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The Quantum Marginal Problem

» Fix subsets of particles Sy C {1,..., N}.
» For each subset, given a density matrix pg,.

» Are they compatible?

3p1,.,.N: $rse p1,.,N = Ps,
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Spin chain with nearest-neighbor interactions, H =) , hi k41

Eo=min tr Hpy v = min > 4T Ak 1Pkk1
P1,...,N P1,...,.N %

= min Z tr hk,k+1pk,k+1
compatible {pg k1) B

» exponentially large Hilbert space
» reduced optimization to polynomially many variables. ..

» ...if we can solve the Quantum Marginal Problem!
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1. INTRODUCTION

AN the wave function be eliminated from quan-

tum mechanics and its role be taken over, in the
discussion of physical systems, by reduced density
matrices? The author has believed in the affirmative
answer to this question for over ten years. In the
present paper, he attempts to muster the main cur-
rent evidence in support of this belief. Prior to the
Hylleraas Symposium, the available evidence, prob-
ably, would not have convinced the average physi-

terest in the density matrix approach to the N-body
problem stated, “It has frequently been pointed out
that a conventional many-electron wave function
tells us more than we need to know. . . . There is an
instinetive feeling that matters such as electron cor-
relation should show up in the two-particle density
matrix . . . but we still do not know the conditions
that must be satisfied by the density matrix. Until
these conditions have been elucidated, it is

going to
be very difficult to make much progress along these

lines.”



The Quantum Marginal Problem

® Computational complexity:
QMA-complete, thus NP-hard [Liu]

© Partial understanding proved to be immensely useful:
» Pauli principle:
(m) = (a)a;) <1 P

» Entropy inequalities:

S(p12) + S(p23) = S(p123) + S(p2) [Lieb-Ruskai]

These correlations are purely due to the structure of the state
space (kinematic rather than dynamic).



The One-Body Quantum Marginal Problem



Towards the One-Body Quantum Marginal Problem

» Fix non-overlapping subsets of particles Sy N'S; = 0.
» For each subset, given a density matrix pg,.

» Are they compatible with a global state?

3p1,.,N: $rse p1,.,N = Ps,



Towards the One-Body Quantum Marginal Problem

» Given density matrices p1, ..., pn-

» Are they compatible with a global state?

31, Nty g N PN = Pk



Towards the One-Body Quantum Marginal Problem

» Given density matrices p1, ..., pn-

» Are they compatible with a global state?
o1, N8y BN PLLLN = PR

> Yes: p;,. . N =pP1®...® on!



The One-Body Quantum Marginal Problem

» Given density matrices p1, ..., pn-

» Are they compatible with a global pure state?

)y, v by g v WL N = Pk



The One-Body Quantum Marginal Problem

D

» Given density matrices p1, ..., pn-
» Are they compatible with a global pure state?
)y, vty kv VLN = 0k

» Only depends on eigenvalues A = (Ak,1y- -+, Ak,q) of the
density matrices py!



The One-Body Quantum Marginal Problem

Given density matrices py, ..., pn, are theyJ :\/°> i@

compatible with a global pure state |1|)>1,--., N7 \®

» Energy minimum is attained at global pure state.

But does the ground state ever feel these constraints?
Empirically, yes!

» Pauli principle: 0 < (a]Ta,j) <1&0< (lpily) <1/N

» Assuming (a;r a;) = 0,1 leads to the Aufbau principle!

zp T 2 2
2s T
1s fv

[Wikipedia]

See [Klyachko, Schilling—Christandl-Gross] for more recent investigations.

But what are the actual constraints?



Warmup: Two Particles

Schmidt decomposition (singular value decomposition):

W) 45 = Zsj lej) @ 1f;)
J

:}pA:Z|Sj|2|6j><ej| and PB:Z|SJ'|2|fj><fJ'|
g J

Necessary and sufficient: X 4= A B
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Three Qubits

Higuchi, Sudbery, Szulc:

A1 +AB1 <Aci+1 A2,
Aa1+Aci <Api+1
AB1+Aci <Aq1+1 05

A
Proof (variational principle, inclusion/ezclusion):

Aa1+Ap1= max trpald)(dla+trpsld)(dls
>A7¢>B

= \¢§§T£)B trpap (I0)(dla ® Ig + 1o @ 1d)(dlB)

< \¢§§T§>B trpas (Jap + 1d)(Pla @ ) (dl5)

<14 Im>ax trpagld)(dlap =1+Asp1=1+Ac1 O

AB



Solution of the One-Body Quantum Marginal Problem

A= {(XA,XB,XC) compatible}

» Always convex polytope [Kirwan]
» Linear inequalities: [Klyachko, Daftuar—Hayden; Berenstein-Sjamaar]
Z Ar(i)Aa,i + Z be(j)AB,y < Z Co(k)ACk
i g k

algebraic geometry
Schubert calculus

whenever [7t], ® [t], N *[o], #0 € H*.

» Representation theory: [Christandl-Mitchison; Mumford, Brion]

AQ = {((X, B:'Y)/'n : goc,(S,y 2 0}

where gy p, are the Kronecker coefficients.



Quantum Marginals vs. Entanglement



Multi-Particle Entanglement

Bob

P VOY -
-0 .
Alice O _— Charlie

W) apc 1s entangled iff W) 450 # W) 4 @ ) g @ ) ¢

Operational approach:
[b) and |$p) have same type of entanglement

& can be interconverted by some set of operations that do
not create entanglement



Multi-Particle Entanglement

Bob

. ,O‘ -
Alice O _— Charlie

W) apc 1s entangled iff W) 450 # W) 4 @ ) g @ ) ¢

Operational approach:
[b) and |$p) have same type of entanglement

& can be interconverted by stochastic local operations and
classical communication (SLOCC)

& hp) =(A® B® C)|d) for invertible A, B, C [pir-vidal-Cirac]



Three Qubits N=3,d=2

Six classes of entanglement: [Diir-Vidal-Cirac]
|IGHZ) = |000) + [111)
W) = [100) + |010) + |001)
[B1) =10) ® (|00) +[11)), [Bz2), [Bs)
[Sep) = 000)

Larger systems:
» infinitely many classes ®
» exponentially many parameters ®

» not locally accessible ®



Quantum Marginals and Entanglement

Given density matrices p1, ..., pn, are they compatible with a
given class of entanglement?

-

Ae ={(Ra,Ap,Ac) for e € |

Theorem (Walter—Christandl-Doran—Gross)

» Finite hierarchy of convex polytopes!
» Computation via computational tnvariant theory
(difficult)

Proof using results from algebraic geometry [Mumford, Brion, Kempf-Ness];
cf. [Sawicki-Oszmaniec—K1s]



Three Qubits N=3,d=2

Six classes of entanglement: [Diir-Vidal-Cirac]

|IGHZ) = |000) + |111)

W) = |100> +1010) + |001)

[B1) = 10) ® (I00) +[11)), B2, |B3)
) = 1000)

|Sep

Entanglement polytopes:

1




Further Examples

» Four qubits: six non-trivial polytopes

» Bosonic and fermionic systems
http://www.entanglement-polytopes.org

» Genuine multi-particle entanglement:

A2 | As x Age
S:S¢


http://www.entanglement-polytopes.org

Entanglement Criterion

O

(Rarpic)gde = bge |

» efficient, requires only linearly many measurements

» robust against small noise, 1 ~ pure

Cf. geometric complexity theory approach to VP vs. VNP.



Geometric Invariant Theory

Suppose that P is a G-invariant H=ClpClpC
homogeneous polynomial on H G = SL(d) x SL(d) x SL(d)
with P([({)) # 0.



Geometric Invariant Theory

Suppose that P is a G-invariant H=ClpClpC
homogeneous polynomial on H G = SL(d) x SL(d) x SL(d)
with P(fp)) # 0. G0

= G-p)Z0

“
0
Let ') be a vector of minimal length.



Geometric Invariant Theory

Suppose that P is a G-invariant H=ClpClpC
homogeneous polynomial on H G = SL(d) x SL(d) x SL(d)
with P(fp)) # 0. G0

= G-p)Z0

“
0
Let ') be a vector of minimal length. Then

d
0= —|_olle™ - ) * =2 (I X 1)

for all traceless local observables X € g.



Geometric Invariant Theory

Suppose that P is a G-invariant H=ClpClpC
homogeneous polynomial on H G = SL(d) x SL(d) x SL(d)
with P(fp)) # 0. G0

= G-p)Z0

“
0
Let ') be a vector of minimal length. Then

d
0= —|_olle™ - ) * =2 (I X 1)
for all traceless local observables X € g.

Thus [\p’) is locally maximally mixed: A A= A B = XC =1/d



Geometric Invariant Theory

Suppose that P is a G-invariant H=CleClxC?
homogeneous polynomial on H G = SL(d) x SL(d) x SL(d)
with P([p)) # 0. G- )

= G-p)Z0

“
0
Let ') be a vector of minimal length. Then

d
0= —|_olle™ - ) * =2 (I X 1)
for all traceless local observables X € g.

Thus [\p’) is locally maximally mixed: Aa=Ag=Ac=1/d

Invariant Theory & Local Eigenvalues [Kempf-Ness, Klyachko] |




Computing Entanglement Polytopes

Covariant: G-equivariant homogeneous polynomial

Q:H — Vi ?EB

where V;, is an G-irrep with highest weight A.

» Find a finite set of generators @; with highest weights A;
and degree d;.

» Then the entanglement polytope of a class Cy, is given by

Ay = conv {Xl/dz cO;() #£ 0}. J

Simultaneously coarser and finer than polynomial invariants!
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Thanks for your attention!

Walter, Doran, Gross, Christandl, Entanglement Polytopes, Science 340 (6137),
1205-1208 (2013)



