Multiparty entanglement, random codes, and quantum gravity

Michael Walter

Institute for Theoretical Physics, Stanford University
Coogee'17

Outline

- Entanglement in random tensor networks
- Proof ingredients - including some new results on stabilizer states
- Quantum gravity interlude
- Random holographic codes

Ning Bao, Sepehr Nezami, Hirosi Ooguri, Bogdan Stoica, James Sully, MW: The holographic entropy cone (JHEP, 2015)
Patrick Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel Thomas, MW, Zhao Yang:
Holographic duality from random tensor networks (JHEP, 2016)
Sepehr Nezami, MW: Multipartite entanglement in stabilizer tensor networks (arXiv:1608.02595)
Sepehr Nezami, MW: forthcoming

Entanglement distillation with a twist

Alice, Bob, Charlies share a graph of maximally entangled pairs.

$$
\psi_{A B C_{1} \ldots C_{N}}^{\otimes n} \xrightarrow{L O C C} E P R_{A B}^{\otimes m}
$$

Goal: Distill entanglement between Alice and Bob, with help of Charlies.
Optimal rate is entanglement of assistance (Smolin, Verstraete, Winter):
$E_{\text {assist }}(A: B)=$ minimal cut $=$ maximal flow
What if Charlies do not know Alice/Bob assignment?

- Random measurements. Produces a random tensor network!

Entanglement distillation with a twist

Alice, Bob, Charlies share a graph of maximally entangled pairs.

$$
\psi_{A B C_{1} \ldots C_{N}}^{\otimes n} \xrightarrow{L O C C} E P R_{A B}^{\otimes m}
$$

Goal: Distill entanglement between Alice and Bob, with help of Charlies.
Optimal rate is entanglement of assistance (Smolin, Verstraete, Winter):

$$
E_{\text {assist }}(A: B)=\text { minimal cut }=\text { maximal flow }
$$

What if Charlies do not know Alice/Bob assignment?

- Random measurements. Produces a random tensor network!

Entanglement distillation with a twist

Alice, Bob, Charlies share a graph of maximally entangled pairs.

$$
\psi_{A B C_{1} \ldots C_{N}}^{\otimes n} \xrightarrow{L O C C} E P R_{A B}^{\otimes m}
$$

Goal: Distill entanglement between Alice and Bob, with help of Charlies.
Optimal rate is entanglement of assistance (Smolin, Verstraete, Winter):

$$
E_{\text {assist }}(A: B)=\text { minimal cut }=\text { maximal flow }
$$

What if Charlies do not know Alice/Bob assignment?

- Random measurements. Produces a random tensor network!

Entanglement distillation with a twist

Alice, Bob, Charlies share a graph of maximally entangled pairs.

$$
\psi_{A B C_{1} \ldots C_{N}}^{\otimes n} \xrightarrow{L O C C} E P R_{A B}^{\otimes m}
$$

Goal: Distill entanglement between Alice and Bob, with help of Charlies.
Optimal rate is entanglement of assistance (Smolin, Verstraete, Winter):

$$
E_{\text {assist }}(A: B)=\text { minimal cut }=\text { maximal flow }
$$

What if Charlies do not know Alice/Bob assignment?

- Random measurements. Produces a random tensor network!

The random tensor network model

Given a graph $G=(V, E)$ and bond dimension 2^{N}, we consider

$$
|\Psi\rangle=\left(\bigotimes_{\langle x y\rangle \in E}\langle x y|\right)\left(\bigotimes_{x \in V}\left|V_{x}\right\rangle\right)
$$

- $\left|V_{x}\right\rangle$ random tensors
- $|x y\rangle=(|00\rangle+|11\rangle)^{\otimes N}$ EPR pairs

We are interested in the behavior for large N.

Prior/related work: Swingle (MERA with expanders), Collins et al (random MPS), Hastings (random MERA)

Bipartite entanglement

Fundamental bound: $S(A) \leq N \min \left|\gamma_{A}\right|$

Result

In random tensor networks: $S(A) \simeq N \min \left|\gamma_{A}\right|$ with high probability

Holographic entropy inequalities

Entropy formula has interesting structural properties.

$$
S(A)=c \min \left|\gamma_{A}\right|
$$

Can be studied systematically via entropy cone formalism:

- many nonstandard entropy inequalities - but finite number for any number of subsystems (with Bao, Nezami, Ooguri, Stoica, Sully)
- can constrain QIT protocols (Czech et al, QIP) - but also theories of quantum gravity (Ooguri, Strings)
- ex.: monogamy of mutual information

$$
I(A: B)+I(A: C) \leq I(A: B C)
$$

is unique additional inequality for three subsystems. But correlations are not in general monogamous - not valid for Shannon, vN entropy.

Holographic entropy inequalities

Entropy formula has interesting structural properties.

$$
S(A)=c \min \left|\gamma_{A}\right|
$$

Can be studied systematically via entropy cone formalism:

- many nonstandard entropy inequalities - but finite number for any number of subsystems (with Bao, Nezami, Ooguri, Stoica, Sully)
- can constrain QIT protocols (Czech et al, QIP) - but also theories of quantum gravity (Ooguri, Strings)
- ex.: monogamy of mutual information

$$
I(A: B)+I(A: C) \leq I(A: B C)
$$

is unique additional inequality for three subsystems. But correlations are not in general monogamous - not valid for Shannon, vN entropy. Does the mutual information in these states measure entanglement?

Stabilizer states

From now on: we use random stabilizer states as the vertex tensors $\left|V_{x}\right\rangle$. Then the tensor network state $|\Psi\rangle$ is also a stabilizer state.

Stabilizer states: Eigenvector of maximal subset of Pauli operators.
Ex: $|G H Z\rangle=|000\rangle+|111\rangle$ is stabilized by $X_{1} X_{2} X_{3}, Z_{1} Z_{2}, Z_{2} Z_{3}$.

- Useful for codes, efficient random constructions (Friday)
- Reason: 2-design, 3-design for qubits
- Tripartite entanglement structure is simple:

$$
I(A: B)=2 c+g
$$

where g is the number of GHZ states.

Tripartite entanglement

Result

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p.

Can distill $\simeq \frac{1}{2} I(A: B)$ EPR pairs by local unitaries.

Tripartite entanglement

Result

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p.

Corollary

Can distill $\simeq \frac{1}{2} I(A: B)$ EPR pairs by local unitaries.

- mutual information is an entanglement measure

Higher-partite entanglement

After distilling bipartite EPR pairs, we obtain residual state:

$$
S(A), \ldots, S(D) \simeq-\frac{1}{2} I_{3}, \quad S(A B), \ldots, S(C D) \simeq-I_{3}
$$

with the tripartite information $I_{3}=I(A: B)+I(A: C)-I(A: B C)$:

- residual state has entropies of perfect tensor
- I_{3} is invariant under distillation: can estimate via Ryu-Takayanagi
- another proof that the mutual info is monogamous
- $I_{3}<0$ diagnoses four-partite entanglement

Higher-partite entanglement

After distilling bipartite EPR pairs, we obtain residual state:

$$
S(A), \ldots, S(D) \simeq-\frac{1}{2} I_{3}, \quad S(A B), \ldots, S(C D) \simeq-I_{3}
$$

with the tripartite information $I_{3}=I(A: B)+I(A: C)-I(A: B C)$:

- residual state has entropies of perfect tensor
- I_{3} is invariant under distillation: can estimate via Ryu-Takayanagi
- another proof that the mutual info is monogamous
- $I_{3}<0$ diagnoses four-partite entanglement

Proof ingredient I: Spin models

Result (Bipartite entanglement)

In random tensor networks: $S(A) \simeq N \min \left|\gamma_{A}\right|$ with high probability
Sketch of proof: Lower-bound $S_{2}(A)=-\log \operatorname{tr} \rho_{A}^{2}$.

- swap trick: $\operatorname{tr} \rho_{A}^{2}=\operatorname{tr} \rho^{\otimes 2}\left(F_{A} \otimes I_{\bar{A}}\right)$
- random tensors: $\mathbb{E}\left[V_{x}^{\otimes 2}\right] \propto I_{x}+F_{x}$

Ferromagnetic Ising model at $T=1 / N$ with mixed boundary conditions:

Proof ingredient I: Spin models

Result (Bipartite entanglement)

In random tensor networks: $S(A) \simeq N \min \left|\gamma_{A}\right|$ with high probability Sketch of proof: Lower-bound $S_{2}(A)=-\log \operatorname{tr} \rho_{A}^{2}$.

- swap trick: $\operatorname{tr} \rho_{A}^{2}=\operatorname{tr} \rho^{\otimes 2}\left(F_{A} \otimes I_{\bar{A}}\right)$
- random tensors: $\mathbb{E}\left[V_{x}^{\otimes 2}\right] \propto I_{x}+F_{x}$

Ferromagnetic Ising model at $T=1 / N$ with mixed boundary conditions:

$$
\mathbb{E}\left[\operatorname{tr} \rho_{A}^{2}\right] \propto Z_{A}=\sum_{\left\{s_{x}\right\}} 2^{-N \sum_{\langle x\rangle\rangle}\left(1-s_{x} s_{y}\right) / 2}
$$

Proof ingredient I: Spin models

Result (Bipartite entanglement)

In random tensor networks: $S(A) \simeq N \min \left|\gamma_{A}\right|$ with high probability
Sketch of proof: Lower-bound $S_{2}(A)=-\log \operatorname{tr} \rho_{A}^{2}$.

- swap trick: $\operatorname{tr} \rho_{A}^{2}=\operatorname{tr} \rho^{\otimes 2}\left(F_{A} \otimes I_{\bar{A}}\right)$
- random tensors: $\mathbb{E}\left[V_{x}^{\otimes 2}\right] \propto I_{x}+F_{x}$

Ferromagnetic Ising model at $T=1 / N$ with mixed boundary conditions:

$$
\mathbb{E}\left[\operatorname{tr} \rho_{A}^{2}\right] \propto Z_{A}=\sum_{\left\{s_{x}\right\}} 2^{-N \sum_{\langle x\rangle\rangle}\left(1-s_{x} s_{y}\right) / 2}
$$

- large N : dominated by minimal domain wall

Useful general technique. More precise estimates from geometry of graph.

Proof ingredient II: Higher moments

Result (Tripartite entanglement)

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p. Sketch of proof: Diagnose via partial transpose:

$$
\# \mathrm{GHZ}=S_{2}(A)+S_{2}(B)+S_{2}(C)-\log \operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}
$$

- random tensors: $\mathbb{E}\left[V_{x}^{\otimes 3}\right] \propto \sum_{\pi \in S_{3}} \pi_{x}$
- ferromagnetic spin model with variables $\pi_{x} \in S_{3}$,
 cyclic boundary conditions
- minimal energy configuration displayed on the right \# GHZ ~ ground state degeneracy
- three-fold degenerate for every

Proof ingredient II: Higher moments

Result (Tripartite entanglement)

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p. Sketch of proof: Diagnose via partial transpose:

$$
\# \mathrm{GHZ}=S_{2}(A)+S_{2}(B)+S_{2}(C)-\log \operatorname{tr}\left(\rho_{A B}^{T_{E}}\right)^{3}
$$

- random tensors: $\mathbb{E}\left[V_{x}^{\otimes 3}\right] \propto \sum_{\pi \in S_{3}} \pi_{x}$
- ferromagnetic spin model with variables $\pi_{x} \in S_{3}$,
 cyclic boundary conditions
- minimal energy configuration displayed on the right
\# GHZ ~ ground state degeneracy
- three-fold degenerate for every residual region (independent of large N)

Third moments of stabilizer states

Fact

$$
\mathbb{E}\left[\psi^{\otimes 3}\right] \propto \sum_{\pi \in S_{3}} r(\pi)^{\otimes N}
$$

where $r(\pi)|\vec{y}\rangle=|\pi \vec{y}\rangle$ is a permutation operator on $\left(\mathbb{C}^{2}\right)^{\otimes 3}$.

For $p=2$, stabilizer states form a 3-design.
For $p>2$, not the case!

Third moments of stabilizer states

Result

$$
\mathbb{E}\left[\psi^{\otimes 3}\right] \propto \sum_{T \in \Sigma_{3}(p)} r(T)^{\otimes N}
$$

where $r(T)=\sum_{(\vec{x}, \vec{y}) \in T}|\vec{x}\rangle\langle\vec{y}|$ is an operator on $\left(\mathbb{C}^{p}\right)^{\otimes 3}$.

- $\Sigma_{3}(p)$: collection of $2 p+2$ many 3-dimensional subspaces $T \subseteq \mathbb{F}_{p}^{3} \oplus \mathbb{F}_{p}^{3}$
- $\pi \in S_{3}$ permutation $\sim T_{\pi}=\{(\pi \vec{y}, \vec{y})\} \in \Sigma_{3}(p)$

Applications:

- spin model for GHZ content
- new 3-designs (e.g., Clifford orbit of non-stabilizer state for qutrits, cf. Friday)

Third moments of stabilizer states

Result

$$
\mathbb{E}\left[\psi^{\otimes 3}\right] \propto \sum_{T \in \Sigma_{3}(p)} r(T)^{\otimes N}
$$

where $r(T)=\sum_{(\vec{x}, \vec{y}) \in T}|\vec{x}\rangle\langle\vec{y}|$ is an operator on $\left(\mathbb{C}^{p}\right)^{\otimes 3}$.

- $\Sigma_{3}(p)$: collection of $2 p+2$ many 3-dimensional subspaces $T \subseteq \mathbb{F}_{p}^{3} \oplus \mathbb{F}_{p}^{3}$
- $\pi \in S_{3}$ permutation $\sim T_{\pi}=\{(\pi \vec{y}, \vec{y})\} \in \Sigma_{3}(p)$

Applications:

- spin model for GHZ content
- new 3-designs (e.g., Clifford orbit of non-stabilizer state for qutrits, cf. Friday)

Result

$$
\mathbb{E}\left[\psi^{\otimes t}\right] \propto \sum_{T \in \Sigma_{t}(p)} r(T)^{\otimes N},
$$

where $r(T)=\sum_{(\vec{x}, \vec{y}) \in T}|\vec{x}\rangle\langle\vec{y}|$ is an operator on $\left(\mathbb{C}^{p}\right)^{\otimes t}$.

- $\Sigma_{t}(p)$: collection of $\prod_{i=0}^{t-2}\left(p^{i}+1\right)$ many t-dimensional subspaces $T \subseteq \mathbb{F}_{p}^{t} \oplus \mathbb{F}_{p}^{t}$
- $\pi \in S_{t}$ permutation $\leadsto T_{\pi}=\{(\pi \vec{y}, \vec{y})\} \in \Sigma_{t}(p)$

In fact: $\left\{r(T)^{\otimes N}\right\}$ are a basis of the commutant of $\left\{U_{\text {Cliff }}^{\otimes t}\right\}$

Aside: GHZ distillation and algebraic complexity theory

 Random tensors are very natural from a tensor network point of view. But our original motivation was distillation!

- entangled pair states are interesting: matrix multiplication tensor
- MaMu $\xrightarrow{\text { SLOCC }} G H Z$ at rate $2 ; \quad G H Z \xrightarrow{\text { SLOCC }} M a M u$ famously unknown
- work by Strassen, ... , Buhrman, Bürgisser, Christandl, Vrana, Zuiddam

How many GHZ states can be distilled in an assisted scenario? Work in progress.

Aside: GHZ distillation and algebraic complexity theory

 Random tensors are very natural from a tensor network point of view. But our original motivation was distillation!

- entangled pair states are interesting: matrix multiplication tensor
- $M a M u \xrightarrow{\text { SLOCC }} G H Z$ at rate $2 ; \quad G H Z \xrightarrow{\text { SLOCC }} M a M u$ famously unknown
- work by Strassen, ... , Buhrman, Bürgisser, Christandl, Vrana, Zuiddam

How many GHZ states can be distilled in an assisted scenario? Work in progress.

And now for something different: Quantum Gravity

Black hole entropy law: $S_{B H} \sim$ area

Holographic principle (Susskind, 't Hooft): All information in a region of space can be represented as a "hologram" living on region's boundary

AdS/CFT duality (Maldacena): quantum gravity in bulk, quantum field theory on boundary

Ryu-Takayanagi formula:
 $S(A) \sim \min \left|\gamma_{A}\right|$

- spacetime as a tensor network? (Swingle)
- entanglement as the glue for spacetime? (Van Raamsdonk)
- "ER = EPR" (Maldacena, Susskind)

And now for something different: Quantum Gravity

Black hole entropy law: $S_{B H} \sim$ area

Holographic principle (Susskind, 't Hooft): All information in a region of space can be represented as a "hologram" living on region's boundary

AdS/CFT duality (Maldacena): quantum gravity in bulk, quantum field theory on boundary

Ryu-Takayanagi formula: $\quad S(A) \sim \min \left|\gamma_{A}\right|$

- spacetime as a tensor network? (Swingle)
> entanglement as the glue for spacetime? (Van Raamsdonk)
- "ER = EPR" (Maldacena, Susskind)

And now for something different: Quantum Gravity

Black hole entropy law: $S_{B H} \sim$ area

Holographic principle (Susskind, 't Hooft): All information in a region of space can be represented as a "hologram" living on region's boundary

AdS/CFT duality (Maldacena): quantum gravity in bulk, quantum field theory on boundary

Ryu-Takayanagi formula: $\quad S(A) \sim \min \left|\gamma_{A}\right|$

- spacetime as a tensor network? (Swingle)
- entanglement as the glue for spacetime? (Van Raamsdonk)
- "ER = EPR" (Maldacena, Susskind)

Quantum gravity and tensor networks

Our random tensor network model provides evidence for this picture:

- shows that Ryu-Takayanagi formula fundamentally compatible with QM
- proposes a simple QIT mechanism

But, wait. AdS/CFT is a duality of physical theories:

- a whole dictionary, mapping states \& observables.

Like in a quantum error correcting code (Almheiri, Dong, Harlow)?!
bulk \rightarrow boundary vs. logical \rightarrow physical

Quantum gravity and tensor networks

Our random tensor network model provides evidence for this picture:

- shows that Ryu-Takayanagi formula fundamentally compatible with QM
- proposes a simple QIT mechanism

But, wait. AdS/CFT is a duality of physical theories:

- a whole dictionary, mapping states \& observables...

Like in a quantum error correcting code (Almheiri, Dong, Harlow)?! bulk \rightarrow boundary vs. logical \rightarrow physical

Random holographic codes

How to obtain codes from a tensor network?

- red legs = logical qudits
- black legs = physical qudits

We obtain a map bulk \rightarrow boundary.

bond dimensions D, D_{b}

Lemma

If $D \gg D_{b}$ then we obtain an isometry and hence a stabilizer code (w.h.p.)

Holographic codes as erasure codes

When can we decode a logical qudit at X from a subset A of the physical qudits?
That is, can we correct for erasure of \bar{A} ?

Result
 \square

- erasure codes with nontrivial geometric structure: the deeper in the bulk, the better protected.
- rigorously realizes holographic codes as proposed by Pastawski et al.

Holographic codes as erasure codes

When can we decode a logical qudit at X from a subset A of the physical qudits?
That is, can we correct for erasure of \bar{A} ?

Result

X can be decoded from A if and only if enclosed by minimal cut γ_{A} (w.h.p.)

- erasure codes with nontrivial geometric structure: the deeper in the bulk, the better protected.
- rigorously realizes holographic codes as proposed by Pastawski et al.

Many open questions: Optimal parameters (size vs. D vs. D_{b})? Precise dependence on graph? Explicit codes?

Holographic codes as erasure codes

When can we decode a logical qudit at X from a subset A of the physical qudits?
That is, can we correct for erasure of \bar{A} ?

Result

X can be decoded from A if and only if enclosed by minimal cut γ_{A} (w.h.p.)

- erasure codes with nontrivial geometric structure: the deeper in the bulk, the better protected.
- rigorously realizes holographic codes as proposed by Pastawski et al.

Many open questions: Optimal parameters (size vs. D vs. D_{b})? Precise dependence on graph? Explicit codes?

Holographic codes as erasure codes

When can we decode a logical qudit at X from a subset A of the physical qudits?
That is, can we correct for erasure of \bar{A} ?

Result

X can be decoded from A if and only if enclosed by minimal cut γ_{A} (w.h.p.)

- erasure codes with nontrivial geometric structure: the deeper in the bulk, the better protected.
- rigorously realizes holographic codes as proposed by Pastawski et al.

Many open questions: Optimal parameters (size vs. D vs. D_{b})? Precise dependence on graph? Explicit codes?

Holographic codes and quantum gravity

Random codes match predictions of quantum gravity (Faulkner et al, Dong et al):

- local qubits in the entanglement wedge E_{A} are encoded in the physical qubits in A
- entropy of code states:

$$
S(A)=N\left|\gamma_{A}\right|+S\left(E_{A}\right)
$$

- logical correlations \sim physical correlations

Beyond codes:

- minimizing cuts get deformed
- toy model of black hole
- cf. recent work by Verlinde

Holographic codes and quantum gravity

Random codes match predictions of quantum gravity (Faulkner et al, Dong et $a /$):

- local qubits in the entanglement wedge E_{A} are encoded in the physical qubits in A
- entropy of code states:

$$
S(A)=\min \left\{N\left|\gamma_{A}\right|+S\left(E_{A}\right)\right\}
$$

- logical correlations \sim physical correlations

Beyond codes:

- minimizing cuts get deformed
- toy model of black hole
- cf. recent work by Verlinde

Summary and outlook

Random tensor networks:

- Bipartite \& multipartite entanglement properties dictated by geometry
- Toy model \& explanation of some structural features of AdS/CFT
- Erasure codes with geometric structure ('holographic' codes)
- Techniques: spin models for random tensor averages; stabilizer states

Outlook:

- What can we do with higher moments of stabilizer states? (\sim Friday)
- QI beyond toy models: design new diagnostics.
- Dynamics, backreaction, superpositions of geometries, ...

Thank you for your attention!

