rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

UNIVERSITY OF AMSTERDAM CD USOft

Quantum Information

Michael Walter

Solvay School 2021, Amsterdam



Seek to leverage laws of QM for information processing...

communication cryptography

networks algorithms

computation

quantum bits complexity

Quantum Information

error correction
entropy entanglement

tensor networks quantum simulation

..but also toolbox and language for studying q. many-body systems.
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Physics vs Information:
Thermodynamics

[Irreversibili’ry (2" law) vs coarse graining ] Boltzmann, Gibbs, ...

[Thermodynamics of computation: Cost of erasing a bit? ]

!
? 2 2 e\‘::f_b ) c \ [W >= kT [n(z)} Landauer
Most logic gates are irreversible. Is there a —D__
fundamental cost to computing? No! —

Bennett (1973): [EFFicien’r reversible computing is possible! ]
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Physics vs Information:
Computation

Simulating quantum physics difficult for classical computers.

[Why dont we build a quantum compufer?] Feynman, Deutsch, ...

Shor’s algorithm (1984): quantum computers may N = pq in time
offer vast speedups for classical problems poly(log N)

Google “quantum supremacy” experiment (2019)

Today, quantum simulation still one of most promising applications.
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Physics vs Information:
Language and Toolbox

Quantum information is different: No cloning, uncertainty principle, Bell
violations, entanglement, decoherence, ...

QIT offers language and foolbox to study and exploit these phenomena.
Examples:

-

Uncertainty principle =» quantum cryptography )

Bell violations =» device-independent control

N Entanglement =» many-body physics

In recent years, exciting research at interface of
quantum information with QFT and gravity.




Plan

Goal: Discuss language, toolbox, key concepts of quantum
information. Survey applications to holography.

Today: States, Channels, Entropy, Entanglement

Tue: Toy Models of Holography, Tensor Network Models,
Decoupling, Black Holes, Error Correction
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Interrupt me!

If too slow (or too fast), please let me know. ©

If not detailed enough, please ask. ©
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1. States, Channels, Entropy
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https://staff.fnwi.uva.nl/m.walter/qit18/

Quantum states

eigenvalues

/
v
Density operators on Hilbert space: p = Z Px |\|—’x><\Ux|
X \

eigenvectors

/Pure states: p = |\|J><L|J| \ @a’res of qu?:I'l' Bloch bdll\

Mixed states model ensembles {p;, pi}:

p=ZPipi
[

N /
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Enfropy p =2 p W<Vl

Von Neumann entropy: [ S(p) =-trplog p ]

only depends on nonzero
{eigenvaluesz S(p) = S(UpU") } [O < S(p) < log(d) ]
pure p=1/d
Modular Hamiltonian: “First law of entanglement”
{Kp = -log p] [ S(p + 8p) = S(p) + tr[dp K] + ]
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Renyi entropies and replica trick

Von Neumann entropy often difficult to compute =» Renyi entfropies:

{ Sn(p) = 1

log fr[p"]]

S:(p) = S(p)

-
So(p) = log #nonzero eigenvalues}

\Sz(p) = -log tr[p?]

equal if p flat spectrum

NN

Llog(d) > So(p) 2 S(p) 2 S,(p) 2 ... 2

Easy to calculate for integer n>1:

trlp?] = tr

P22 F

trlp = tr

o8 C]

where

where

\F Ixy> = |yx>] swap trick

C, Ix;x5..> = Ix2x3...x1>]
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Joint systems

Reduced states of global states p,g are given by partial trace:

[ Pa = frB(PAB)] £<a|pA|a'> = Z«l |PAB|a' >}

R
V2

=D QA= —11— QOQ)(OO\'(' loox u| < (X € [HXH[>

Maximally entangled state (Bell/EPR pair): {|¢Ze) = (00) + |11>)]

I
—D gb\ = 'Iz',' C loXo\ + \le\) = "5~ maximally mixed

[ Any state p, has a purification ppg = IkIJAB><\IJABI.]
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Correlations

We say that a state is correlated if not a product:

[pAB £ Pa ® pB] [ <0,0'p> # <OA><O'B>]
for some pair of observables
Correlations can have quantum or classical origin:
q g @4—»@)
/ \ /\;34_»(@_“
A
Maximally entangled state: Max. classically correlated:
" 1 1
|¢A3>=ﬁ(|00>+|11>) ¥ns = 5 (J00){00] +[11)(11})

How to quantify correlations? 13/115



Mutual information

Mutual information: | (A:B) = S(A) + S(B) - S(AB) | 20 o .
I(A:B) = 2 log(d) iff maximally entangled D rg) = % S xx)
I(A:B) = log(d) if max. classical correlated Xng = %Z‘XXMXX‘

Pinskers inequality bounds correlation functions:

|(0n0p) - (0a)(0)| < [OA 10} |\/21n(2) T(A+B) |

Strong subadditivity (SSA): [I(A:BC) > I(A:B) ]
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Quantum channels

What are the most general transformation of quantum states?

P—— 222

— P

!

{Quan’rum channel: Any combination of unitary evolu’rion,} PDpR0

partial traces, adding auxiliary systems.

Data processing inequality:

[ I(A:B) > I(A:B) ] ..if pyg Obtained from p,; by

quantum channels A->A, B->B'.
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Application: Holevo bound

How many bits can we communicate by sending 1 qubit?

Sender

{0,1}" 5 x—

encoder

Receiver

) p(x) (

J 1 qubit state t

A

decoder

§>y

Challenge: Do not know optimal states nor optimal decoder!

{ P =27" ; X} (x| ® p(x)] |:> [va =2™" zx: |xx)(xx|]

..if can decode perfectly. Using the data processing inequality:

[n _I(X:Y) <I(X:B) = S(B) - " pxS(p(x)) < log 2 - 1]

[1 bit/qubit = no quantum advantage! ]

115




2. Entanglement

Literature: Lectures on "Symmetry and Quantum Information”
(https://staff.fnwi.uva.nl/m.walter/qit18/) 17/115



https://staff.fnwi.uva.nl/m.walter/qit18/

Entanglement

entangled

We say that a state is separable if mixture of product states:

{pAB ZPuP(') (.)}

Otherwise, the state is called entangled.

Local Operations and Classical Communication (LOCC).

{ Separable states are precisely those that can be created by]

Alices laboratory

arbitrary quantum -
operations

~N

classical

Bob's laboratory

/

That is, to create entanglement need to send quantum systems.

message

p
»arbitrary quantum }

operations
-
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Entanglement in pure states

For pure states, the situation simplifies.

|W,g> is entangled if not a product:

Wae> # [Wa> © [dp>

That is, all correlations in pure states boil down to entanglement.

[Headrick] 19/115



Schmidt decomposition
/ Schmidt rank

r orthogonal

Was) = ) _silei) @ [fi)

// N
@ Schmidt coefficients, 50 00" %j
{"A "L 'ei><ei'1 {pg i |ﬁ><ﬁ|}
i=1 -

=» Reduced states have same eigenvalues, entropies, ... and
characterize entanglement:

[ IwAB> PrOdUC'l' & r=1 & pA pure & pB PureJ

=>» Any two purifications of p, are related by isometry on B
20/115



Extensions and Monogamy

Even if ppg mixed: [pA pure = Pag = PaA ® pg]

This implies that pure state entanglement is monogamous:

AB pure =» AB uncorrelated with C

be pure entangled.

pure \
\\ {Monogamy: AB and AC cannot both }
\
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Entanglement entropy

Schmidt decomposition suggests to quantify entanglement by the
entropy of reduced states =» Entanglement entropy:

0 < [SE=S(A)=5(B)]§

/ X

product state maximally entangled

Interpretation: Optimal conversion rate with Bell pairs:

[ Ws) (100) +[11))*"|

=> entanglement transformations “reversible”
for pure states

=>» Bell pairs = unit of entanglement

22/115



Application: Page curve

Suppose a is created from infalling
matter and we watch it evaporate.

R = Hawking radiation emitted up to some time
B = black hole = later Hawking radiation

A semiclassical calculation suggests entropy of radiation
increases until the end. But in a unitary theory, radiation
will be pure once BH has evaporated...

Intuitively, early radiation is entangled with
black hole, while late radiation is entangled
with early radiation.
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Application: Page curve

Simplest toy model: Assume that evaporation
described by random unitary evolution.

B R
P 1
random
unitary

1

b = log dg
[ |Wgr> = random pure state ] r = log dg pure initial state
b
Page theorem: For typical states, b—;:_‘: 1
St = min(b,r) - O(1)
| .‘ -
5 Uy bkl
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Derivation of the Page formula

Idea: Lower-bound average Renyi-2 entropy S,(R) using swap trick.

—%7 I+F

Key formula: {\UW “dds 1)} for random W=|W><WY|

Apply this to |W> = [Wge>:

22 1gs ® Irr + Fgs ® Frr

Vo =
BR dBdR (dBdR + l)
tr (1 I 1 1
—> frkllé = 1""\IJS)RZFRR < (Tee ®FR§ :FBB ® Iex) = — + —
| d2d2 dr  ds
swap trick

—> S2(R) > -log ’rr\IJ,ZQ > —log ( : + . )2min(b,r) -1
dr ds

25/115



Entanglement as a resource

What is entanglement good for? Four examples where entanglement
enables otherwise impossible capabilities:

4 N

1) Superdense coding: communicate 2 bits by sending 1 qubit

2) Teleportation: communicate 1 qubit by sending 2 bits

3) Violating Bell inequalities: produce non-classical correlations

C) Quantum cryptography: distill a shared secret key

It is also necessary for any quantum computational speedup.

26/115




Superdense coding

If Alice and Bob share EPR pair, they can use it to communicate
2 bits by sending 1 qubit!

bry) = (J00) +[11)) V2 = (1o 1)|dpg)
by ) = (J00) - [11)) V2 = (Z 8 T)|dps)
bry) = (]10) +101)) /V/2 = (X @ T)|dps)
bs”) = (]10) - [01)) /V2 = (XZ @ T)|bps)
4 2 % I
| |
Z M X
D)< \ .
Bell basis > Z
K »| measurement > X /

27/115



Teleportation

If Alice and Bob share EPR pair, they can use it to communicate
1 qubit by sending 2 bits!
4 . N

Bell basis
measurement |

¢;B>( 1
X = Z >

>

. /
Why does it work? If outcome x=z=0, post-measurement state:
M
W= = (<¢:AA|®IB)(|WM>®|¢ZB>)

== Z( (ilm® (jla®Ia)(|Wm) ® |K)a ® [K)s)

A
+ l 1
s = EIM—>B|\UM> = EN”B)
B:—> 222
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: Clauser-Horne-
Nonlocal correlations oy o

Alice and Bob play CHSH game: winning condition:
4 Referee ) 4 = ¢ oo A
X/ \Z’

, O O O

Alice Bob © l &

@

a\ Referee /b & C\> l
o / - /

Local classical strategy: a=a(x), b=b(y)

a(0)eb(0) ® a(0)adb(1l) ® a(l)®b(0) ® a(l)®db(1l) =0

=> will get at least one answer wrong: [ Pwin £ %]

This is a Bell inequality - a bound on classical correlations!
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Nonlocality and quantum cryptography

If Alice and Bob share EPR pair, they can do better and achieve

[ Puing = 0.85. ]

~ ~~

Tsirelson: optimal strategy “unique” (rigidity)

=>» can certify entanglement from correlations alone!

Application: | In quantum Kkey distribution, Alice and Bob want
to create a key secret from everyone else.

1) Play nonlocal game to ensure that state |[®+,5> by rigidity
2) Then |Wpge> = [P+oe> @ P> by monogamy

3) Now measure EPR pair to get random secret bit.
30/115



3. Entanglement in Mixed States


https://staff.fnwi.uva.nl/m.walter/qit18/

Entanglement in mixed states

Recall that a state is separable if mixture of product states:

{pAB = Z PiPa € pg)}

Bad news: NP-hard to check if paz separable

= no entanglement measure is faithful and easy to compute

A practical problem - meaningful calculations are difficult.

Similarly, multipartite entanglement.
32/115



Bound entanglement

Can create any entangled state by LOCC given enough Bell pairs.

Bad news: Transformation m
{usually irreversible. } |wAB>®n (|OO> T |1 1))

conversion rates not equal %

There even exist "bound entangled” states such that no Bell pairs can
be obtained from any number of copies!

=» | Zoo of entanglement measures: entanglement
cost E, distillable entanglement E,, ..

33/115



PPT criterion

Idea: Necessary for separability < sufficient for entanglement

Partial transpose (PT): [<ab|pABrla'b'> = <ab'IpAB|a'b>]

“partial time reverse”

If pag Separable then p,g' is again a density operator.

Pas= 2 PIPR ®Py = Phg= D Pibn @ (pg))]

PPT criterion: [pABr negative eigenvalues = pxp en’rangled]

34/115



Negativity

Partial transpose has tr=1. Thus, has negative eigenvalues < sum of
absolute eigenvalues is > 1.

Negativity: [N(p) = (5 I\ = 1)/2]

Logarithmic negativity: (EN(p) = log 2; |7\i|]

How to calculate?

1) Compute “Renyi negativities” tr (pas")>" and let n > V2
2) Use replica trick: tr (pas)?" = tr (pas)®?" (C,, ® Cy07h)

=>» Feasible in field theory and holography!

35/115



Extendibility criterion

Say Pag has k-extension if there is state 0 on AB,...B, with

o o <
®

If pag Separable then has k-extension for all k.

Pas = D PiPa ©Py = Ons,.8,= 2 PiPp ®Pg’ ®...© Py

Conversely, if k-extension then O(1/k) to separable.

Criterion: [ Pag Separable <> has k-extension for all k]

=» Entanglement is monogamous also for mixed state!
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Bonus: De Finetti theorem

Ay
Suppose that A,..A, is permutation-symmetric. Then O
reduced states are close to mixtures of product states:

® Lo

De Finetti Theorem: [ Pa A [dO‘p(O‘) o®"] if K < n

=» another version of monogamy

=>» justifies for why in mean field theory it suffices to consider
product states
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Bonus: Squashed entanglement

While mutual information is not a good entanglement measure, we can
construct one using the conditional mutual information:

[I(A:BIC) = I(A:BC) - I(A:C)]

Squashed entanglement: { Eyq(A:B) = ¥2 min I(A:B|C) }

Properties:

Pasc

1) 0 < Eg, < V2 I(A:B) < log min(d,, dg)
2) For pure states: E,, =Y¥2 I(A:B) = S¢
3) Separable < E,, =0

4 )

\4) Monogamy: E.(A:B) + E,(A:C) < Esq(A:BC)/

38/115



4. Entanglement in Field Theory

39/115


https://arxiv.org/abs/1409.1231
https://arxiv.org/abs/1907.08126

Quantum information & field theory

Do quantum information tools apply to quantum field theory?

Challenge: Basic notions such as subsystems,
entanglement, entropy, ... more subtle!

Theoretical insights: c-theorem from strong subadditivity, Bekenstein
bound from relative entropy, renormalization vs QEC...

Another motivation: Quantum computers can simulate quantum
mechanics. Can we simulate QFTs or even quantum gravity...?
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Subsystems in relativistic QFT

S 4 ™
- - J

Causal domain of A: D(A) = {p : every maximal causal curve
through p intersects A}

2 is Cauchy slice if acausal and D(Z) = everything.

Time slice axiom: 2 < global state <~ Hilbert space H
A C 2 & reduced state in D(A) & “H =H,® H”

41/115



Correlations in QFT

Consider e.g. free scalar field with mass m in Minkowski space:

[H = [dx T2 + (VO())2 + m? <I>(x)2] (1), bly)] = i5°(x-y)

Amusing to compare

Correlation functions: [<¢(x)> = O] with Bell pair:
UV divergence <X> = .. =<Z>=0
XX> = .. =<Z2Z>=1
— < .
|x-yl-2 if Ix-yl « &
<p(x)p(y)> o .
exp(-Ix-yl/E) if [x-yl > &
\

£ ~1/m correlation length

General form (short-distance power law, long-distance decay) believed to hold

in any relativistic QFT. If m=0, decay can be power law. 42/115



Entanglement in QFT

Ix-yl-2 if Ix-yl < E

Correlation functions: | <p(x)P(y)>
= 0 if [x-yl > &

Thus, might expect that entanglement
entropy satisfies an area law:

[S(A) o oAl / sjﬂ\
UV cutoff

More generally, might expect that all divergences arise from local
integrals over entangling surface dA.

[Headrick]

IA' € 43/115



Entanglement in QFT [ H # Hy @ HBJ

Observables in A, B commute, but Hilbert space does not factorize.

=» Reduced states not described by density operators
=>» Entanglement entropies not obviously well-defined

What can be said rigorously?

Reeh-Schlieder: not

[“{OA |Qpp>} dense"}

Relative entropies & various entanglement measures can be rigorously
defined and computed/bounded

Bisognano-Wichmann: “modular Hamiltonian” of Rindler wedge s



Entanglement Entropy in QFT

We will proceed cavalierly since we must anyways regulate
entanglement entropy to obtain finite answer.

General strategy: UV regulate and compute universal quantities

[coefﬁcien’r of log(|Al/ 8)} B
[Fliss]

[ relative entropy ]

[mu’rual information I(A:B)]

If A, B dont touch: “Hyg = Hy @ Hg”
=>» rigorously defined in QFT!
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Euclidean path integrals

Let us consider states that are prepared by Euclidean path integrals.
E.g., unnormalized thermal state:

{:F):: eFBH ] B 1i1~ ¢=:él

o=

For B = oo, obtain vacuum state.

=» Reduced state of A C 2:

::'fr QB'BH:] 0,0 ¢’==¢f
[pA B 00— —
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Rindler decomposition

[Harltow] / [Headrick]

¢ = o1
£ 0,0
> S ¢ =do
Minkowski space-time Euclidean path integral

Rindler wedges correspond to A = [0,00) and B = (-00,0].
Lorentz boost generator K acts by [ —21K ]

: : . : =e : ”
rotations in Euclidean signature > (Pa fhermal

Similarly, Schmidt decomposition: {lQAB> = Zi e Wi |i'>|i>J Homework!

Amusing: If |Qap> were product = “firewall” between A:B. 47/115



Entanglement entropy and replica trick

Using the replica frick, it is easy to compute Renyi entropies:

[s,.(p) - —Llog :[[21] - L (log Z, - n log ZI)J

where Z_ = tr[p"] = tr[p®" C,] is calculated by the following path integral:

branched covering

[Fliss]
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Entanglement entropy for single interval

[Fliss]
Can be explicitly computed for spherical 1SS

regions in conformal field theory.

/Cardy-Calabrese: In 1+1d CFT with central charge c,\ ~oo=-
c 1 L c L Homework:
S"‘z(”;)wg - S=3log - Prove this.
. A

M, is topologically sphere, compute Z, from Weyl anomaly.

Alternatively, via 2-point function of twist operators in orbifold CFT:

Zn=(0.(21)0-(22))cr/z,
49/115



Application: c-theorem

Can use entanglement entropy to construct RG monotone
Cuv 2 Crp
and re-prove c-theorem.

Suppose we deform “UV CFT” by relevant operator. Then:

[S(L < E)= C%log = ] [S(L > E) = C%Rlog - J

€ g’

[Claim: c(L) = 3 L dS/dL interpolates c,, c;z and decreases with L.]

Key idea: Use strong subadditivity S(AB) + S(BC) > S(ABC) + S(B).
Here:

S(x) +S(y) > S(L') + S(L)

25/ Ne>—7=

Choose L'=L+5 = d2../d5% o -de/dL > O L




5. Entanglement in Holography


https://arxiv.org/abs/1907.08126

Black holes and
quantum information

Black holes have a thermodynamic temperature and entropy.
This entropy is proportional to the area of the event horizon:

_ Area Bekenstein
BH = 46 Hawking

Surprising! Further puzzles arise when we try to quantize: Hawking
radiation, information paradox(es), ...

A theory of quantum gravity ought to give
microscopic explanations.
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Holographic principle and practice

[ Holographic principle: Can all information in a region of sPace} Susskind

be represented as “hologram” living on boundary? 't Hooft
AdS/CFT duality: Realization in Anti-de Sitter space Maldacena
boundary: d-dim Controlled setup to study
corfrformal field quantum gravity; including
heory (CFT) time black holes, wormholes, ...

K bulk: (d+1)-dim (string) gravity ’rheory

What can we learn by applying the QI foolkit? Q

53/115



Symmetries v

CFT . )
Partition functions: [ZCFT = Zsfring]

“Extrapolate dictionary”:

(string) gravity theory { O(X) = lim._ .. r*d(r, X)]

=» can compute CFT correlation functions: X

{/ D¢ei5eff O,---0, = (Ol'”on>CFT J

What is the bulk dual of entanglement entropy?

54/115



Ryu-Takayanagi formula

Ryu-Takayanagi (RT): For static space-times, boundary entropies are
computed by area of bulk minimal surface homologous to A:

o IYAI
[S(A) = min e + J

time slice

55/115



Example: AdS;

CFT vacuum state |Q> is dual to AdS; bulk:

Pure state: [s(z) -0, S(A) = s(AC)] J

time slice

For an interval of length L, recover Cardy formula:

Poincare coordinates
ds? = £2/z2 (dx2+dz2-dt?2)

Z4 -> :S(L) = c/3 log(L/e): v

3 Homework: Verify this.
cutoff e-f-{---------}Y---- s

minimal geodesics = coordinate semicircles 56/115

- 1¥al = 2 log(L/E)




Example: Multiple subsystems

Two boundary subsystems:

phase
. < transition > / v
S(AB) = S(A) + S(B) S(AB) < S(A) + S(B)
I(A:B) = I(A:B)> 0
uncorrela’red phase “correlated phase”

A Q



Example: BTZ black hole  7-2m,

BTZ; black hole solution is dual to CFT, thermal state pp:

Mixed state: S(pB) = SO G >0 V
4Gy,

Phase transition in entanglement entropy:

connected disconnected

\

I P




Example: Thermofield double

[ITFDB> = 1/Z 2 e |E'>IE>J

Thermofield double state is purification of thermal state to two CFTs.
Bulk dual: Two-sided black hole in static asymptotic AdS space-time.

A€ ‘ o A

contains Einstein-Rosen (ER) bridge
connecting asymptotic AdS regions

“ER = EPR” susskind-Maldacena

59/115



Why should Ryu-Takayanagi hold?

Intuitive generalization of Bekenstein-Hawking formula.

Matches CFT calculations.

Proved under plausible assumptions.

Satisfies many nontrivial consistency checks. For example, easy to
verify strong subadditivity:

N
S(AB) + S(BC) = /\/\ > m = S(B) + S(ABC)
' A B C ' ' A B C ) \/ /

60/115



Holographic entropy laws

Ryu-Takayanagi formula satisfies non-standard entropy inequalities.
These are constraints for CFTs to have a gravity dual!

Hayden-
“Monogamy” inequality: I(A:B) + I(A:C) < I(A:BC)| Headrick-
Maloney

Does not hold general states — not even for all probability distributions.
Correlations are not monogamous!

=>» excludes plausible states such as

Z e PE/21n) In) In) n) F %

=» can be used to witness multipartite correlations
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Bao-...-Ooguri-W
How to prove holographic entropy inequalities?

S(AB) + S(BC) > S(B) + S(ABC)

General method that abstracts inclusion/exclusion reasoning:

oo
"Homology regions” for LHS minimal surfaces

partition bulk into 25 regions. = Hypercube:

A B C
M Q vertices = bulk regions
(A) 40\ 64 (C) edges = surfaces between regions
000

/

o4 (C homology regions for RHS surfaces
~00 (0)

M (B) => use subsets of hypercube to define
(W10~ )

\

[IF each edge cut at most once: Entropy inequality is valid! 1/115




Hypercube proof of monogamy inequality

To illustrate the method, let us prove the “monogamy inequality”,
which expands to:

S(AB) + S(BC) + S(AC) = S(A) +S(B) + S(C) + S(ABC)

4 A4 )
PZRERN
(o) oo
N A
S 400\\0{40//004 )
000 (0)

Infinitely many holographic entropy inequalities can so be proved.
How to organize systematically?
63/115



Holographic entropy cones g,

S(AB
For fixed number of subsystems, i

consider all possible entropy vectors:

[c,, = §(Spr(Ay), wnr Ser(A A, A} J

S(A)

[This is a polyhedral convex cone - the holographic entropy cone. J

faces: entropy inequalities such as S(A) + S(B) > S(AB)

. [ . L
rays: entropy vectors that cannot be written as mixture ..‘

of others. represented by “extremal geometries”.

64/115



Constraints from entropy inequalities

Can also go the other way and exploit known entropy inequalities to
derive gravitational constraints. E.g., using relative entropy:

[S(plla) =trplogp -trplogo 2 O]

Perturb around vacuum state:

1st order: linearized Einstein equations Faulkner et al
2nd order: positive energy inequalities Lin et al, Lashkari et al

e.g. UTOO‘/Q_ > O}

Much more to be said about holographic entropies (monotonicity of

relative entropy, Freedman-Headrick bit threads, ...) 65/115



Generalizations

Entropy of bulk fields in region enclosed by RT
surface contribute O(1) corrections to entropy:

{S(A) _ vl S(a)}

4G

better: minimize joint expression (“generalized entropy”)

RT holds in static situations (more generally, in time-reflection symmetric situations).
In general, consider extremal area codimension-2 spacelike bulk surfaces.

66/115



6. Toy Models of Holography


https://arxiv.org/abs/1802.01040

Holography is mysterious...

r—o00

1) “Extrapolate” dictionary:  r*¢(X,r) — O(X)

A puzzle: [[d(y),0(X)]=0] 1

2) Ryu-Takayanagi with bulk corrections:

S . IYAI
(A) = min e + S(a)

3) Bulk reconstruction problem: Every bulk operator should be dual to
some boundary operator. .
d(x) = [ O(X)K(X|x)dX

Why do we care? Extrapolate dictionary insufficient if want to
study processes behind horizons, understand bulk locality. 68/115



Subregion duality

: .+,. | Can write any bulk operator in
Subregion duality: {a as boundary operator in Al }

Proved using QI tools. Dong-Harlow-Wall, Cotler-...-W
Not known how to do explicitly in most tantalizing situations:
—— N
SCEDL
 G—

Only when A = everything or ¢(x) in (smaller) causal wedge of A.
=>» Hamilton-Kabat-Lifschytz-Lowe, Banks et al, Heemskerk et al, ..., Harlow TASI
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Holography is mysterious

Subregion duality leads to another puzzle:

A
- [¢=OAB=OAC=OBC}

“ no common support ¢

[

Resolution: Only “few” states correspond to any
particular semiclassical bulk description.

"[$(y),0(X)]=0" or "O=9" only hold (make sense!) on small subspaces of
CFT Hilbert space, known as “code subspaces”

Plan: Discuss toy models that reproduce 1)-3) and resolve puzzles
by simple QI mechanisms. 70/115



: g . Three-Quirit code .
A ~

Nt > Cw c3 ® C3 }
S AN
[Vl Z |J j+ij—i } “boundary CFT”

encodes 3-dim in 27-dim space

perators ¢ are encoded by Gppc = VOV’

T
Key fact: [V|i):(IA®UBC)(|¢;B)®|iC))] \—%]4/ - i/ i?k;\

where Uglj,i> = |j+i,j-i>

tat ded b =VpV T
L Stares () are encoded by pABC P J (¢...>p = ($-)




Three-Qutrit code giﬂ _ (\
!’

This has remarkable consequences: A DC 7 T « N i

Ryu-Takayanagi: S(A) = log(3) = S(B) = S(C)
S(AB) = log(3) + S(p) | = s(Ac) = s(BC)

Subregion duality: can decode p from BC alone! likewise from AB, AC
(o T A [“erasure code”: can correc’r}
U l for loss of single qutrit!
@éﬁg,——inf?"‘ =&
Tkij}_ Heisenberg [O - Uge(I® ¢)U+ ]
N - T picture: BC ~ VBC BC
= OgcV = Vo, Oz V = Vo
=>» resolves second puzzle! “Ogc = $”
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Three-Qutrit code

Similarly, if ¢ is any bulk and O, any boundary operator on A:

(il[On, Pagc]li) = (il[0a, Osc]li) =0 “[#(x).0(V)] =0"

=>» resolves first puzzle!

Quantum error correction plays important role in recent research in
holography (emergence of bulk locality, black hole information paradox, ...)
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7. Error Correction, Decoupling,
and Black Holes
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Recall: Quantum channels

A—> T |—B

Quantum channel: Any combination of unitary evolution,
partial traces, adding auxiliary systems.

Equivalently, any map that sends states p,r = states pgp.

| Per = (T ® id)(pe) | A—] T |—s
R >R
Examples:
Basis measurement: Depolarizing noise:

[M(p) = 2, <xlplx> Ix><x|] [ D,(p) = pp + (1-p)1/d ]
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Tools for quantum channels

Choi state: characterizes channel completely!

A

. T —8
Q= (d @D | e,
> A
Stinespring extension: Isometry V such that:
(T(p) = tre(vpV") | A— vV [P
=>» complementary channel: [ (p) = frB(VpV*)]

Together: Solve channel problems by (pure) state reasoning
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Example: Basis Measurement

[M(p) = 2 <xlplx> |x><x|]

Qs =)id ® MY(ID* o< 1) = 1/d I, (id @ M)(Ixx><yyl)
= 1/d 2, Ix><yl @ M(Ix><yl) = 1/d Z, |x><xl @ |x><xl
=[1/d 2 Ixx><xx|]

[V|x> = |xx>]

=>» Complementary channel: M¢ = M!
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Quantum error correction

When building quantum computers, we want to protect against errors
(imperfections, noise, decoherence, ...).

To achieve this, redundantly encode “logical” into “physical” qubits:

logical ) physical
» encoding » errors [—>

Questions: {1) When can we in principle correc’r?}

2) How to correct in practice?
78/115




—’B

Decoupling criterion ALY e

The question: Given a channel Tp5g When can we reverse it?

Decoupling criferion: Can reverse T,sp if and only if ['QA'E = Qp ® Xe ]
the complementary channel T, is constant. .

=> exactly what we found for 3-qutrit code
=> very strong form of “no cloning” statement

If reversible: There exists state |X> and isometry W such that:

4 A I
B — A >
—_— W —
/\ \/ — F = <:§{
» E E
. /
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Teleportation revisited

It is instructive to revisit teleportation from this perspective.
Consider channel which performs Bell measurement on py ® I,/2:

—n——- I— X
B R =

L
2z

This is a constant channel since all outcomes are equally likely. By the
decoupling criferion, can decode from complementary channel!

M O k »

@1/”_’ T S
— Q

Thus, complementary channel looks like teleportation w/o correction:

'&*Z (ﬁ—L"

First, compute Stinespring extension:

\

\

MR X

U |Dx2y = |xzxz>

2
— 0 80/115




Decoupling inequality

In information theory, random codes are often almost optimal.

A 0> |0>
V = U random IQA’BE> — U
unitary 7
71 | !
B E A B E
When can we decode A from B? [Need Que = Qn ® Q! ]
4 )

Decoupling Inequality: Let ppge State, Ugz random. Then:

d -S
J dUge Iltre(Use pase Use) = Pa ® Te/dell 2 « —— 2 (P)
b de ot




Hayden-Preskill protocol

We again model an evaporating black hole by random unitary. After Page
time, assume black hole maximally entangled with old radiation.

Now suppose Alice throws her /"~ A B ™
diary into black hole.

U
I TR
N A B R R/

That is, when can we decode A from RR'? [Need Qpg = Qpn @ Q4! ]

do we need to collect so
that we can recover diary?

{How much further radiafion} IQA’BRR’> =

Answer: [ d, < dq ] Little more than size of diary - independent of
size of black hole. Black hole after Page time is
like a mirror, information comes right out.
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Holographic teleportation

p e {
<&

coupling
message,
inserted

Wormhole in thermofield double state can
be made traversable by weak local classical
coupling between the two CFTs.

Trace Out
N

Yout
—

Vam

||
—
|

eLgV

y—

!

\”’m

u eiHLtL U

[This holographic teleportation protocol is remarkable:

“self-decoding” even though CFT time evolution scrambling!]

Recent work constructed toy models using e.g. random

unitaries and proposed general QI mechanisms.
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Bonus: Relative entropy

D(pllo) = trp (log p - log @) | 28 isrp - o

Pinkser inequality: [D(plIO‘) 2 Yoz llp - ol 2 ]

Data processing inequality: [D(pIIG) > D(T(p)llT(O'))]

[“:“ < can reverse channel on pair of states p,O‘]

How so? Use Petz map: [D(p) = 0”2 T'(T(0)™ p T(0)™?) 0'1/2] 84/115




Back to our toy model

| &
A-s_[ ] C . 2 & c

Toy model has no geometry - just a single site!

To go beyond, lets focus on the RT formula:

- 1 2 A
= — > 1i,d,J) -
\/r_ > ‘\*;i;zﬁi__%j__

B

Can we glue together many such states (or codes)?
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8. Tensor Network Toy Models
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https://arxiv.org/abs/1503.06237

Many-body quantum states

Many-body quantum states have B o _ _
exponentially large description [|\I!> T Z m i1y ’n>}

I]_,...,In

tensor with n indices

In practice: entanglement is local, correlations decay rapidly

—> can hope for more efficient description:

(Key Iidea: start with enfangled pairs.. )

..and apply local transformations:

e.g. ‘cat’ state [0...00> + [1..11> from [00> = |05, [11> = [1> 87/115




Tensor networks as a tool

Tensor network: state defined by
contracting network of (local) tensors

Z mhl,...

’17 -1

e.g. MpPs .? ? ? ? ?_ PEPS

White, Fannes-Nachtergaele-
Werner, Ostlund-Rommer

Verstraete-Cirac

| Numerical tool: efficient variational classes |
Hilbert space
provably so for gapped theories in 1+1d (Hastings)

can even have interpretation as quantum circuits

Powerful theoretical formalism, provides “dual” descriptions of complex
phenomena = quantum phases, topological order, ...




Computing with tensor networks

Very similar to path integral reasoning:

e

i O 0 O S8

<E\L_(OA8$\“£>_— L@\ \@ N I 0 I
T - O

(Sl =

Can formally obtain tensor networks by trotterizing efh.

What is the role of the network geometry?
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Entropy in tensor networks

Entanglement entropy satisfies "Ryu-Takayanagi bound”:

[S(A) <N IzsAIJ

N qubits/bond
Ja = minimal cut

Tantalizing: Picture shows Vidals MERA tensor network.
Used for critical theories, it looks like a time slice of AdS! Swingle
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Why does the bound hold?

N |34l many Bell pairs

|

A B

A

Thus, the Schmidt rank is at most 2N ¥Al

> { S(A) < So(A) ¢ N I3l J

NB: Bound saturated if L, R are unitaries (or isometries)!
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Holography from tensor networks

Want “exactly solvable” toy models of holographic duality:

via tensor network in bulk
simple bulk fensors, e.g.

random and large N

=» emergent Ryu-Takayanagi law!

S(A) = NIyl |

[Approach: Define boundary s’ra’re}

Mostly works in any geometry. By now, many variations known.  92/115



Harlow-Pastawski-
HaPPY model Preskill-Yoshida

Assume each local tensor is perfect = \\(
isometry in all possible directions. W
#in < #out
exist! e.g. 3-qutrit code, 5-qubit code, ...

Choose orientations such that ¥, 2 A, A€
Then: V, W isometries and RT formula holds

Always possible for graphs with “negative
curvature” and A “single interval”.

© Concrete and intuitive! How to generalize?
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Hayden-Ne i-Qi-
Random tensor model Thomas-W-Yang

[Choose random bulk tensors of large bond dimension.} >/D=2N

=» emergent RT formula

(Three interpretations:

1. Random tfensors = perfect

2. Entanglement distillation protocol

3. Disorder average > ferromagnetic spin model

N

94/115



Derivation of Ryu—Takayanagi law

[‘w - ((X) <xy|) (@ v»)}

xy) T 1

max. entangled states random tensors

Recall: In any tensor network: S(A) < N [yl

[S’rra’regy: Lower bound S,(A) using replica ’rrick.]
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Replica trick for 2" Renyi si(A) = -log trip,?]

)
I

19} (@ ul) (@ W)

(x,y) X

J

Isinéi%r}aﬁé:s, ) g&ﬁﬁdﬁ?‘w@éncii’r,i\lons! \
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2"d Renyi entropy S:(A) = log trips]

tr[paZ] = partition function of ferromagnetic
Ising model at 1/T = log(D)

Result: [SZ(A) ~ -log tr[pa?] = log(D) IYAlJ

Ryu-Takayanagi formula!

domain wall!
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What does it mean?

Random tensor networks (RTN) provide intuitive toy model. Reproduce
Ryu-Takayanagi formula (+ much more). Analyzed using replica trick.

Il Relevance for holography? Ryu-Takayanagi formula is proved
similarly. But: Einstein equations =» nonftrivial spectrum!

Is all hope lost? No! Remarkably, RTN match v Dong-Harlow-Marolf
precisely so-called fixed-area states in holography. Penington et al

Moreover, general states can be expanded in terms of fixed-area states.
Under certain “diagonal approximations”, can lift results!

Similarly, random quantum circuit models have recently

been studied, exhibit interesting phenomenology.
relevant to “quantum supremacy” proposals etc
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Bonus: Entanglement of assistance

Multiparty entanglement distillation: create entanglement between Alice &
Bob with help of Charlies by measurements & classical communication.

initial collection of Bell pairs

ZA \Cl\cg/cz______g e W) = (@ Y<v) <<(% \xy>)

/ measurement in random basis
BQ optimal! merges state w.h.p.

[ lim lEaSSZ-St(A”;B”) = min S(AUM)= SRT(A)J

n—00 N MCV\AB

General mechanism for producing Ryu-Takayanagi from area law state!
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Holographic mappings

AdS/CFT is duality between two theories = "dictionary” that maps
states & observables. How to incorporate into toy model?

[Approach: Define bulk-boundary mapping via tensor network ]

= combination of both toy models

red legs: bulk degrees
black legs: boundary degrees

“logical” bulk states are encoded in
“physical” boundary Hilbert space

Toy model of how bulk quantum fields get encoded in boundary Chdo/115



Holographic codes

If bulks legs have small dimension d << D, obtain error correcting code
that satisfies “subregion duality”, a key QI feature of AdS/CFT:

A ...for isomeftries U, V.

[Bulk degrees of freedom in a (b) get encoded into A (B)!] V4

In particular, bulk corrections to entropy: [S(A) ~ N |yal + S(a)] v
101/115




Proof of subregion duality

1) HaPPY argument: Choose orientations s.th. ay, > A, by, > B.

Interpretation: Holographic codes are
macroscopic erasure codes built from
microscopic ones (perfect tensors).

2) Decoupling argument: Only need to

prove that I(a":b'B) = 0. roncor
enso
network
=» | Can prove geomefrically since Choi l l
state satisfies Ryu-Takayanagi! v A B ,
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Subregion duality from decoupling

By decoupling, suffices to prove that [I(a:bB) = O] in Choi state:

tensor

network

' i !

A a B

Schematically:

4 I

| ? . If | S(a) = log(d)

A I I I I I I I I I 8 S(bB) = log(D)

S 3 Y S(abB) = log(D)

Assume bulk legs have small dimension d << D.

al

3l
3l + log(d) lal
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Quantum minimal surfaces and islands

What if bulk entropy is not small?

[SZ(A) =~ min { N [y, + S,(a) }] v

"Quantum minimal surface”, minimizes “"generalized entropy”.
Proof using replica trick (additional action from bulk state)!

E.g., if we add highly entangled state between distant bulk
sites, obtain “island” disconnected from boundary.

Holographic counterparts feature crucially in very recent
developments on black hole information paradox that seek
to give a bulk picture of black hole evaporation.

Surprising that the simple RTN model reproduces these features!?
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9. Subregion Duality and
Subsystem Error Correction
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https://arxiv.org/abs/1607.03901

Subregion duality

A a

Let us talk more systematically about the quantum information structure
of subregion duality. Consider an isometry:

b

vV Notation: [pab state > Ppp = vpabV*}

bl
A B

Subsystem error correction: [When can we recover a from A?}

More subtle than what we discussed last lecture. There we had no “b”
system - now p,, can be correlated or entangled!
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Subsystem error correction v

vy
The following conditions are equivalent: A B

/1) There is a channel D,5, such that: [D(pA) = P, for all Pab

2) For all ¢,, exists O, such that: [Vd)a = 0,V and Vo,' = O,

V
3) For all da, and XB: [[cpa, v*x3v1=o]

4) Decoupling: [ I(a:b'B) = 0 ] i.e. [ Qupg = Ay ® Qb'B] /

Aside: 2) allows computing correlation functions - even if we use different
subsystems for each operator: D

[<¢ab $'pe> = <Opg O'ge> ] A 'c

RS 107/115




Proof sketch of equivalence

1) There is a channel Dy, such that:

< Stinespring extension:

[D(pA) = p, for all pabJ

Cad

& Choi state:
\ / a b \
b
A I N
U A Vi O
A3 E B b
v v v wW v
E b’

2) V<|>a - OAV
V¢a+ - OA+

)

> 3)[[90 VXaVI0 |




Complementary recovery v
When can we recover a from A and b from B? Result: :\ ;
Normal form: / vl \
\"
1L -] ]
W || W EF
VY v ¥
\_a E F /
Ryu-Takayanagi formula: S(A) = ¢ + S(a) for all pg,
S(B) = ¢ + S(b) for all p,
The punchline: | RT formula is also sufficient
for subregion duality. 109/115




Bonus: Proof that Ryu-Takayanagi
implies complementary recovery

P &
D <

Assume: [S(A) = ¢ + S(a) for all pab]

Use 181‘ IGW: 1'I"[Ka5pab] - 65(0) = SS(A) - fr[KAspAB] - h’[vaAvapab]

> [V*KAV =c+K, J for modular Hamiltonians K,=-log p,, Ka=-log pa

D(Pallos) = ~trpaKoa] - trlpaKenl = ~tr{pVIKoaV] - tr[p VKoV = .

3> (D(pallo,) = Dip,lIo,) for all py, and o,

Pab = €'%°° Ty @%b / \

Use Petz map to
obtain decoder Dp,

[y V'XaVI=0 |
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Decoding the hologram (using error correction)

This proof of “entanglement wedge” reconstruction
property is nonconstructive & nonrobust

- \

[How to find boundary reconstruction of local bulk operator?

A

Banks et al, Hamilton et al, Kabat et al, Heemskerk et al, Lin et al, FalNkner-Lewkowycz, ...

Recall: Only understood in special cases.

Recent progress in theory of quantum error correction led to robust
proof. More explicit formulas and decoding protocols?

Cotler-...-W, Kitaev-Yoshida, Hayden-Penington
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State dependence

A a

Theorem models situation where minimal surface can be considered fixed
for all states in code subspace (no backreaction).

In general, state-dependent! “Quantum” minimal surface obtained by
minimizing generalized entropy:

[S(A)=min{ 'Zg' + S(a) } J

realized in random tensor network model! V

This form of subregion duality has featured crucially in very recent
research on the black hole information paradox that seeks to give a
bulk picture of black hole evaporation.
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Summary

Whirlwind tour through some key concepts and tools of quantum
information, motivated by applications to QFT and holography:

/S’ra’res, Channels, Entropy h

Entanglement of Pure and Mixed States
Entanglement in Field Theory and Holography
Toy Models of Holography

( Quantum Error Correction and Decoupling )

No time for quantum computing: circuits, algorithms, complexity, .. ®

Slides: https://staff.fnwi.uva.nl/m.walter/
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The road ahead

Tensor networks discretize space, but gravity is about space-time:
dynamics, backreaction, causal sfructure?

Q. information vs geometry: holography in flat space & de Sitter?
superpositions of geometries?

Practical diagnostics for entanglement and correlations
What makes a CFT gravitational?

Continuum limits of states and circuits
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Summary

Holography predicts remarkable connection
between geometry and entanglement

S
\

“I,
Quantum information offers tools, models, mechanisms
.~ from tensor networks to QEC

Ongoing research to exploit connections

Motivation ranges from trying to understand the emergence of

space-fime from quantum mechanics to learning how dualities can

help simulate complex quantum systems on (quantum) computer-...
Thank you for your attention!!!

(And thanks fo Freek!!!) 115/115



