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Tensor network states
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efficient variational classes & useful theoretical formalism

ground states of quantum phases RG circuits
quantum matter topological order

2/22



TeﬂSOr ﬂetWOrk |<IﬂematICS (or: how to choose your corner in Hilbert space)

Fundamental bound on entanglement entropy: —

S(A) < log(D) [yl
where S(A) = —trpa logpa.

Bulk-boundary dualities: lift physics to the
virtual level, e.g.

entanglement Hamiltonian MERA as a RG circult
[Cirac et al] [Evenbly-Vidall

Figures from [Vidal]

Organization of quantum information? Properties of the bulk theory?



Plan for this talk
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Random tensor networks and their curious entanglement . e -
structure. Two Interpretations. P o St

/’f T T \ <\

Bulk-boundary mappings as quantum error correcting
holographic codes.
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Throughout: Glances at the role of tensor network models = ﬁIt from Qubit
In quantum gravity. &7 N e

Quantum F Id G y d nformation
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Random tensor networks
[Hayden-Nezami-Qi-Thomas-W.-Yang]



Random tensor network states bond dimension D
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Random tensor network state on “boundary” of graph

Arbitrary lattice or graph. Tensors are chosen 1.1.d. from Haar measure. 6/22



Entanglement entropy S(A) = —trpalogpa

Entanglement entropy in any tensor network:

N A
o5 . . € S(A) < log(D)|yal
/ PR \,/'\/ g ._r'/ \
"" <8 ,,f-’\’\/ \\ “‘{\\%‘
,==ﬁ?4 —sm TS We will show that this is saturated in random
/'\fiﬂf'& / tensor networks with large bond dimension D:
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‘Minimized area law’ = also known as holographic or
Ryu-Takayanagi entropy formula. Entropies are geometric!
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Calculation of the lower bound ) =( <xy|) (®lvx>)

Lower-bound the Renyi-2 entropy:

S2(A) = —logtr pi
JA

(1) Swap trick:

trpa = tr(p ® p)(Fa ® I3)
3 1 ) R4

(2) Second moment of random tensors:

|vx><vx|®2 x I + Fx
T U
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Interpretation 1: Ising model Sa(A) = —log tr pi

partition sum 1/T ferromagnetic Ising action
Moo DIxL S~ (1. e g !
trpa ~ Za = E e Hog DX 2 (x,y) (1=8xsy))
{sx}

So(A) ~—logZa ~log(D)|yal largeD /lowT

free energy, dominated by minimal energy cfg.

Thus the same Is true for the entanglement entropy.

.- 0(1) if multiple minimal domain walls. Can estimate D, from Ising physics [Onsager]!
Calculation only relied on second moments (2-design). Higher Renyis = higher moments. 9/22



Horodecki-Oppenheim-Wi.], [Smolin-

Interpretation 2: entanglement distillation ™o inen baycer oot

Initial collection of Bell pairs

A& Co —
e — s f @ H @ i)
N 5 ()
/ Y
Bp\ measurement in random basis optimall

merges state w.h.p.

‘Entanglement of assistance”™ How much entanglement can Alice and Bob
distill with help of Charlies, by measuring & classically communicating results?

: 1 n.pn - :
limn oo —EBassist (A" : BY) = min  S{ACp) = minlog(D) [yl
n 1C{1,2,3} YA

General mechanism for producing ‘minimized area law’ from area-law state! 0/



Holographic entropy inequalities S(A)

This entropy formula has rather remarkable properties.

It satisfies many nonstandard entropy inequalities, €.g. [Bao-Nezami-
Ooguri-Stoica-Sully-W.]

I(A : B) I(A : C) < I(A : BC) [Hayden-Headrick-Maloney]

This monogamy inequality does not hold for general states.

Indeed, correlations are not in general monogamous (unlike g. entanglement):

I(A:B) = S(A) + S(B) - S(AB) is the mutual information. It is zero for product states p, ® pg. 11/22



Multipartite entanglement in tensor networks

Does I(A:B) in fact measure entanglement in random tensor networks?
Study tripartite entanglement!

We restrict to stabilizer states. Any tripartite stabilizer state i1s of the form

[Bravyi-Fattal-Gottesman]

bipartite entangled states e

GHZ states
00) ag +11) a5 B2

000) agc +1111) A5

\ pap 1S NoOt entangled
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[[A:B)=2c+g



Multipartite entanglement in random TNs [Nezami-w]

In random stabilizer networks there Is only little tripartite entanglement:

1
> 1(A:C)

C

2

—I(A B) I(B .

# of GHZs > tr (pflgf - classical spin model

Mutual information measures entanglement. Can be read off geometry of network!

Moreover: I(A:B) +1(A:C) < I(A:BC) implies four-partite entanglement.

Generalizes a result of [Smith-Leung] for single stabilizer state. 13/22



MOtlvatl on: QU antum G raVity [Bekenstein-H.]; [Susskind], [t'Hooft]; [Maldacena]

Holographic principle: All information in a region of space can be S B A
represented as a "hologram" living on region’s boundary. BH = 4G N

AdS/CFT duality: conjectural realization

1 ) boundary:
S(A) = —— min |ya]| d-dim CFT
4GN
[Ryu-Takayanagi]

time

Space-time as a tensor network?

. bulk: (d+1)-dim string
[Swingle] (gravity) theory

What Is the basic mechanism? Fine-tuned or typical phenomenon? 14122



Entanglement entropy in AdS/CFT

Typical behavior of tensor networks with large bond dimensions matches
precisely the Ryu-Takayanagi proposal:

S(A) = m min |y A| -

Possible interpretation: Fix Planckian d.o.f. of some area-law bulk quantum
gravity state to typical values

- merges bulk state into boundary state that satisfies Ryu-Takayanagi formula.
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Random tensor networks as
holographic mappings




Bulk-boundary mapping from random tensor networks

Tensor network determines “holographic” mapping:

bulk

b

boundary

bond dimensions Dy, < D

To study properties, highly useful to consider “fictitious” state |wbull<,boundary>.
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Bulk-boundary mapping as a quantum code

Holographic mapping is isometry if S(bulk) = Ny log Dy,

l.e, minimal domain wall cuts off bulk legs

bulk: logical Hilbert space

b

boundary: physical Hilbert space

bond dimensions Dy, < D

Can faithfully map states and operators:  [ba) = V|bp) Of = \/(I)b\/Jr

All correlation functions preserved. Entropy formulas hold exactly (w.h.p.) if we use stabilizers. 18/22



Locality of the quantum code Oy =V, VI

In general, a logical operator ¢ can be realized by various physical operators Oj.

How local can we choose the latter? When can we
implement ¢y, physically by some 0,7

Answer: If supported in “entanglement wedge”, —
the region a enclosed by the minimal cut.

[([a:AQ) =
In AdS/CFT: Long conjectured, recently “proved”. [Dong- Harlow Wa uga a) =

0
educes tq entropwcalculation!
Redundancy in the choice of A. Puzzle? ‘\ ‘ @

Perfect recovery from A iff a completely decoupled from environment (cf. “no cloning”).
Explicit formulas for 0, from recent quantum information results on recovery maps. 19/22



Quantum erasure codes

>

This Is a quantum erasure code, such that quantum information

deeper in bulk 1s better protected against erasures. [Almheiri-Dong-Harlow]

N [0 Example: Three-qutrit erasure code [Cleve, Gottesman, Lo]
] . o .
L= Vi = 013V = 03V = 043V

can correct for loss of any single qutrit
[i+3) X

- Networks built from such “perfect” tensors, holographic codes
[Pastawski, Yoshida, Harlow, Preskill]
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Further ongoing research in tensor networks and g. gravity

W
A r

Tensor networks discretize space. Gravity 1s about space-time! /

Black hole dynamics believed to be chaotic, scrambling quantum
Information. Do there exist ‘incompressible’ circuits?

[Hosur et al]
n Superpositions of geometries, causal structures?
Implications on information processing?

Finding tensor network descriptions of holographic CFT
states, also numerically.

Czech-Evenbly-..-Sully-Vid
[Czech-Evenbly ully |2%7£2



summary

Random tensor networks as a model for studying general mechanism by which
guantum information I1s encoded In tensor networks.
ZA D D,

« entanglement structure dictated by geometry —BR2
e quantum error correcting codes with interesting locality properties \D?/

2
B2

Toy models that reproduce, seek to explain mechanisms behind
some of the striking features of the AdS/CFT correspondence.

e ongoing research, many open guestions

Thank you for your attention
2222



Locality, relative entropy, recovery p=VpVi

Locality follows from preservation of relative entropies: A
S(Palloa) = S(palloa)
“logical distinguishability in a = physical distinguishability in A”
where S(p|lo) = plogp — plogo. [Dong-Harlow-Wall] a
In fact, we can find explicit “recovery map”, even in the approximate case:
Ripal = pa Oa = RI oM [Cotler-Hayden-Salton-Swingle-W.]

Ingredients: Local bulk-boundary channel N[pql = trz [V(pa ® 5 ) V1] & recent results on
monotonicity of relative entropy by [Junge, Renner et al]. 23/22



Typical code states o) = Viby)

What do typical code states (boundary states) look like?

Ising action acquires additional “bulk term”. Result:

S(A) =~ min {log Dlyal + S(a)y, )
A

Result matches precisely the corrections to the Ryu-Takayanagi formula in AdS/CFT
due to entanglement in bulk quantum fields. [Faulkner et al]

Rigorous proof using decoupling technique a la [Dutil-Hayden]. 24.[22



Bulk corrections in AdS/CFT [Faulkner et al]

f ______ ™

S(A) ~min {log Diyal +S(a)y, }

— — — — — — —

minimal geodesics get entanglement in input state
deformed (unless Dy, < D) Induces correlations in code state
(a) (© // \
I(A:B)
T\ Eﬁ\y\A YB ."
;\1\< /EB 5 — I(a . b)ll)b

adding massive amounts of bulk entropy:
, analog of

Random tensor networks match precisely the situation in AdS/CFT.
25/22



