.
I Similar to Gaussian de Finetti (Leverrier et al). Applications to QKD?

Can reduce symmetry requirements at expense of approximation.
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Application 5: t-designs from Clifford orbits

When t > 2 or 3 (qubits), stabilizer states fail to be t-design. Yet, hints in
the literature that this failure is relatively graceful (Zhu et al, Nezami-W).
E.g., Clifford orbit of non-stabilizer qutrit states can be 3-design!

We prove in general:

Result
For every t, there exists ensemble of N = N(d , t) many fiducial states
in (Cd )⊗n such that corresponding Clifford orbits form t-design.

I Number of fiducials does not depend on n!
I Efficient construction?
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Application 6: Robust Hudson theorem

For odd d , every quantum state has a discrete Wigner function:

Wρ(v) = d−2n∑
w

e−2πi[v ,w ]/d tr[ρPv ]

I Quasi-probability distribution on phase space F2n
d

I Discrete Hudson theorem: For pure states, Wψ ≥ 0 iff ψ stabilizer
I Wigner negativity sn(ψ) =

∑
v :Wρ(v)<0|Wρ(v)|: monotone in resource

theory of stabilizer computation; witness for contextuality

Result (Robust Hudson)
There exists a stabilizer state |S〉 such that |〈S|ψ〉|2 ≥ 1− 9d2 sn(ψ).
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Summary and outlook arXiv:1712.08628

Schur-Weyl duality for the Clifford group:
I clean algebraic description in terms of self-dual codes
I resolve open question in quantum property testing
I new tools for stabilizer states: moments, de Finetti, Hudson, . . .

Thank you for your attention!
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