Quantum Information and Spacetime

Strings，Vienna， 2022

erc

Quantum Information: Language and Toolbox

Quantum information is different: No cloning, uncertainty principle, Bell violations, entanglement, decoherence, ...

QIT offers language + tools to study and exploit these phenomena. E.g.

$$
\begin{aligned}
\text { Uncertainty principle } \rightarrow \text { quantum cryptography } \\
\text { Bell violations } \rightarrow \text { device-independent control } \\
\text { Entanglement } \rightarrow \text { many-body physics }
\end{aligned}
$$

In recent years, exciting research at interface of quantum information with QFT and gravity.

Quantum information \& field theory

Do quantum information tools apply to quantum field theory?

Challenge: Notions such as subsystems, entropy, approximation, circuits more subtle!
\rightarrow talk by Witten

Why bother?

1. New insights: Bekenstein bound from relative entropy, renormalization as QEC, c-theorem from subadditivity, ...
2. Quantum computers will be useful for simulating q. physics...

Feynman,
Deutsch, ...
Can we simulate QFTs, or even theories of quantum gravity? ${ }_{3 / 35}$

Motivation: Black hole information paradox(es)

Suppose black hole is created from infalling matter and we watch it evaporate. What happens to Hawking radiation?

Paradox: Semiclassical calculation suggests entropy of radiation keeps increasing. But in quantum gravity, pure once fully evaporated!
time
Similarly: If we throw diary into black hole, (when) can we decode it from Hawking radiation?

Many more puzzles: cloning, firewalls, ...

Recent breakthroughs shed new light on these problems in the holographic setting, drawing on quantum information ideas!

Simplest toy model of evaporating black hole

Model: black hole = random unitary time $=$ relative size of radiation subsystem R

pure initial state

Page's theorem: For typical states,

$$
S(R)=\min (|B|,|R|)-O(1)
$$

Discussion:

$|R|$

1. Use randomness to abstract away complicated technical detail.
2. Of course, want to derive results in q. gravity. Yet, toy models may help identify relevant principles + tools: Early radiation entangled with black hole, while late radiation entangled with early radiation.

Similarly, Hayden-Preskill: Black holes after Page time are "information mirrors". Relies on "decoupling principle" to diagnose information recovery.

The general plan

In holography, gravity emerges from complex QM system

Geometry vs Entanglement

Starting point: Entropy in holography

Ryu-Takayanagi's remarkable formula: Boundary (von Neumann) entropies are computed by areas of bulk minimal surfaces.

$$
\underbrace{S(A)=\frac{\left|\gamma_{A}\right|}{4 G}+\ldots}_{\text {Ryu-Takayanagi (RT) law }}
$$

What does it mean?

What do we know?

Entropy in holography is geometrized, implying constraints on either.

Abstract

Headrick et al Infinitely many unusual entropy laws, can Bao-...-Ooguri-W, be organized systematically and interpreted.

However, can also go the other way and exploit known entropy laws to derive gravitational constraints. E.g., using relative entropy:

$$
S(\rho \| \sigma) \geq 0
$$

1st order: linearized Einstein equations 2nd order: positive energy inequalities Faulkner et al, Lin et al, Lashkari et al

Already on the level of entropy, q. information offers new perspectives. More to be said... but why does the RT formula even make sense?

Tensor networks

Tensor network: define many-body state by contracting "local" tensors

$$
|\Psi\rangle=\sum_{i_{1}, \ldots, i_{n}} \Psi_{i_{1}, \ldots, i_{n}}\left|i_{1}, \ldots, i_{n}\right\rangle
$$

e.g.

MPS

> White, Fannes-NachtergaeleWerner, Östlund-Rommer

PEPS

Numerical tool for many-body physics.
Conceptual tool: offers "dual" descriptions of complex phenomena \rightarrow q. phases, topological order... geometry = entanglement pattern!

Computing with tensor networks

Very similar to path integral reasoning:

Similarly for reduced density matrices etc.

Making sense of Ryu-Takayanagi

$$
\underbrace{S(A)=\frac{\left|\gamma_{A}\right|}{4 G}+\ldots}_{\text {Ryu-Takayanagi law }}
$$

Making sense of Ryu-Takayanagi

$$
\underbrace{S(A)=\frac{\left|\gamma_{A}\right|}{4 G}+\ldots}_{\text {Ryu-Takayanagi law }}
$$

Mysterious? Perhaps not! Tensor networks satisfy similar bound:

$$
S(A) \leq N\left|\gamma_{A}\right|
$$

Tantalizing: Picture shows "MERA" tensor network. Used for critical states, looks like time slice of AdS...

Making sense of Ryu-Takayanagi

Mysterious? Perhaps not! Tensor networks satisfy similar bound:
Reason:

$$
S(A) \leq N\left|\gamma_{A}\right|
$$

N qubits per bond
$N\left|\gamma_{A}\right|$ many Bell pairs

Bound saturated if
L, R are isometries!

Holography from tensor networks

This suggest using TNS to define "exactly solvable" toy models:

Harlow et al, Hayden-...-W
Approach: Define boundary state via tensor network in bulk
simple bulk tensors, e.g. random tensors

N qubits per bond

Holography from tensor networks

This suggest using TNS to define "exactly solvable" toy models:

Harlow et al, Hayden-...-W
Approach: Define boundary state via tensor network in bulk
simple bulk tensors, e.g. random tensors

N qubits per bond

Ryu-Takayanagi law emerges for large N!

$$
S(A) \simeq N\left|\gamma_{A}\right|
$$

Three interpretations

1. Random tensors \approx isometric whenever possible

2. Entanglement distillation protocol
3. Replica trick + disorder average
\rightarrow classical ferromagnetic S_{n} spin model $=$ low T
E.g., Renyi-2 entropy => Ising model. Very versatile!

What do we know?

Random tensor networks (RTN) offer versatile toy model where geometry emerges from entanglement. Reproduce Ryu-Takayanagi (+ much more). Easy to analyze using replica trick.

Significance to holography? Match fixed area states (incl. nonperturbative corrections). Point to interesting new effects such as replica symmetry breaking.
Dong-Harlow-Marolf, Penington et al, ..., Dong-Qi-W, ..., Akers et al, Cheng-...-W
Surprisingly, there are also applications beyond gravity:

Similar techniques apply to random quantum circuits.
relevant to "quantum supremacy" proposals, condensed matter theory,

Inspired research on q. circuits for critical systems.
promising for near-term quantum computers Kim-Swingle, ..., Witteveen-W

Dualities as Quantum Codes

Holographic dictionary

Every local bulk operator should be dual to some boundary operator...

Subregion duality:

> Any bulk operator in "entanglement wedge" a can be written as boundary operator in A!
> Dong-Harlow-Wall, cf. Hamilton et al, Banks et al, Heemskerk et al, Cotler-...-W, ..., Harlow TASI, talk by Liu

Holographic dictionary

Every local bulk operator should be dual to some boundary operator...

Subregion duality:

Any bulk operator in "entanglement wedge" a can be written as boundary operator in A!

Leads to a puzzle:

$$
\phi=O_{A B}=O_{A C}=O_{B C}
$$

no common support 4 $A B \cap A C \cap B C=\varnothing$

Resolution: Only few states correspond to any particular bulk. " $\phi=0$ " holds (makes sense!) only on small "code subspaces" of CFT Hilbert space.

Terminology? Redundancy in puzzle

Three-qutrit code
 $$
V|i\rangle=\frac{1}{\sqrt{3}} \sum_{j=0}^{2}|\mathbf{j}, \mathbf{j}+i, \mathbf{j}-i\rangle
$$

"boundary CFT"

Isometry that encodes 3-dim "bulk" into $3^{3}=27$-dim "boundary".

Key observation:

likewise if interchange roles of A, B, C

Subregion duality: can decode from $B C$ alone!
NB: learn nothing from A alone
"Erasure code" that can correct loss of any qutrit!

$$
\begin{aligned}
S(A) & =\log (3) \\
S(B C) & =\log (3)+S(\rho)
\end{aligned}
$$

Holographic codes

How can we combine both toy models of AdS/CFT "dictionary"?

Approach: Define bulk-boundary mapping via tensor network
= glue together many small codes

red legs: bulk degrees black legs: boundary degrees
"logical" bulk states are encoded in "physical" boundary Hilbert space

Entanglement vs Geometry

add link to geometry

input entangled state

Natural ambiguity between geometry and entanglement, realizing Maldacena-Susskind's vision of "ER = EPR".

Locality \& error correction

If bulk legs have small dimension, obtain error correcting code that satisfies "subregion duality":

...for isometries U, V.

Bulk degrees in "entanglement wedge" a encoded in boundary subsystem A.
In particular, bulk corrections to entropy:

$$
S(A) \approx N\left|\gamma_{A}\right|+S(a)
$$

Dong-Harlow-Wall, Faulkner et al, Engelhardt-Wall, ...

Quantum minimal surfaces and islands

T

So far assumed fixed minimal surface in code subspace (no backreaction). In general, have state-dependent "quantum minimal surface" minimizing "generalized entropy":

$$
S(A) \simeq \min \left\{N\left|\gamma_{A}\right|+S(a)\right\}
$$

E.g., if add highly entangled state between distant bulk sites, obtain "island" disconnected from boundary.

Quantum minimal surfaces and islands

1

So far assumed fixed minimal surface in code subspace (no backreaction). In general, have state-dependent "quantum minimal surface" minimizing "generalized entropy":

$$
S(A) \simeq \min \left\{N\left|\gamma_{A}\right|+S(a)\right\}
$$

E.g., if add highly entangled state between distant bulk sites, obtain "island" disconnected from boundary.

More subtle if entanglement not maximal.

These ideas feature crucially in recent breakthroughs on black hole information paradox that give bulk picture of evaporation. Approach: Collect radiation in reservoir and analyze associated quantum extremal surfaces.

What do we know?

Quantum error correction appears to be the correct language to reason about quantum information in holography.

Key ingredient in recent celebrated progress on black hole information paradox.

Penington, Almheiri et al

Holographic codes based on RTN reproduce key features, from $E R=E P R$ to emergence of "islands".

Harlow et al Hayden-...-W

Again, there are surprising applications beyond gravity:

Suggests nonlocal q. computation needs little entanglement.
very surprising if true, implies strong attacks on position-based crypto, ...

Inspired new quantum protocols from bulk physics.
e.g., many-body teleportation inspired by particle moving through wormhole

Bonus: Dynamics, Complexity, and Quantum Protocols (pick one ©)

Complexity = ?

So far, focus on static phenomena. In the last part of this talk will discuss some dynamical aspects. E.g., recall wormhole growth paradox:

In two-sided eternal AdS black hole, volume of wormhole grows for exp. long times, while natural quantities in dual CFT equilibrate rapidly.

Susskind's proposal: Wormhole volume = circuit complexity of bdry state?

Intuition: Dynamics so chaotic that no "shortcuts" in

$$
e^{-i H^{+}}|T F D\rangle=U \cdots U|T F D\rangle=U^{\dagger}|T F D\rangle
$$

\rightarrow many nontrivial investigations, checks, refinements... talks Shira \& Vijay

Complexity vs Pseudorandomness

Some computational complexity-theoretic uneasiness:
Volumes easy to estimate \Leftrightarrow complexity difficult to estimate

\digamma

e.g. pseudorandom ensembles: no efficient algorithm can distinguish them from Haar random (hence from each other), but complexity can vary

In fact, can construct ensembles of states resembling of Shenker-Stanfordlike "shock states", for which complexity=volume thought to apply:
$\cup P_{k} \cup P_{k-1} \cup \ldots \cup P_{1} \cup \mid T F D>$
black box unitary Pauli "shocks"
like a quantum block cipher

Toy model suggests intriguing possibility:
Could AdS/CFT dictionary be exponentially hard to compute?

Holographic teleportation

[Quanta]

Holography allows for traversable wormholes connecting two bulk regions. We can throw in a qubit on the left, it exits on the right....

Boundary: Remarkable "holographic teleportation" protocol between two CFTs: "self-decoding" even though CFT time evolution highly scrambling!

Recent work proposed concrete many-body protocols (using e.g. random unitaries) and general QI mechanism.
 Yoshida-Yao, Brown-...-W, ...

Position-based quantum cryptography

Task: Verify party's spacetime location. Idea:

Party must perform computation with quantum input. Secure by no cloning?!

No! Colluding parties can attack any such scheme if they
Buhrman-Chandran share exponential entanglement (essentially teleportation)!
-..., Beigi-König

Nonlocal computation via holography

More generally, any two-party unitary circuit has nonlocal realization at exponential entanglement cost. Beigi-König

Holography suggests another way: run original unitary circuit in bulk, use dictionary to obtain equivalent nonlocal implementation on boundary.

Conjecture: entanglement ~ complexity
of nonlocal implementation of "original" unitary

Really true? Concrete protocols? Crypto implications?

Summary

Holography offers challenges, puzzles, and paradoxes...
...pushing the boundary of quantum information, which can offer new tools, models, mechanisms.

Ongoing research to exploit connections both ways!
Motivation ranges from trying to understand emergence of spacetime from quantum mechanics to learning how dualities can help simulate complex quantum systems on (quantum) computers...

Thank you for your attention!

