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Outline

I Entanglement in random tensor networks
I Proof ingredients – including some new results on stabilizer states
I Quantum gravity interlude
I Random holographic codes

Ning Bao, Sepehr Nezami, Hirosi Ooguri, Bogdan Stoica, James Sully, MW: The holographic
entropy cone (JHEP, 2015)
Patrick Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel Thomas, MW, Zhao Yang:
Holographic duality from random tensor networks (JHEP, 2016)
Sepehr Nezami, MW: Multipartite entanglement in stabilizer tensor networks (arXiv:1608.02595)
Sepehr Nezami, MW: forthcoming
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Entanglement distillation with a twist

Alice, Bob, Charlies share a graph of maximally entangled pairs.

ψ⊗n
ABC1...CN

LOCC−→ EPR⊗m
AB

Goal: Distill entanglement between Alice and Bob, with help of Charlies.

Optimal rate is entanglement of assistance (Smolin, Verstraete, Winter):

Eassist(A : B) = minimal cut = maximal flow

What if Charlies do not know Alice/Bob assignment?
I Random measurements. Produces a random tensor network!
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The random tensor network model

Given a graph G = (V ,E ) and bond dimension 2N , we consider

|Ψ〉 =

 ⊗
〈xy〉∈E

〈xy |

⊗
x∈V
|Vx 〉


I |Vx 〉 random tensors
I |xy〉 =

(
|00〉+ |11〉

)⊗N EPR pairs

We are interested in the behavior for large N.

Prior/related work: Swingle (MERA with expanders), Collins et al (random MPS),
Hastings (random MERA)
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Bipartite entanglement

Fundamental bound: S(A) ≤ N min|γA|

Result
In random tensor networks: S(A) ' N min|γA| with high probability
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Holographic entropy inequalities
Entropy formula has interesting structural properties.

S(A) = c min|γA|

Can be studied systematically via entropy cone formalism:

I many nonstandard entropy inequalities – but finite number for any
number of subsystems (with Bao, Nezami, Ooguri, Stoica, Sully)

I can constrain QIT protocols (Czech et al, QIP) – but also theories of
quantum gravity (Ooguri, Strings)

I ex.: monogamy of mutual information

I(A : B) + I(A : C) ≤ I(A : BC)

is unique additional inequality for three subsystems. But correlations
are not in general monogamous – not valid for Shannon, vN entropy.

Does the mutual information in these states measure entanglement?
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Stabilizer states D = 2n

From now on: we use random stabilizer states as the vertex tensors |Vx 〉.
Then the tensor network state |Ψ〉 is also a stabilizer state.

Stabilizer states: Eigenvector of maximal subset of Pauli operators.
Ex: |GHZ〉 = |000〉+ |111〉 is stabilized by X1X2X3, Z1Z2, Z2Z3.

I Useful for codes, efficient random constructions (Friday)
I Reason: 2-design, 3-design for qubits
I Tripartite entanglement structure is simple:

I(A : B) = 2c + g

where g is the number of GHZ states.
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Tripartite entanglement

Result
In random stabilizer network states: #GHZ(A :B :C) = O(1) w.h.p.

Corollary
Can distill ' 1

2 I(A : B) EPR pairs by local unitaries.

I mutual information is an entanglement measure
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Higher-partite entanglement

1
2 I(A : B)

After distilling bipartite EPR pairs, we obtain residual state:

S(A), . . . ,S(D) ' −1
2 I3, S(AB), . . . ,S(CD) ' −I3

with the tripartite information I3 = I(A : B) + I(A : C)− I(A : BC):
I residual state has entropies of perfect tensor
I I3 is invariant under distillation: can estimate via Ryu-Takayanagi
I another proof that the mutual info is monogamous
I I3 < 0 diagnoses four-partite entanglement
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Proof ingredient I: Spin models

Result (Bipartite entanglement)
In random tensor networks: S(A) ' N min|γA| with high probability

Sketch of proof: Lower-bound S2(A) = − log tr ρ2A.

I swap trick: tr ρ2A = tr ρ⊗2(FA ⊗ IĀ)
I random tensors: E[V⊗2x ] ∝ Ix + Fx

Ferromagnetic Ising model at T = 1/N with mixed boundary conditions:

E[tr ρ2A] ∝ ZA =
∑
{sx}

2−N
∑

〈xy〉(1−sx sy )/2

I large N: dominated by minimal domain wall

Useful general technique. More precise estimates from geometry of graph.
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Proof ingredient II: Higher moments D = 2N

Result (Tripartite entanglement)
In random stabilizer network states: #GHZ(A :B :C) = O(1) w.h.p.

Sketch of proof: Diagnose via partial transpose:

# GHZ = S2(A) + S2(B) + S2(C)− log tr(ρTB
AB)3

I random tensors: E[V⊗3x ] ∝
∑
π∈S3 πx

I ferromagnetic spin model with variables πx ∈ S3,
cyclic boundary conditions

I minimal energy configuration displayed on the right

# GHZ ∼ ground state degeneracy

I three-fold degenerate for every residual region (independent of large N)
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Third moments of stabilizer states D = 2N

Fact

E[ψ⊗3] ∝
∑
π∈S3

r(π)⊗N ,

where r(π) |~y〉 = |π~y〉 is a permutation operator on (C2)⊗3.

For p = 2, stabilizer states form a 3-design.
For p > 2, not the case!
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Third moments of stabilizer states D = pN

Result

E[ψ⊗3] ∝
∑

T∈Σ3(p)
r(T )⊗N ,

where r(T ) =
∑

(~x ,~y)∈T |~x〉〈~y | is an operator on (Cp)⊗3.

I Σ3(p): collection of 2p + 2 many
3-dimensional subspaces T ⊆ F3

p ⊕ F3
p

I π ∈ S3 permutation ; Tπ = {(π~y , ~y)} ∈ Σ3(p)

Applications:
I spin model for GHZ content
I new 3-designs (e.g., Clifford orbit of non-stabilizer state for qutrits, cf.

Friday)
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Higher moments of stabilizer states D = pN

Result

E[ψ⊗t ] ∝
∑

T∈Σt (p)
r(T )⊗N ,

where r(T ) =
∑

(~x ,~y)∈T |~x〉〈~y | is an operator on (Cp)⊗t .

I Σt(p): collection of
∏t−2

i=0 (pi + 1) many
t-dimensional subspaces T ⊆ Ft

p ⊕ Ft
p

I π ∈ St permutation ; Tπ = {(π~y , ~y)} ∈ Σt(p)

In fact: {r(T )⊗N} are a basis of the commutant of {U⊗t
Cliff}
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Aside: GHZ distillation and algebraic complexity theory
Random tensors are very natural from a tensor network point of view. But
our original motivation was distillation!

MaMu

I entangled pair states are interesting: matrix multiplication tensor
I MaMu SLOCC→ GHZ at rate 2; GHZ SLOCC→ MaMu famously unknown
I work by Strassen, . . . , Buhrman, Bürgisser, Christandl, Vrana, Zuiddam

How many GHZ states can be distilled in an
assisted scenario? Work in progress.
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And now for something different: Quantum Gravity

Black hole entropy law: SBH ∼ area

Holographic principle (Susskind, ’t Hooft): All information in a region of
space can be represented as a “hologram” living on region’s boundary

AdS/CFT duality (Maldacena): quantum gravity in bulk,
quantum field theory on boundary

Ryu-Takayanagi formula: S(A) ∼ min|γA|

I spacetime as a tensor network? (Swingle)
I entanglement as the glue for spacetime? (Van Raamsdonk)
I “ER = EPR” (Maldacena, Susskind)
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Quantum gravity and tensor networks

Our random tensor network model provides evidence for this picture:

I shows that Ryu-Takayanagi formula fundamentally
compatible with QM

I proposes a simple QIT mechanism

But, wait. AdS/CFT is a duality of physical theories:
I a whole dictionary, mapping states & observables. . .

Like in a quantum error correcting code (Almheiri, Dong, Harlow)?!
bulk → boundary vs. logical → physical
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Random holographic codes

How to obtain codes from a tensor network?

I red legs = logical qudits
I black legs = physical qudits

We obtain a map bulk → boundary .

bond dimensions D, Db

Lemma
If D � Db then we obtain an isometry and hence a stabilizer code (w.h.p.)
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Holographic codes as erasure codes

When can we decode a logical qudit at X from a
subset A of the physical qudits?
That is, can we correct for erasure of Ā?

X

A

Ā

Result
X can be decoded from A if and only if enclosed by minimal cut γA (w.h.p.)

I erasure codes with nontrivial geometric structure: the deeper in the
bulk, the better protected.

I rigorously realizes holographic codes as proposed by Pastawski et al.

Many open questions: Optimal parameters (size vs. D vs. Db)? Precise
dependence on graph? Explicit codes?
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Holographic codes and quantum gravity

Random codes match predictions of quantum gravity (Faulkner et al, Dong
et al):

I local qubits in the entanglement wedge EA are
encoded in the physical qubits in A

I entropy of code states:

S(A) = N|γA|+ S(EA)

I logical correlations ; physical correlations A

EA

γA

Beyond codes:
I minimizing cuts get deformed
I toy model of black hole
I cf. recent work by Verlinde
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Summary and outlook

Random tensor networks:
I Bipartite & multipartite entanglement properties dictated by geometry
I Toy model & explanation of some structural features of AdS/CFT
I Erasure codes with geometric structure (‘holographic’ codes)
I Techniques: spin models for random tensor averages; stabilizer states

Outlook:
I What can we do with higher moments of stabilizer states? (; Friday)
I QI beyond toy models: design new diagnostics.
I Dynamics, backreaction, superpositions of geometries, . . .

Thank you for your attention!
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