

Quantum Information

Michael Walter

Solvay School 2021, Amsterdam

Seek to leverage laws of QM for information processing...

cryptography communication algorithms networks computation complexity quantum bits Quantum Information error correction entropy entanglement tensor networks quantum simulation

...but also toolbox and language for studying q. many-body systems.

Physics vs Information: Thermodynamics

Boltzmann, Gibbs, ...

Thermodynamics of computation: Cost of erasing a bit?

Most logic gates are irreversible. Is there a fundamental cost to computing? No!

Bennett (1973):

Efficient reversible computing is possible!

Physics vs Information: Computation

Simulating quantum physics difficult for classical computers.

Hilbert space is exponentially large

Why don't we build a quantum computer?

Feynman, Deutsch, ...

Shor's algorithm (1984): quantum computers may offer vast speedups for classical problems

N = pq in time poly(log N)

Google "quantum supremacy" experiment (2019)

Today, quantum simulation still one of most promising applications.

Physics vs Information: Language and Toolbox

Quantum information is different: No cloning, uncertainty principle, Bell violations, entanglement, decoherence, ...

QIT offers language and toolbox to study and exploit these phenomena. Examples:

Uncertainty principle \rightarrow quantum cryptography

Bell violations \rightarrow device-independent control

Entanglement **→** many-body physics

In recent years, exciting research at interface of quantum information with QFT and gravity.

Plan

Goal: Discuss language, toolbox, key concepts of quantum information. Survey applications to holography.

Today: States, Channels, Entropy, Entanglement

Entanglement in Mixed States Entanglement in QFT & Holography

Tue: Toy Models of Holography, Tensor Network Models, Decoupling, Black Holes, Error Correction

Exercises and open problems throughout

Interrupt me!

If too slow (or too fast), please let me know. 🙂

If not detailed enough, please ask. 🙂

1. States, Channels, Entropy

Literature: Lectures Notes "Quantum Information Theory" (https://staff.fnwi.uva.nl/m.walter/qit20/)

pure

Modular Hamiltonian:

$$\left(\kappa_{\rho} = -\log \rho \right)$$

state-dependent, often nonlocal

"First law of entanglement"

 $S(\rho + \delta \rho) = S(\rho) + tr[\delta \rho K_{\rho}] + \dots$

Proof? Homework!

Renyi entropies and replica trick

Von Neumann entropy often difficult to compute \rightarrow Renyi entropies:

$$\left(S_n(\rho) = \frac{1}{1-n} \log tr[\rho^n]\right) = (1-n)^{-1} \log \Sigma_x p_x^n$$

Easy to calculate for integer n>1:

$$\begin{array}{c} tr[\rho^2] = tr[\rho^{\otimes 2} F] & \text{where} & F \mid xy > = \mid yx > & \text{swap trick} \\ \\ tr[\rho^n] = tr[\rho^{\otimes n} C_n] & \text{where} & C_n \mid x_1 x_2 \dots > = \mid x_2 x_3 \dots x_1 > \\ \\ Proof? & \text{Just expand it.} \end{array}$$

Joint systems

Reduced states of global states ρ_{AB} are given by partial trace:

$$\rho_{A} = tr_{B}(\rho_{AB})$$

$$(a|\rho_{A}|a'\rangle = \sum_{b} \langle ab|\rho_{AB}|a'b\rangle$$

$$\Rightarrow \langle O_{A}\rangle_{\rho^{A}}$$

$$= \langle O_{A}\rangle_{\rho^{AB}}$$

Maximally entangled state (Bell/EPR pair):
$$\begin{aligned} |\Phi_{AB}^{+}\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right) \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |00\times1\rangle + |11\times0\rangle + |11\times0\rangle \right) \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |00\times1\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |11\times0\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |11\times0\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |11\times0\rangle + |11\times0\rangle + |11\times0\rangle \right) = \frac{1}{2} \\ \implies S_{AB} &= \frac{1}{2} \left(|00\times00\rangle + |11\times0\rangle +$$

Thus, pure states often have mixed reduced states. Conversely:

Any state ρ_A has a purification $\rho_{AB} = |\Psi_{AB}\rangle\langle\Psi_{AB}|$.

Correlations

We say that a state is correlated if not a product:

In both cases, $\rho_A = \rho_B = I/2$, but $\rho_{AB} \neq I/4$.

How to quantify correlations?

Mutual information

Mutual information:

I(A:B) = S(A) + S(B) - S(AB)

≥ 0 = 0 iff product

I(A:B) = 2 log(d) iff maximally entangled I(A:B) = log(d) if max. classical correlated
$$\begin{split} |\Phi_{AB}^{+}\rangle &= \frac{1}{\sqrt{d}}\sum_{x}|xx\rangle\\ \delta_{AB} &= \frac{1}{d}\sum_{x}|xx\rangle\langle xx| \end{split}$$

Pinsker's inequality bounds correlation functions:

$$\left| \langle O_{\mathsf{A}} O_{\mathsf{B}}' \rangle - \langle O_{\mathsf{A}} \rangle \langle O_{\mathsf{B}}' \rangle \right| \leq \| O_{\mathsf{A}} \| \| O_{\mathsf{B}}' \| \sqrt{2 \ln(2) \ \mathsf{I}(\mathsf{A} : \mathsf{B})}$$

Strong subadditivity (SSA): I(

$$I(A:BC) \ge I(A:B)$$

never more correlated with subsystem

Fundamental, intuitive, difficult to prove.

Quantum channels

What are the most general transformation of quantum states?

$$\rho \longrightarrow ??? \longrightarrow \rho'$$

Quantum channel: Any combination of unitary evolution, partial traces, adding auxiliary systems.

 $\begin{array}{l} \rho \rightarrow \mbox{U}\rho\mbox{U}^{+} \\ \rho \rightarrow \mbox{\rho} \otimes \mbox{\sigma} \\ \rho_{AB} \rightarrow \mbox{\rho}_{A} \end{array}$

Mathematically: Completely positive trace-preserving maps.

Data processing inequality:

 $I(A:B) \ge I(A':B')$

...if $\rho_{A'B'}$ obtained from ρ_{AB} by quantum channels $A \rightarrow A'$, $B \rightarrow B'$.

Homework: Prove this using SSA.

Application: Holevo bound

How many bits can we communicate by sending 1 qubit?

Challenge: Do not know optimal states nor optimal decoder!

... if can decode perfectly. Using the data processing inequality:

$$\mathbf{n} = \mathbf{I}(\mathbf{X} : \mathbf{Y}) \leq \mathbf{I}(\mathbf{X} : \mathbf{B}) = \mathbf{S}(\mathbf{B}) - \sum_{\mathbf{x}} p_{\mathbf{x}} \, \mathbf{S}(\boldsymbol{\rho}(\mathbf{x})) \leq \text{log } \mathbf{2} = \mathbf{1}$$

Homework: Verify this.

1 bit/qubit → no quantum advantage!

2. Entanglement

Literature: Lectures on "Symmetry and Quantum Information" (https://staff.fnwi.uva.nl/m.walter/qit18/)

Entanglement

We say that a state is separable if mixture of product states:

$$\label{eq:rho_AB} \widehat{\rho_{AB}} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)}$$

Motivation: classical correlations ≠ entanglement

Otherwise, the state is called entangled.

Separable states are precisely those that can be created by Local Operations and Classical Communication (LOCC).

That is, to create entanglement need to send quantum systems.

Entanglement in pure states

For pure states, the situation simplifies.

```
|\Psi_{AB}\rangle is entangled if not a product:
|\Psi_{AB}\rangle \neq |\Psi_{A}\rangle \otimes |\Phi_{B}\rangle
```

That is, all correlations in pure states boil down to entanglement.

→ Reduced states have same eigenvalues, entropies, ... and characterize entanglement:

$$|\Psi_{AB}\rangle$$
 product \Leftrightarrow $r = 1$ \Leftrightarrow ρ_{A} pure \Leftrightarrow ρ_{B} pure

 \clubsuit Any two purifications of ρ_A are related by isometry on B

Extensions and Monogamy

Even if ρ_{AB} mixed:

$$\rho_{A} pure \rightarrow \rho_{AB} = \rho_{A} \otimes \rho_{B}$$

Take purification $|\Psi_{ABC}\rangle$ of ρ_{AB} . Since ρ_A pure, $|\Psi_{ABC}\rangle = |\Psi_A\rangle \otimes |\Psi_{BC}\rangle$.

This implies that pure state entanglement is monogamous:

AB pure \rightarrow AB uncorrelated with C

Monogamy: AB and AC cannot both be pure entangled.

In contrast, classical correlations can be arbitrarily shared.

Entanglement entropy

Schmidt decomposition suggests to quantify entanglement by the entropy of reduced states \rightarrow Entanglement entropy:

$$0 \leq S_{E} = S(A) = S(B) \leq \log d_{A} \leq \log d_{B}$$

$$\uparrow$$
product state
maximally entangled

Interpretation: Optimal conversion rate with Bell pairs:

$$\left(|\Psi_{AB}\rangle^{\otimes n} \left< \underline{\text{LOCC}} \right> \left(|00\rangle + |11\rangle \right)^{\otimes S_{E}n} \right)$$

 $n \rightarrow \infty$ copies error $\rightarrow 0$

- → entanglement transformations "reversible"
- \rightarrow Bell pairs = unit of entanglement

 \succ for pure states

Application: Page curve

Suppose a black hole is created from infalling matter and we watch it evaporate.

R = Hawking radiation emitted up to some time B = black hole = later Hawking radiation

A semiclassical calculation suggests entropy of radiation increases until the end. But in a unitary theory, radiation will be pure once BH has evaporated...

Intuitively, early radiation is entangled with black hole, while late radiation is entangled with early radiation.

Application: Page curve

Simplest toy model: Assume that evaporation described by random unitary evolution.

$$|\Psi_{BR}\rangle$$
 = random pure state
 $r = \log d_{B}$

Page theorem: For typical states, S_E = min(b,r) - O(1) almost maximal! $\frac{D+\Gamma}{2}$

It would be more physical to consider a random state in a fixed total energy subspace or a random Hamiltonian evolution. 24/115

Derivation of the Page formula

Idea: Lower-bound average Renyi-2 entropy $S_2(R)$ using swap trick.

Key formula:
$$\Psi^{\otimes 2} = \frac{I + F}{d(d + 1)}$$
 for random $\Psi = |\Psi > \langle \Psi|$

Apply this to $|\Psi\rangle = |\Psi_{BR}\rangle$:

$$\overline{\Psi_{BR}^{\otimes 2}} = \frac{I_{BB} \otimes I_{RR} + F_{BB} \otimes F_{RR}}{d_B d_R (d_B d_R + 1)}$$

$$\implies \overline{S_2(R)} \ge -\log \overline{tr \Psi_R^2} \ge -\log \left(\frac{1}{d_R} + \frac{1}{d_B}\right) \ge \min(b, r) - 1$$

Jensen inequality

Homework: Verify this. 25/115

Entanglement as a resource

What is entanglement good for? Four examples where entanglement enables otherwise impossible capabilities:

1) Superdense coding: communicate 2 bits by sending 1 qubit Holevo bound shows that impossible w/o entanglement

2) Teleportation: communicate 1 qubit by sending 2 bits

3) Violating Bell inequalities: produce non-classical correlations

4) Quantum cryptography: distill a shared secret key

It is also necessary for any quantum computational speedup.

Superdense coding $[q \rightarrow q] + [ebit] \ge 2[c \rightarrow c]$

If Alice and Bob share EPR pair, they can use it to communicate 2 bits by sending 1 qubit! "beating" the Holevo bound!

$$\begin{split} |\Phi_{AB}^{(00)}\rangle &= (|00\rangle + |11\rangle) / \sqrt{2} = (\mathbf{I} \otimes \mathbf{I}) |\Phi_{AB}^{+}\rangle \\ |\Phi_{AB}^{(01)}\rangle &= (|00\rangle - |11\rangle) / \sqrt{2} = (\mathbf{Z} \otimes \mathbf{I}) |\Phi_{AB}^{+}\rangle \\ |\Phi_{AB}^{(10)}\rangle &= (|10\rangle + |01\rangle) / \sqrt{2} = (\mathbf{X} \otimes \mathbf{I}) |\Phi_{AB}^{+}\rangle \\ |\Phi_{AB}^{(11)}\rangle &= (|10\rangle - |01\rangle) / \sqrt{2} = (\mathbf{XZ} \otimes \mathbf{I}) |\Phi_{AB}^{+}\rangle \end{split}$$
 "Bell basis"

4 orthogonal states

created by local operation

Teleportation

 $2[c \rightarrow c] + [ebit] \geq [q \rightarrow q]$

If Alice and Bob share EPR pair, they can use it to communicate 1 qubit by sending 2 bits! #qubit states = ∞!

x, z completely random→ Alice learns nothing!

Why does it work? If outcome x=z=0, post-measurement state:

$$\Phi_{\mathsf{MA}}^{+} = \left(\langle \Phi_{\mathsf{MA}}^{+} | \otimes \mathbf{I}_{\mathsf{B}} \rangle \left(| \Psi_{\mathsf{M}} \rangle \otimes | \Phi_{\mathsf{AB}}^{+} \rangle \right) \\ = \frac{1}{2} \sum_{\mathbf{j}, \mathbf{k}} \left(\langle \mathbf{j} |_{\mathsf{M}} \otimes \langle \mathbf{j} |_{\mathsf{A}} \otimes \mathbf{I}_{\mathsf{B}} \rangle \left(| \Psi_{\mathsf{M}} \rangle \otimes | \mathbf{k} \rangle_{\mathsf{A}} \otimes | \mathbf{k} \rangle_{\mathsf{B}} \right) \\ = \frac{1}{2} \mathbf{I}_{\mathsf{M} \to \mathsf{B}} | \Psi_{\mathsf{M}} \rangle = \frac{1}{2} | \Psi_{\mathsf{B}} \rangle$$

Nonlocal correlations

Clauser-Horne-Shimony-Holt

Local classical strategy: a=a(x), b=b(y)

 $a(0) \oplus b(0) \oplus a(0) \oplus b(1) \oplus a(1) \oplus b(0) \oplus a(1) \oplus b(1) \equiv 0$

→ will get at least one answer wrong:

$$\mathbf{P}_{\mathsf{win}} \leq \frac{3}{4}$$

shared randomness does not help

This is a **Bell inequality** – a bound on classical correlations!

Nonlocality and quantum cryptography

If Alice and Bob share EPR pair, they can do better and achieve

→ can certify entanglement from correlations alone!

Application:In quantum key distribution, Alice and Bob want
to create a key secret from everyone else.

1) Play nonlocal game to ensure that state $|\Phi_{AB}\rangle$ by rigidity 2) Then $|\Psi_{ABE}\rangle = |\Phi_{AB}\rangle \otimes |\Psi_{E}\rangle$ by monogamy

3) Now measure EPR pair to get random secret bit.

Very rough sketch!

3. Entanglement in Mixed States

Literature: Lecture notes "Symmetry and Quantum Information", <u>https://staff.fnwi.uva.nl/m.walter/qit18/</u>

Entanglement in mixed states

Recall that a state is separable if mixture of product states:

$$\label{eq:rho_AB} \begin{split} \rho_{AB} = \sum_i p_i \, \rho_A^{(i)} \otimes \rho_B^{(i)} \end{split}$$

not canonical, typically non-orthogonal 🕏

Bad news: NP-hard to check if ρ_{AB} separable

→ no entanglement measure is faithful <u>and</u> easy to compute

A practical problem – meaningful calculations are difficult.

Similarly, multipartite entanglement.

$$\rho_{AB}$$
 vs purification $|\Psi_{ABC}\rangle$

Bound entanglement

Can create any entangled state by LOCC given enough Bell pairs.

teleportation

$$\begin{array}{c} \mbox{Bad news: Transformation} \\ \mbox{usually irreversible.} \end{array} & |\Psi_{AB}\rangle^{\otimes n} \underbrace{\mbox{Locc}} (|00\rangle + |11\rangle)^{\otimes m} \\ \mbox{conversion rates not equal } \not{2} \end{array}$$

There even exist "bound entangled" states such that no Bell pairs can be obtained from any number of copies!

\rightarrow Zoo of entanglement measures: entanglement cost E_c, distillable entanglement E_D, ...

with different interpretations

Yet there are some practically useful criteria...

PPT criterion

Idea: Necessary for separability \Leftrightarrow sufficient for entanglement

Partial transpose (PT):

$$\langle ab|\rho_{AB} |a'b'\rangle = \langle ab'|\rho_{AB} |a'b\rangle$$

"partial time reverse"

If ρ_{AB} separable then $\rho_{AB}{}^{\Gamma}$ is again a density operator.

$$\rho_{AB} = \sum_{i} p_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \quad \Rightarrow \quad \rho_{AB}^{\Gamma} = \sum_{i} p_{i} \rho_{A}^{(i)} \otimes (\rho_{B}^{(i)})^{T}$$

PPT criterion: ρ_{AB}^{Γ} negative eigenvalues $\rightarrow \rho_{AB}$ entangled

e.g.
$$[\Phi^{+}X\Phi^{+}] = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\Gamma} \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Negativity

Partial transpose has tr=1. Thus, has negative eigenvalues \Leftrightarrow sum of absolute eigenvalues is > 1.

Negativity:
$$N(\rho) = (\Sigma_i |\lambda_i| - 1)/2$$
= 0 for separable
states (but not only)Logarithmic negativity: $E_N(\rho) = \log \Sigma_i |\lambda_i|$ = 0 for separable
states (but not only)

How to calculate?

1) Compute "Renyi negativities" tr
$$(\rho_{AB}^{\Gamma})^{2n}$$
 and let $n \rightarrow 1/2$
2) Use replica trick: tr $(\rho_{AB}^{\Gamma})^{2n} = tr (\rho_{AB}^{\Gamma})^{\otimes 2n} (C_{2n} \otimes C_{2n}^{-1})$

→ Feasible in field theory and holography!

Calabrese-Cardy-Tonni, Kusuki-Kudler-Flam-Ryu, ..., Dong-Qi-W

35/115

Extendibility criterion

Say ρ_{AB} has k-extension if there is state σ on $AB_1...B_k$ with

$$\left[\rho_{AB} = \sigma_{AB_1} = \cdots = \sigma_{AB_k} \right]$$

If ρ_{AB} separable then has k-extension for all k.

$$\rho_{AB} = \sum_{i} p_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \quad \Rightarrow \quad \sigma_{AB_{1} \cdots B_{k}} = \sum_{i} p_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \otimes \ldots \otimes \rho_{B}^{(i)}$$

Conversely, if k-extension then O(1/k) to separable.

Criterion: ρ_{AB} separable \Leftrightarrow has k-extension for all k

→ Entanglement is monogamous also for mixed state!

mare extendible

SEP
Bonus: De Finetti theorem

Suppose that $A_1...A_n$ is permutation-symmetric. Then reduced states are close to mixtures of product states:

De Finetti Theorem:

$$\fbox{} \rho_{A_1\ldots A_k} \approx \int d\sigma \, p(\sigma) \, \sigma^{\otimes k}$$

if $k \ll n$

e.g. |00...0> + |11...1> and any k < n

- \rightarrow another version of monogamy
- ➔ justifies for why in mean field theory it suffices to consider product states

Bonus: Squashed entanglement

While mutual information is not a good entanglement measure, we can construct one using the conditional mutual information:

$$I(A:B|C) = I(A:BC) - I(A:C) = S(AC) + S(BC) - S(ABC) - S(C) \ge 0$$

Squashed entanglement:

$$E_{sq}(A:B) = \frac{1}{2} \min_{\rho_{ABC}} I(A:B|C)$$

Intuition: entanglement = correlations that cannot be shared

Properties:

1)
$$0 \le E_{sq} \le \frac{1}{2} I(A:B) \le \log \min(d_A, d_B)$$

2) For pure states: $E_{sq} = \frac{1}{2} I(A:B) = S_E$
3) Separable $\Leftrightarrow E_{sq} = 0$
4) Monogamy: $E_{sq}(A:B) + E_{sq}(A:C) \le E_{sq}(A:BC)$

Homework: Show all but fin 3. 38/115

4. Entanglement in Field Theory

Literature: Harlow Jerusalem lectures (<u>https://arxiv.org/abs/1409.1231</u>), Headrick lectures (<u>https://arxiv.org/abs/1907.08126</u>) 39/115

Quantum information & field theory

Do quantum information tools apply to quantum field theory?

Challenge: Basic notions such as subsystems, entanglement, entropy, ... more subtle!

Theoretical insights: c-theorem from strong subadditivity, Bekenstein bound from relative entropy, renormalization vs QEC...

Another motivation: Quantum computers can simulate quantum mechanics. Can we simulate QFTs or even quantum gravity...?

 Σ is Cauchy slice if acausal and $D(\Sigma)$ = everything.

Time slice axiom:

$$\Sigma \Leftrightarrow \text{global state} \Leftrightarrow \text{Hilbert space H}$$
$$A \subseteq \Sigma \Leftrightarrow \text{reduced state in } D(A) \Leftrightarrow \text{``H} = H_A \otimes H_B$$

 $D(A) = D(A') \rightarrow \rho_A$ and $\rho_{A'}$ should be unitarily related

Correlations in QFT

Consider e.g. free scalar field with mass m in Minkowski space:

$$H = \int d^{3}x \ \pi(x)^{2} + (\nabla \varphi(x))^{2} + m^{2} \ \varphi(x)^{2} \qquad [\pi(x), \ \varphi(y)] = i\delta^{3}(x-y)$$
Correlation functions: $\langle \varphi(x) \rangle = 0$
UV divergence with Bell pair: $\langle X \rangle = ... = \langle Z \rangle = 0$
 $\langle \varphi(x)\varphi(y) \rangle \propto \begin{bmatrix} |x-y|^{-2} & \text{if } |x-y| \ll \xi \\ exp(-|x-y|/\xi) & \text{if } |x-y| \gg \xi \end{bmatrix}$
 $\xi \sim 1/m \text{ correlation length}$

General form (short-distance power law, long-distance decay) believed to hold in any relativistic QFT. If m=0, decay can be power law. 42/115

Entanglement in QFT

Correlation functions:

$$\begin{array}{c} \langle \varphi(\mathbf{x})\varphi(\mathbf{y})\rangle \propto - \left[\begin{array}{cc} |\mathbf{x}-\mathbf{y}|^{-2} & \text{if } |\mathbf{x}-\mathbf{y}| \ll \xi \\ \approx 0 & \text{if } |\mathbf{x}-\mathbf{y}| \gg \xi \end{array} \right]$$

Thus, might expect that entanglement entropy satisfies an area law:

$$S(A) \propto |\partial A| / \varepsilon^{d-2}$$
 UV cutoff

More generally, might expect that all divergences arise from local integrals over entangling surface ∂A .

That is, assuming $\xi < \infty$. E.g. for CFTs in d=1+1, power law decay leads to $\log(|A|/\varepsilon)$ divergence, as we will discuss momentarily.

Entanglement in QFT

$$\textbf{H} \neq \textbf{H}_{\textbf{A}} \otimes \textbf{H}_{\textbf{B}}$$

Observables in A, B commute, but Hilbert space does not factorize.

cf. divergence across entangling surface

Reduced states not described by density operators
 Entanglement entropies not obviously well-defined

What can be said rigorously?

 \rightarrow algebraic QFT literature, Witten's review

Reeh-Schlieder:

 $(O_A | \Omega_{AB} >)$ dense"

Confusing? No, O_A will **not** be unitary!

Homework: Show that in finite dim any $|\Psi_{AB}\rangle$ can be written as $O_A |\Phi_{AB}^+\rangle$.

Relative entropies & various entanglement measures can be rigorously defined and computed/bounded e.g., still makes sense to distill EPR pairs!

Bisognano–Wichmann: "modular Hamiltonian" of Rindler wedge

Entanglement Entropy in QFT

We will proceed cavalierly since we must anyways regulate entanglement entropy to obtain finite answer.

General strategy: UV regulate and compute universal quantities

coefficient of $log(|A|/\epsilon)$

relative entropy

 $D(\rho || \sigma) = tr \rho (log \rho - log \sigma)$

Intuition: divergences cancel

Euclidean path integrals

Let us consider states that are prepared by Euclidean path integrals. E.g., unnormalized thermal state:

For $\beta \rightarrow \infty$, obtain vacuum state.

path integral on $[0,\beta] \times \Sigma$

→ Reduced state of $A \subseteq \Sigma$:

$$\rho_A = tr_B e^{-\beta H}$$

path integral on plane with half-slit 46/115

Rindler decomposition

Minkowski space-time

Euclidean path integral

Rindler wedges correspond to $A = [0,\infty)$ and $B = (-\infty,0]$.

Lorentz boost generator K acts by rotations in Euclidean signature

$$\rightarrow \rho_A = e^{-2\pi K}$$
 "thermal"

Similarly, Schmidt decomposition:

$$|\Omega_{AB}\rangle = \Sigma_i e^{-\pi\omega_i} |i'\rangle|i\rangle$$
 Homework!

Amusing: If $|\Omega_{AB}\rangle$ were product \rightarrow "firewall" between A:B.

Entanglement entropy and replica trick

Using the replica trick, it is easy to compute Renyi entropies:

$$S_{n}(\rho) = \frac{1}{1-n} \log \frac{tr[\rho^{n}]}{tr[\rho]^{n}} = \frac{1}{1-n} (\log Z_{n} - n \log Z_{1})$$

where $Z_n = tr[\rho^n] = tr[\rho^{\otimes n} C_n]$ is calculated by the following path integral:

 M_n is topologically sphere, compute Z_n from Weyl anomaly.

Alternatively, via 2-point function of twist operators in orbifold CFT:

$$\mathsf{Z}_{n} = \big\langle \sigma_{+}(z_{1})\sigma_{-}(z_{2}) \big\rangle_{\mathrm{CFT}^{n}/\mathbb{Z}_{n}}$$

49/115

Application: c-theorem Casini-Huerta

Can use entanglement entropy to construct RG monotone and re-prove c-theorem.

Suppose we deform "UV CFT" by relevant operator. Then:

$$S(L \ll \xi) = \frac{C_{UV}}{3} \log \frac{L}{\varepsilon}$$
$$S(L \gg \xi) = \frac{C_{IR}}{3} \log \frac{L}{\varepsilon'}$$

Claim: c(L) = 3 L dS/dL interpolates c_{UV} , c_{IR} and decreases with L.

Key idea: Use strong subadditivity S(AB) + S(BC) ≥ S(ABC) + S(B). Here:

$$S(\mathbf{x}) + S(\mathbf{y}) \ge S(\mathbf{L}') + S(\mathbf{L})$$
$$= 2S(\sqrt{\mathbf{L}\mathbf{L}'})$$

Choose $L'=L+\delta \rightarrow d^2.../d\delta^2 \propto -dc/dL \geq 0$

c_{UV} ≥ c_{IR}

5. Entanglement in Holography

Literature: Headrick lectures (https://arxiv.org/abs/1907.08126)

Black holes and quantum information

Black holes have a thermodynamic temperature and entropy. This entropy is proportional to the area of the event horizon:

$$S_{BH} = \frac{Area}{4G}$$
Bekenstein
Hawking

Surprising! Further puzzles arise when we try to quantize: Hawking radiation, information paradox(es), ...

A theory of quantum gravity ought to give microscopic explanations.

Holographic principle and practice

Holographic principle: Can all information in a region of space be represented as "hologram" living on boundary?

Susskind `t Hooft

AdS/CFT duality: Realization in Anti-de Sitter space

Maldacena

Controlled setup to study quantum gravity; including black holes, wormholes, ...

What can we learn by applying the QI toolkit?

AdS/CFT Dictionary

(string) gravity theory

Symmetries \checkmark

Partition functions:

$$Z_{CFT} = Z_{string}$$

"Extrapolate dictionary":

$$O(X) = \lim_{r \to \infty} r^{\Delta} \phi(r, X)$$

 \rightarrow can compute CFT correlation functions:

$$\int \mathbf{D}\boldsymbol{\varphi} \, \boldsymbol{e}^{\mathrm{i} S_{\mathrm{eff}}} \, \boldsymbol{O}_1 \cdots \boldsymbol{O}_n = \langle \boldsymbol{O}_1 \cdots \boldsymbol{O}_n \rangle_{\mathrm{CFT}}$$

What is the bulk dual of entanglement entropy?

Ryu–Takayanagi formula

Ryu-Takayanagi (RT): For static space-times, boundary entropies are computed by area of bulk minimal surface homologous to A:

$$S(A) = \min \frac{|\gamma_A|}{4G} + \dots$$

Entanglement 🗇 Geometry

Example: AdS₃

 \checkmark

CFT vacuum state $|\Omega\rangle$ is dual to AdS₃ bulk:

Pure state:
$$S(\Sigma) = 0$$
, $S(A) = S(A^c)$

time slice

For an interval of length L, recover <u>Cardy formula</u>:

Poincaré coordinates

$$ds^2 = \ell^2/z^2 (dx^2+dz^2-dt^2)$$

Z
cutoff ϵ -

 $|\delta_A| = 2\ell \log(L/\epsilon)$

$$\mathbf{S}(\mathbf{L}) = \mathbf{c}/\mathbf{3} \log(\mathbf{L}/\mathbf{\varepsilon}) \int \mathbf{v}$$

Homework: Verify this.

minimal geodesics = coordinate semicircles

Example: Multiple subsystems

Two boundary subsystems:

Example: BTZ black hole $T = 2\pi r_s$

BTZ₃ black hole solution is dual to CFT₂ thermal state ρ_{β} :

Phase transition in entanglement entropy:

Entanglement shadow: minimal geodesics don't reach all the way to r_{+} . 58/115

Example: Thermofield double

$$|TFD_{\beta}\rangle = 1/Z \Sigma_{E} e^{-\beta E/2} |E'\rangle|E\rangle$$

Thermofield double state is purification of thermal state to two CFTs. Bulk dual: Two-sided black hole in static asymptotic AdS space-time.

Why should Ryu-Takayanagi hold?

Intuitive generalization of Bekenstein-Hawking formula.

Matches CFT calculations. \checkmark

Proved under plausible assumptions. \checkmark Lewkowycz-Maldacena

Satisfies many nontrivial consistency checks. For example, easy to verify strong subadditivity:

However, we can prove "too much"...

Holographic entropy laws

Ryu-Takayanagi formula satisfies **non-standard** entropy inequalities. These are constraints for CFTs to have a gravity dual!

Hayden-Headrick-Maloney

Does not hold general states – not even for all probability distributions. Correlations are not monogamous!

 \rightarrow excludes plausible states such as

$$\sum_{n} e^{-\beta E_{n}/2} |n\rangle |n\rangle |n\rangle \neq$$

 \rightarrow can be used to witness multipartite correlations

`=" for bipartite correlated states ρ_{AB} \otimes ρ_{AC} \otimes ρ_{BC}

Bao-...-Ooguri-W

How to prove holographic entropy inequalities?

 $S(AB) + S(BC) \ge S(B) + S(ABC)$

General method that abstracts inclusion/exclusion reasoning:

"Homology regions" for LHS minimal surfaces partition bulk into 2^{LHS} regions. \rightarrow Hypercube:

vertices = bulk regions

edges = surfaces between regions

→ use subsets of hypercube to define homology regions for RHS surfaces not necessarily minimal

Homework: Work out details.

If each edge cut at most once: Entropy inequality is valid!

Hypercube proof of monogamy inequality

To illustrate the method, let us prove the "monogamy inequality", which expands to:

 $S(AB) + S(BC) + S(AC) \ge S(A) + S(B) + S(C) + S(ABC)$

Infinitely many holographic entropy inequalities can so be proved. How to organize systematically?

Holographic entropy cones

Bao-...-Ooguri-W

For fixed number of subsystems, consider all possible entropy vectors:

$$C_n = \{(S_{RT}(A_1), ..., S_{RT}(A_1A_2...A_n)\}$$

arbitrary geometries allowed!

This is a polyhedral convex cone – the holographic entropy cone.

faces: entropy inequalities such as $S(A) + S(B) \ge S(AB)$

rays: entropy vectors that cannot be written as mixture of others. represented by "extremal geometries".

can these be identified with microscopic building blocks??

Constraints from entropy inequalities

Can also go the other way and exploit known entropy inequalities to derive gravitational constraints. E.g., using relative entropy:

Perturb around vacuum state:

1st order: linearized Einstein equations 2nd order: positive energy inequalities

Faulkner et al

Lin et al, Lashkari et al

e.g.
$$\int T_{00} \sqrt{g} \ge 0$$

Much more to be said about holographic entropies (monotonicity of relative entropy, Freedman-Headrick bit threads, ...)

Generalizations

Entropy of bulk fields in region enclosed by RT surface contribute O(1) corrections to entropy:

$$S(A) = \frac{|\gamma_A|}{4G} + S(a)$$

Faulkner-Lewkowycz-Maldacena

better: minimize joint expression ("generalized entropy") Engelhardt-Wall, ...

RT holds in static situations (more generally, in time-reflection symmetric situations). In general, consider extremal area codimension–2 spacelike bulk surfaces. Hubeny-Rangamani–Takayanagi (HRT)

Equivalently, Wall's maximin procedure: $S(A) = \max_{\Sigma} \min_{\gamma A} \frac{|\gamma_A|}{4G}$

66/115

6. Toy Models of Holography

Literature: Harlow TASI lectures (https://arxiv.org/abs/1802.01040)

Holography is mysterious...

1) "Extrapolate" dictionary:
$$r^{\Delta} \varphi(X, r) \xrightarrow{r \to \infty} O(X)$$

A puzzle:
$$[\phi(y), O(X)] = 0$$
 !?

2) Ryu-Takayanagi with bulk corrections:

$$S(A) = \min \frac{|\gamma_A|}{4G} + S(a)$$

68/115

3) Bulk reconstruction problem: Every bulk operator should be dual to some boundary operator.

$$\phi(\mathbf{x}) \stackrel{!?}{=} \int O(\mathbf{X}) \mathbf{K}(\mathbf{X}|\mathbf{x}) d\mathbf{X}$$

Why do we care? Extrapolate dictionary insufficient if want to study processes behind horizons, understand bulk locality.

Subregion duality

Subregion duality:

Can write any bulk operator in a as boundary operator in A!

Proved using QI tools.

Dong-Harlow-Wall, Cotler-...-W

Not known how to do <u>explicitly</u> in most tantalizing situations:

Only when A = everything or $\phi(x)$ in (smaller) causal wedge of A.

→ Hamilton-Kabat-Lifschytz-Lowe, Banks et al, Heemskerk et al, ..., Harlow TASI

Holography is mysterious

Subregion duality leads to another puzzle:

$$\Phi = O_{AB} = O_{AC} = O_{BC}$$

no common support \checkmark AB \cap AC \cap BC = \emptyset

70/115

Resolution: Only "few" states correspond to any particular semiclassical bulk description.

" $[\phi(y),O(X)]=0$ " or " $O=\phi$ " only hold (make sense!) on small subspaces of CFT Hilbert space, known as "code subspaces"

Plan: Discuss toy models that reproduce 1)–3) and resolve puzzles by simple QI mechanisms.

Three-Qutrit code

$$C^{3} \rightarrow C^{3} \otimes C^{3} \otimes C^{3}$$

$$V|\mathbf{i}\rangle = |\mathbf{\tilde{i}}\rangle = \frac{1}{\sqrt{3}} \sum_{\mathbf{j}=0}^{2} |\mathbf{j}, \mathbf{j} + \mathbf{i}, \mathbf{j} - \mathbf{i}\rangle$$

"bulk EFT"

encodes 3-dim in 27-dim space

states ρ are encoded by $\tilde{\rho}_{ABC} = V \rho V^{\dagger}$ operators ϕ are encoded by $\tilde{\phi}_{ABC} = V \phi V^{\dagger}$

$$\boldsymbol{\Phi} \cdots \rangle_{\boldsymbol{\rho}} = \big\langle \widetilde{\boldsymbol{\Phi}} \cdots \big\rangle_{\widetilde{\boldsymbol{\rho}}}$$

$$V|i\rangle = \big(\mathbf{I}_{\mathsf{A}}\otimes\mathsf{U}_{\mathsf{BC}}\big)\big(|\Phi_{\mathsf{AB}}^{+}\rangle\otimes|i_{\mathsf{C}}\rangle\big)$$

where $U_{BC}|j,i\rangle = |j+i,j-i\rangle$

Three-Qutrit code

This has remarkable consequences:

Ryu-Takayanagi:

$$S(A) = log(3)$$

$$S(AB) = log(3) + S(p)$$

= S(B) = S(C)= S(AC) = S(BC)

Subregion duality: can decode ρ from BC alone!

"erasure code": can correct for loss of single qutrit!

Heisenberg picture:

$$O_{BC} = U_{BC} (I \otimes \varphi) U_{BC}^{\dagger}$$

$$O_{BC} V = V \phi, \ O_{BC}^{\dagger} V = V \phi$$
$$"O_{BC} = \phi"$$
$$72/115$$

➔ resolves second puzzle!
Three-Qutrit code

Similarly, if ϕ is <u>any</u> bulk and O_A <u>any</u> boundary operator on A:

$$\langle \tilde{i} | \left[O_A, \tilde{\Phi}_{ABC} \right] | \tilde{j} \rangle = \langle \tilde{i} | \left[O_A, O_{BC} \right] | \tilde{j} \rangle = 0 \qquad \text{``}[\Phi(x), O(Y)] = 0''$$

→ resolves first puzzle!

Quantum error correction plays important role in recent research in holography (emergence of bulk locality, black hole information paradox, ...)

Verlinde², Almheiri-Dong-Harlow, ...

7. Error Correction, Decoupling, and Black Holes

Recall: Quantum channels

Quantum channel: Any combination of unitary evolution, partial traces, adding auxiliary systems.

 $\begin{array}{c} \rho \rightarrow \text{U}\rho\text{U}^{\dagger} \\ \rho \rightarrow \rho \otimes \sigma \\ \rho_{\text{AB}} \rightarrow \rho_{\text{A}} \end{array}$

Equivalently, any map that sends states $\rho_{AR} \rightarrow$ states ρ_{BR} .

$$\rho_{BR} = (T \otimes id)(\rho_{AR})$$

completely positive & tracepreserving (CPTP)

Examples: Basis measurement: $M(\rho) = \sum_{x} \langle x | \rho | x \rangle \langle x |$

Depolarizing noise: $D_p(\rho) = p\rho + (1-p)I/d$

Homework: Check this.

Tools for quantum channels

Choi state: characterizes channel completely!

$$\Omega_{A'B} = (id \otimes T)(\Phi_{A'A}^{+})$$

Stinespring extension: Isometry V such that:

$$T(\rho) = tr_{E}(V\rho V^{\dagger}) \qquad A \longrightarrow V \qquad \longrightarrow B \\ E$$

→ complementary channel:

$$T^{c}(\rho) = tr_{B}(V\rho V^{\dagger})$$

what leaks to environment!

Together: Solve channel problems by (pure) state reasoning!

Example: Basis Measurement

 $M(\rho) = \Sigma_{x} < x|\rho|x > |x > < x|$

$$\begin{split} \widehat{\Omega}_{A'B} &= (\text{id } \otimes \text{ M})(|\Phi^+_{A'A} > < \Phi^+_{A'A}|) = 1/d \ \Sigma_{x,y} (\text{id } \otimes \text{ M})(|xx> < y|) \\ &= 1/d \ \Sigma_{x,y} |x> < y| \otimes \text{ M}(|x> < y|) = 1/d \ \Sigma_{x} |x> < x| \otimes |x> < x| \\ &= 1/d \ \Sigma_{x} |xx> < xx| \end{split}$$

$$(\mathbf{V}|\mathbf{x} = |\mathbf{x}\mathbf{x}) \quad \text{tr}_{E}(\mathbf{V}|\mathbf{x} < \mathbf{y}|\mathbf{V}^{\dagger}) = \text{tr}_{E}(|\mathbf{x}\mathbf{x} < \mathbf{y}\mathbf{y}|) = \delta_{\mathbf{x}\mathbf{y}} |\mathbf{x} < \mathbf{x}| = M(|\mathbf{x} < \mathbf{y}|)$$

 \rightarrow Complementary channel: $M^c = M!$

Homework: Compute Choi + Stinespring for other examples.

Quantum error correction

When building quantum computers, we want to protect against errors (imperfections, noise, decoherence, ...).

To achieve this, redundantly encode "logical" into "physical" qubits:

For example, 3-qutrit code corrects again erasure of any 1 qutrit.

Questions:

When can we in principle correct?
How to correct in practice?

Decoupling criterion

The question: Given a channel $T_{A \rightarrow B}$, when can we reverse it?

Decoupling criterion: Can reverse $T_{A \rightarrow B}$ if and only if the complementary channel $T^{c}_{A \rightarrow E}$ is constant.

- \rightarrow exactly what we found for 3-qutrit code
- → very strong form of "no cloning" statement

If reversible: There exists state $|\chi\rangle$ and isometry W such that:

or $|\Omega_{A'AEF}\rangle = |\Phi^+_{AA'}\rangle \otimes |\chi_{EF}\rangle$ Homework: Prove this.

Teleportation revisited

It is instructive to revisit teleportation from this perspective. Consider channel which performs Bell measurement on $\rho_M \otimes I_A/2$:

This is a **constant channel** since all outcomes are equally likely. By the decoupling criterion, can decode from complementary channel!

First, compute Stinespring extension:

$$U |\Phi^{(xz)}\rangle = |xzxz\rangle$$

Thus, complementary channel looks like teleportation w/o correction:

Decoupling inequality

In information theory, random codes are often almost optimal.

The following result addresses these kind of problems:

Decoupling Inequality: Let ρ_{ABE} state, U_{BE} random. Then: $\int dU_{BE} \| tr_B(U_{BE} \rho_{ABE} U_{BE}^{\dagger}) - \rho_A \otimes I_E/d_E \|_1^2 \leq \frac{d_{AE}}{d_B} 2^{-S_2(\rho)}$

Hayden-Preskill protocol

We again model an evaporating black hole by random unitary. After Page time, assume black hole maximally entangled with old radiation.

Answer:

Little more than size of diary – independent of size of black hole. Black hole after Page time is like a mirror, information comes right out.

Homework: Show this using the decoupling theorem with $B \rightarrow R$, $E \rightarrow B$. $_{82/115}$

Effective interaction only depends on operator sizes.

Bonus: Relative entropy

$$D(\rho ||\sigma) = tr \rho (log \rho - log \sigma) = 0 \text{ iff } \rho = \sigma$$

well-defined in QFT

 \rightarrow S(ρ) = log d - D(ρ ||I/d), I(A:B) = D(ρ_{AB} || $\rho_A \otimes \rho_B$), ...

Pinkser inequality:

$$D(\rho || \sigma) \geq 1/_{2ln2} || \rho - \sigma ||_{1^2}$$

Data processing inequality: $D(\rho || \sigma) \ge D(T(\rho) || T(\sigma)) \rightarrow \text{strong subadditivity}$

"=" \Leftrightarrow can reverse channel on pair of states ρ,σ

How so? Use Petz map:

$$D(\rho) = \sigma^{\frac{1}{2}} T^{\dagger}(T(\sigma)^{-\frac{1}{2}} \rho T(\sigma)^{-\frac{1}{2}}) \sigma^{\frac{1}{2}}$$

84/115

Back to our toy model

$$\mathbf{A} = |\mathbf{i}\rangle = |\mathbf{i}\rangle = \frac{1}{\sqrt{3}}\sum_{j=0}^{2} |\mathbf{j}, \mathbf{j} + \mathbf{i}, \mathbf{j} - \mathbf{i}\rangle$$

Toy model has no geometry – just a single site!

To go beyond, let's focus on the RT formula:

Can we glue together many such states (or codes)?

8. Tensor Network Toy Models

Literature: https://arxiv.org/abs/1503.06237, http://pirsa.org/20110023

Many-body quantum states

Many-body quantum states have exponentially large description

$$\left(|\Psi\rangle = \sum_{i_1,\ldots,i_n} \Psi_{i_1,\ldots,i_n} |i_1,\ldots,i_n\rangle \right)$$

tensor with n indices

In practice: entanglement is local, correlations decay rapidly

 \rightarrow can hope for more efficient description:

e.g. `cat' state $|0...00\rangle + |1...11\rangle$ from $|00\rangle \rightarrow |0\rangle$, $|11\rangle \rightarrow |1\rangle$

Tensor networks as a tool

can even have interpretation as quantum circuits

Powerful theoretical formalism, provides "dual" descriptions of complex phenomena \rightarrow quantum phases, topological order, ...

Computing with tensor networks

Very similar to path integral reasoning:

Can formally obtain tensor networks by trotterizing $e^{-\beta H}$.

What is the role of the network geometry?

Entropy in tensor networks

Entanglement entropy satisfies "Ryu-Takayanagi bound":

N qubits/bond δ_A = minimal cut

In general, the bound is not saturated...

Tantalizing: Picture shows Vidal's MERA tensor network. Used for critical theories, it looks like a time slice of AdS! Swingle

Why does the bound hold?

 $N |y_A|$ many Bell pairs

Thus, the Schmidt rank is at most $2^{N |\lambda A|}$.

→
$$\left[S(A) \leq S_0(A) \leq N |_{\mathcal{Y}_A} \right]$$

NB: Bound saturated if L, R are unitaries (or isometries)!

Holography from tensor networks

Want "exactly solvable" toy models of holographic duality:

Harlow et al, Hayden-...-W

Approach: Define boundary state via tensor network in bulk

simple bulk tensors, e.g. random and large N

→ emergent Ryu-Takayanagi law!

$$S(A) \simeq N |\gamma_A|$$

Mostly works in any geometry. By now, many variations known. 92/115

HaPPY model

Harlow-Pastawski-Preskill-Yoshida

Assume each local tensor is perfect = isometry in all possible directions.

#in ≤ #out

exist! e.g. 3-qutrit code, 5-qubit code, ...

Choose orientations such that $y_A \rightarrow A$, A^c Then: V, W isometries and RT formula holds

Always possible for graphs with "negative curvature" and A "single interval".

© Concrete and intuitive!

How to generalize?

Random tensor model

Choose random bulk tensors of large bond dimension.

→ emergent RT formula

Three interpretations:

- 1. Random tensors \approx perfect
- 2. Entanglement distillation protocol
- 3. Disorder average \rightarrow ferromagnetic spin model

large N \rightarrow low T

Hayden-Nezami-Qi-

Thomas-W-Yang

Derivation of Ryu—Takayanagi law

Arbitrary lattice or graph. Tensors are chosen i.i.d. from Haar measure.

Recall: In any tensor network: $S(A) \leq N |\gamma_A|$.

Strategy: Lower bound $S_2(A)$ using replica trick.

Replica trick for 2^{nd} Rényi $S_2(A) = -\log tr[\rho_A^2]$

 $\left[\left| \underline{\Psi} \right\rangle \right] = \left(\bigotimes_{\langle \mathbf{x}, \mathbf{u} \rangle} \langle \mathbf{x} \mathbf{y} | \right) \left(\bigotimes_{\mathbf{x}} | V_{\mathbf{x}} \rangle \right)$

Replica trick: $(\operatorname{tr} \rho_A^2 = \operatorname{tr} \rho \otimes \rho)F_A$

2nd Rényi entropy $S_2(A) = \log tr[\rho_A^n]$

 $tr[\rho_A^2] \approx partition function of ferromagnetic$ Ising model at 1/T = log(D)

Result:

$$S_2(A) \approx -\log tr[\rho_A^2] \approx \log(D) |\gamma_A|$$

Ryu-Takayanagi formula!

domain wall!

What does it mean?

Random tensor networks (RTN) provide intuitive toy model. Reproduce Ryu-Takayanagi formula (+ much more). Analyzed using replica trick.

Relevance for holography? Ryu-Takayanagi formula is proved similarly. But: Einstein equations **→** nontrivial spectrum!

Is all hope lost? No! Remarkably, RTN match precisely so-called fixed-area states in holography.

Dong-Harlow-Marolf Penington et al

Moreover, general states can be expanded in terms of fixed-area states. Under certain "diagonal approximations", can lift results!

Similarly, random quantum circuit models have recently been studied, exhibit interesting phenomenology. relevant to "quantum supremacy" proposals etc

Bonus: Entanglement of assistance

[Smolin-Verstraete-Winter] [Hayden-Dutil]

Multiparty entanglement distillation: create entanglement between Alice & Bob with help of Charlies by measurements & classical communication.

General mechanism for producing Ryu-Takayanagi from area law state!

Holographic mappings

AdS/CFT is duality between two theories = "dictionary" that maps states & observables. How to incorporate into toy model?

Approach: Define bulk-boundary mapping via tensor network

= combination of both toy models

red legs: bulk degrees black legs: boundary degrees

"logical" bulk states are encoded in "physical" boundary Hilbert space

Toy model of how bulk quantum fields get encoded in boundary CF1J0/115

Holographic codes

If bulks legs have small dimension d << D, obtain error correcting code that satisfies "subregion duality", a key QI feature of AdS/CFT:

Bulk degrees of freedom in a (b) get encoded into A (B)! 🗸

In particular, bulk corrections to entropy:

$$S(A) \approx N |\gamma_A| + S(a) \sqrt{101/115}$$

Proof of subregion duality

1) HaPPY argument: Choose orientations s.th. $ay_A \rightarrow A$, $by_A \rightarrow B$.

Interpretation: Holographic codes are macroscopic erasure codes built from microscopic ones (perfect tensors).

- 2) Decoupling argument: Only need to prove that I(a':b'B) = 0. Why? See later!
- → Can prove geometrically since Choi state satisfies Ryu-Takayanagi!

Subregion duality from decoupling

Schematically:

$$\begin{split} S(a) &= \log(d) |a| \\ S(bB) &= \log(D) |y_A| \\ S(abB) &= \log(D) |y_A| + \log(d) |a| \end{split}$$

Assume bulk legs have small dimension $d \ll D$.

Quantum minimal surfaces and islands

What if bulk entropy is not small?

 $S_2(A) \simeq \min \{ N | \gamma_A | + S_2(a) \}$

"Quantum minimal surface", minimizes "generalized entropy". Proof using replica trick (additional action from bulk state)!

E.g., if we add highly entangled state between distant bulk sites, obtain "island" disconnected from boundary.

Holographic counterparts feature crucially in very recent developments on black hole information paradox that seek to give a bulk picture of black hole evaporation.

Surprising that the simple RTN model reproduces these features!?

Penington Almheira et al

b

9. Subregion Duality and Subsystem Error Correction

Literature: https://arxiv.org/abs/1607.03901

Subregion duality

Let us talk more systematically about the quantum information structure of subregion duality. Consider an isometry:

Subsystem error correction:

When can we recover a from A?

More subtle than what we discussed last lecture. There we had no "b" system – now ρ_{ab} can be correlated or entangled!

Subsystem error correction

The following conditions are <u>equivalent</u>:

Aside: 2) allows computing correlation functions – even if we use different subsystems for each operator: \square

$$(\langle \Phi_{ab} \Phi'_{bc} \rangle = \langle O_{AB} O'_{BC} \rangle)$$

B

Proof sketch of equivalence

1) There is a channel $D_{A \rightarrow a}$ such that:

$$D(\rho_A) = \rho_a$$
 for all ρ_{ab}

 \Leftrightarrow Stinespring extension:

⇔ Choi state:

Complementary recovery

When can we recover a from A <u>and</u> b from B? Result:

Normal form:

Ryu-Takayanagi formula:

$$c=S_E(\chi)$$

The punchline:

RT formula is also <u>sufficient</u> for subregion duality.

"proof" that latter holds in AdS/CFTi09/115

Bonus: Proof that Ryu–Takayanagi implies complementary recovery

Assume: $(S(A) = c + S(a) \text{ for all } \rho_{ab})$

Use 1st law: $tr[K_a\delta\rho_{ab}] = \delta S(a) = \delta S(A) = tr[K_A\delta\rho_{AB}] = tr[V^{\dagger}K_AV\delta\rho_{ab}]$

V

B

$$D(\rho_A || \sigma_A) = -tr[\rho_A K_{\rho A}] - tr[\rho_A K_{\sigma A}] = -tr[\rho_a V^{\dagger} K_{\rho A} V] - tr[\rho_a V^{\dagger} K_{\sigma A} V] = ...$$

$$\begin{array}{c} \blacktriangleright & D(\rho_{A}||\sigma_{A}) = D(\rho_{a}||\sigma_{a}) \text{ for all } \rho_{ab} \text{ and } \sigma_{ab} \\ \\ \rho_{ab} = e^{i\phi_{bs}} \sigma_{ab} e^{-i\phi_{bs}} \\ \hline & \\ [\phi_{b}, V^{\dagger}X_{A}V]=0 \end{array} \end{array} \qquad \begin{array}{c} \downarrow & \\ Use \text{ Petz map to} \\ obtain \ decoder \ D_{A \rightarrow a} \end{array} \qquad \begin{array}{c} Homework: \text{ Fill} \\ in \ the \ details. \\ 110/115 \end{array}$$

proof. More explicit formulas and decoding protocols?

Cotler-...-W, Kitaev-Yoshida, Hayden-Penington

State dependence

Theorem models situation where minimal surface can be considered fixed for all states in code subspace (no backreaction).

In general, state-dependent! "Quantum" minimal surface obtained by minimizing generalized entropy:

$$S(A) = \min \left\{ \frac{|\gamma_A|}{4G} + S(a) \right\}$$

realized in random tensor network model! \checkmark

This form of subregion duality has featured crucially in very recent research on the black hole information paradox that seeks to give a bulk picture of black hole evaporation.

 \rightarrow Penington, Almheira et al, lectures by Netta?

Summary

Whirlwind tour through some key concepts and tools of quantum information, motivated by applications to QFT and holography:

States, Channels, Entropy

Entanglement of Pure and Mixed States

Entanglement in Field Theory and Holography

Toy Models of Holography

Quantum Error Correction and Decoupling

Page curve

Hayden-Preskill

3-qutrit code

tensor network models

holographic codes

No time for quantum computing: circuits, algorithms, complexity, ... 😕

Slides: <u>https://staff.fnwi.uva.nl/m.walter/</u>

The road ahead

Tensor networks discretize space, but gravity is about space-time: dynamics, backreaction, causal structure?

Q. information vs geometry: holography in flat space & de Sitter? superpositions of geometries?

Practical diagnostics for entanglement and correlations

What makes a CFT gravitational?

Continuum limits of states and circuits

Summary

Holography predicts remarkable connection between geometry and entanglement

Quantum information offers tools, models, mechanisms from tensor networks to QEC

Ongoing research to exploit connections

Motivation ranges from trying to understand the emergence of space-time from quantum mechanics to learning how dualities can help simulate complex quantum systems on (quantum) computer...

Thank you for your attention!!!

(And thanks to Freek!!!)