

The Quantum Marginal Problem

Michael Walter \& Matthias Christandl (ETH Zürich)

Berlin, March 2014

The Quantum Marginal Problem

- Fix subsets of particles $S_{k} \subseteq\{1, \ldots, N\}$.
- For each subset, given a density matrix $\rho_{S_{k}}$.
- Are they compatible?

$$
\exists \rho_{1, \ldots, N}: \operatorname{tr}_{S_{k}^{c}} \rho_{1, \ldots, N}=\rho_{S_{k}}
$$

The Quantum Marginal Problem

Spin chain with nearest-neighbor interactions, $H=\sum_{k} h_{k, k+1}$:

$$
\begin{aligned}
E_{0} & =\min _{\rho_{1}, \ldots, N} \operatorname{tr} H \rho_{1, \ldots, N}=\min _{\rho_{1}, \ldots, N} \sum_{k} \operatorname{tr} h_{k, k+1} \rho_{k, k+1} \\
& =\min _{\text {compatible }\left\{\rho_{k, k+1}\right\}} \sum_{k} \operatorname{tr} h_{k, k+1} \rho_{k, k+1}
\end{aligned}
$$

- exponentially large Hilbert space
- reduced optimization to polynomially many variables...
- ... if we can solve the Quantum Marginal Problem!

Quantum Chemistry

Structure of Fermion Density Matrices

A. J. Coleman
Queen's University, Kingston, Ontario, Canada

1. INTRODUCTION

CYAN the wave function be eliminated from quan1 tum mechanics and its role be taken over, in the discussion of physical systems, by reduced density matrices? The author has believed in the affirmative answer to this question for over ten years. In the present paper, he attempts to muster the main current evidence in support of this belief. Prior to the Hylleraas Symposium, the available evidence, probably, would not have convinced the average physi-
terest in the density matrix approach to the N-body problem stated, "It has frequently been pointed out that a conventional many-electron wave function tells us more than we need to know. . . . There is an instinctive feeling that matters such as electron correlation should show up in the two-particle density matrix . . . but we still do not know the conditions that must be satisfied by the density matrix. Until these conditions have been elucidated, it is going to be very difficult to make much progress along these lines."

The Quantum Marginal Problem

(2) Computational complexity:

QMA-complete, thus NP-hard
() Partial understanding proved to be immensely useful:

- Pauli principle:

$$
\left\langle n_{j}\right\rangle=\left\langle a_{j}^{\dagger} a_{j}\right\rangle \leqslant 1
$$

- Entropy inequalities:

$$
S\left(\rho_{12}\right)+S\left(\rho_{23}\right) \geqslant S\left(\rho_{123}\right)+S\left(\rho_{2}\right)
$$

These correlations are purely due to the structure of the state space (kinematic rather than dynamic).

The One-Body Quantum Marginal Problem

Towards the One-Body Quantum Marginal Problem

- Fix non-overlapping subsets of particles $S_{k} \cap S_{l}=\emptyset$.
- For each subset, given a density matrix $\rho_{S_{k}}$.
- Are they compatible with a global state?

$$
\exists \rho_{1, \ldots, N}: \operatorname{tr}_{S_{k}^{c}} \rho_{1, \ldots, N}=\rho_{S_{k}}
$$

Towards the One-Body Quantum Marginal Problem

- Given density matrices $\rho_{1}, \ldots, \rho_{N}$.
- Are they compatible with a global state?

$$
\exists \rho_{1, \ldots, N}: \operatorname{tr}_{1, \ldots, \bar{k}, \ldots, N} \rho_{1, \ldots, N}=\rho_{k}
$$

Towards the One-Body Quantum Marginal Problem

- Given density matrices $\rho_{1}, \ldots, \rho_{N}$.
- Are they compatible with a global state?

$$
\exists \rho_{1, \ldots, N}: \operatorname{tr}_{1, \ldots, \bar{k}, \ldots, N} \rho_{1, \ldots, N}=\rho_{k}
$$

- Yes: $\rho_{1, \ldots, N}=\rho_{1} \otimes \ldots \otimes \rho_{N}$!

The One-Body Quantum Marginal Problem

- Given density matrices $\rho_{1}, \ldots, \rho_{N}$.
- Are they compatible with a global pure state?

$$
\exists|\psi\rangle_{1, \ldots, N}: \operatorname{tr}_{1, \ldots, \tilde{k}, \ldots, N} \psi_{1, \ldots, N}=\rho_{k}
$$

The One-Body Quantum Marginal Problem

- Given density matrices $\rho_{1}, \ldots, \rho_{N}$.
- Are they compatible with a global pure state?

$$
\exists|\psi\rangle_{1, \ldots, N}: \operatorname{tr}_{1, \ldots, \tilde{k}, \ldots, N} \psi_{1, \ldots, N}=\rho_{k}
$$

- Only depends on eigenvalues $\vec{\lambda}_{k}=\left(\lambda_{k, 1}, \ldots, \lambda_{k, d}\right)$ of the density matrices ρ_{k} !

The One-Body Quantum Marginal Problem

Given density matrices $\rho_{1}, \ldots, \rho_{N}$, are they compatible with a global pure state $|\psi\rangle_{1, \ldots, N}$?

- Energy minimum is attained at global pure state.

But does the ground state ever feel these constraints?
Empirically, yes!

- Pauli principle: $0 \leqslant\left\langle a_{j}^{\dagger} a_{j}\right\rangle \leqslant 1 \Leftrightarrow 0 \leqslant\langle j| \rho_{1}|j\rangle \leqslant 1 / N$
- Assuming $\left\langle a_{j}^{\dagger} a_{j}\right\rangle \approx 0,1$ leads to the Aufbau principle!

See [Klyachko, Schilling-Christandl-Gross] for more recent investigations.

But what are the actual constraints?

Warmup: Two Particles

Schmidt decomposition (singular value decomposition):

$$
\begin{gathered}
|\psi\rangle_{A B}=\sum_{j} s_{j}\left|e_{j}\right\rangle \otimes\left|f_{j}\right\rangle \\
\Rightarrow \rho_{A}=\sum_{j}\left|s_{j}\right|^{2}\left|e_{j}\right\rangle\left\langle e_{j}\right| \quad \text { and } \quad \rho_{B}=\sum_{j}\left|s_{j}\right|^{2}\left|f_{j}\right\rangle\left\langle f_{j}\right|
\end{gathered}
$$

Necessary and sufficient: $\vec{\lambda}_{A}=\vec{\lambda}_{B}$

$$
\lambda_{1}^{A} \geq \lambda_{2}^{A}
$$

Three Qubits

$$
N=3, d=2
$$

Higuchi, Sudbery, Szulc:

$$
\begin{aligned}
& \lambda_{A, 1}+\lambda_{B, 1} \leqslant \lambda_{C, 1}+1 \\
& \lambda_{A, 1}+\lambda_{C, 1} \leqslant \lambda_{B, 1}+1 \\
& \lambda_{B, 1}+\lambda_{C, 1} \leqslant \lambda_{A, 1}+1
\end{aligned}
$$

Proof (variational principle, inclusion/exclusion):

$$
\begin{aligned}
\lambda_{A, 1}+\lambda_{B, 1} & =\max _{|\phi\rangle_{A},|\phi\rangle_{B}} \operatorname{tr} \rho_{A}|\phi\rangle\left\langle\left.\phi\right|_{A}+\operatorname{tr} \rho_{B} \mid \phi\right\rangle\left\langle\left.\phi\right|_{B}\right. \\
& =\max _{|\phi\rangle_{A},|\phi\rangle_{B}} \operatorname{tr} \rho_{A B}\left(|\phi\rangle\left\langle\left.\phi\right|_{A} \otimes I_{B}+I_{A} \otimes \mid \phi\right\rangle\left\langle\left.\phi\right|_{B}\right)\right. \\
& \leqslant \max _{|\phi\rangle_{A},|\phi\rangle_{B}} \operatorname{tr} \rho_{A B}\left(I_{A B}+|\phi\rangle\left\langle\left.\phi\right|_{A} \otimes \mid \phi\right\rangle\left\langle\left.\phi\right|_{B}\right)\right. \\
& \leqslant 1+\max _{|\phi\rangle_{A B}} \operatorname{tr} \rho_{A B}|\phi\rangle\left\langle\left.\phi\right|_{A B}=1+\lambda_{A B, 1}=1+\lambda_{C, 1}\right.
\end{aligned}
$$

Solution of the One-Body Quantum Marginal Problem

$$
\Delta=\left\{\left(\vec{\lambda}_{A}, \vec{\lambda}_{B}, \vec{\lambda}_{C}\right) \text { compatible }\right\}
$$

- Always convex polytope [Kirwan]
- Linear inequalities:
[Klyachko, Daftuar-Hayden; Berenstein-Sjamaar]

$$
\sum_{i} a_{\pi(i)} \lambda_{A, i}+\sum_{j} b_{\tau(j)} \lambda_{B, j} \leqslant \sum_{k} c_{\sigma(k)} \lambda_{C, k}
$$

whenever $[\pi]_{a} \otimes[\tau]_{b} \cap \iota^{*}[\sigma]_{c} \neq 0 \in H^{*}$.
algebraic geometry
Schubert calculus

- Representation theory:
[Christandl-Mitchison; Mumford, Brion]

$$
\Delta_{\mathbb{Q}}=\left\{(\alpha, \beta, \gamma) / n: g_{\alpha, \beta, \gamma} \geqslant 0\right\}
$$

where $g_{\alpha, \beta, \gamma}$ are the Kronecker coefficients.

Quantum Marginals vs. Entanglement

Multi-Particle Entanglement

Alice
 Bob

 Charlie

$|\psi\rangle_{A B C}$ is entangled iff $|\psi\rangle_{A B C} \neq|\psi\rangle_{A} \otimes|\psi\rangle_{B} \otimes|\psi\rangle_{C}$.
Operational approach:
$|\psi\rangle$ and $|\phi\rangle$ have same type of entanglement
\Leftrightarrow can be interconverted by some set of operations that do not create entanglement

Multi-Particle Entanglement

Alice
 Bob

 Charlie

$|\psi\rangle_{A B C}$ is entangled iff $|\psi\rangle_{A B C} \neq|\psi\rangle_{A} \otimes|\psi\rangle_{B} \otimes|\psi\rangle_{C}$.
Operational approach:
$|\psi\rangle$ and $|\phi\rangle$ have same type of entanglement
\Leftrightarrow can be interconverted by stochastic local operations and classical communication (SLOCC)
$\Leftrightarrow|\psi\rangle=(A \otimes B \otimes C)|\phi\rangle$ for invertible A, B, C [Dür-Vidal-Cirac]

Three Qubits

$$
N=3, d=2
$$

Six classes of entanglement:

$$
\begin{aligned}
|\mathrm{GHZ}\rangle & =|000\rangle+|111\rangle \\
|\mathrm{W}\rangle & =|100\rangle+|010\rangle+|001\rangle \\
\left|\mathrm{B}_{1}\right\rangle & =|0\rangle \otimes(|00\rangle+|11\rangle), \quad\left|\mathrm{B}_{2}\right\rangle, \quad\left|\mathrm{B}_{3}\right\rangle \\
|\mathrm{Sep}\rangle & =|000\rangle
\end{aligned}
$$

Larger systems:

- infinitely many classes $)^{(-)}$
- exponentially many parameters $)^{(-)}$
- not locally accessible ${ }^{\text {(}}$

Quantum Marginals and Entanglement

Given density matrices $\rho_{1}, \ldots, \rho_{N}$, are they compatible with a given class of entanglement?

$$
\Delta_{\mathcal{C}}=\left\{\left(\vec{\lambda}_{A}, \vec{\lambda}_{B}, \vec{\lambda}_{C}\right) \text { for } \psi \in \overline{\mathcal{C}}\right\}
$$

Theorem (Walter-Christandl-Doran-Gross)

- Finite hierarchy of convex polytopes!
- Computation via computational invariant theory (difficult)

Proof using results from algebraic geometry [Mumford, Brion, Kempf-Ness];
cf. [Sawicki-Oszmaniec-Kús]

Three Qubits

$$
N=3, d=2
$$

Six classes of entanglement:

$$
\begin{aligned}
|\mathrm{GHZ}\rangle & =|000\rangle+|111\rangle \\
|\mathrm{W}\rangle & =|100\rangle+|010\rangle+|001\rangle \\
\left|\mathrm{B}_{1}\right\rangle & =|0\rangle \otimes(|00\rangle+|11\rangle),\left|\mathrm{B}_{2}\right\rangle,\left|\mathrm{B}_{3}\right\rangle \\
|\mathrm{Sep}\rangle & =|000\rangle
\end{aligned}
$$

Entanglement polytopes:

Further Examples

- Four qubits: six non-trivial polytopes

- Bosonic and fermionic systems http://www.entanglement-polytopes.org
- Genuine multi-particle entanglement:

$$
\Delta \supsetneq \bigcup_{S: S^{c}} \Delta_{S} \times \Delta_{S^{c}}
$$

Entanglement Criterion

- efficient, requires only linearly many measurements
- robust against small noise, $\psi \approx$ pure

Cf. geometric complexity theory approach to VP vs. VNP.

Geometric Invariant Theory

Suppose that P is a G-invariant $\quad \mathcal{H}=\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ homogeneous polynomial on \mathcal{H}

$$
G=\operatorname{SL}(d) \times \operatorname{SL}(d) \times \operatorname{SL}(d)
$$ with $P(|\psi\rangle) \neq 0$.

Geometric Invariant Theory

Suppose that P is a G-invariant $\quad \mathcal{H}=\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ homogeneous polynomial on \mathcal{H}

$$
G=\operatorname{SL}(d) \times \operatorname{SL}(d) \times \operatorname{SL}(d)
$$ with $P(|\psi\rangle) \neq 0$.

$$
\Rightarrow \overline{G \cdot|\psi\rangle} \not \supset 0
$$

Let $\left|\psi^{\prime}\right\rangle$ be a vector of minimal length.

Geometric Invariant Theory

Suppose that P is a G-invariant $\quad \mathcal{H}=\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ homogeneous polynomial on \mathcal{H}

$$
G=\operatorname{SL}(d) \times \operatorname{SL}(d) \times \operatorname{SL}(d)
$$ with $P(|\psi\rangle) \neq 0$.

$$
\Rightarrow \overline{G \cdot|\psi\rangle} \not \ni 0
$$

Let $\left|\psi^{\prime}\right\rangle$ be a vector of minimal length. Then

$$
0=\left.\frac{d}{d t}\right|_{=0} \| e^{t X} \cdot\left|\psi^{\prime}\right\rangle \|^{2}=2\left\langle\psi^{\prime}\right| X\left|\psi^{\prime}\right\rangle
$$

for all traceless local observables $X \in \mathfrak{g}$.

Geometric Invariant Theory

Suppose that P is a G-invariant $\quad \mathcal{H}=\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ homogeneous polynomial on \mathcal{H}

$$
G=\operatorname{SL}(d) \times \operatorname{SL}(d) \times \operatorname{SL}(d)
$$ with $P(|\psi\rangle) \neq 0$.

$$
\Rightarrow \overline{G \cdot|\psi\rangle} \nexists 0
$$

Let $\left|\psi^{\prime}\right\rangle$ be a vector of minimal length. Then

$$
0=\left.\frac{d}{d t}\right|_{=0} \| e^{t X} \cdot\left|\psi^{\prime}\right\rangle \|^{2}=2\left\langle\psi^{\prime}\right| X\left|\psi^{\prime}\right\rangle
$$

for all traceless local observables $X \in \mathfrak{g}$.
Thus $\left|\psi^{\prime}\right\rangle$ is locally maximally mixed: $\vec{\lambda}_{A}=\vec{\lambda}_{B}=\vec{\lambda}_{C} \equiv 1 / d$

Geometric Invariant Theory

Suppose that P is a G-invariant $\quad \mathcal{H}=\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ homogeneous polynomial on $\mathcal{H} \quad G=\mathrm{SL}(d) \times \operatorname{SL}(d) \times \operatorname{SL}(d)$ with $P(|\psi\rangle) \neq 0$.

$$
\Rightarrow \overline{G \cdot|\psi\rangle} \nexists 0
$$

Let $\left|\psi^{\prime}\right\rangle$ be a vector of minimal length. Then

$$
0=\left.\frac{d}{d t}\right|_{=0} \| e^{t X} \cdot\left|\psi^{\prime}\right\rangle \|^{2}=2\left\langle\psi^{\prime}\right| X\left|\psi^{\prime}\right\rangle
$$

for all traceless local observables $X \in \mathfrak{g}$.
Thus $\left|\psi^{\prime}\right\rangle$ is locally maximally mixed: $\vec{\lambda}_{A}=\vec{\lambda}_{B}=\vec{\lambda}_{C} \equiv 1 / d$

Computing Entanglement Polytopes

Covariant: G-equivariant homogeneous polynomial

$$
\Phi: \mathcal{H} \rightarrow V_{\lambda}
$$

where V_{λ} is an G-irrep with highest weight λ.

- Find a finite set of generators Φ_{i} with highest weights λ_{i} and degree d_{i}.
- Then the entanglement polytope of a class \mathcal{C}_{ψ} is given by

$$
\Delta_{\psi}=\operatorname{conv}\left\{\vec{\lambda}_{i} / d_{i}: \Phi_{i}(\psi) \neq 0\right\} .
$$

Simultaneously coarser and finer than polynomial invariants!

Alice

Thanks for your attention!

Walter, Doran, Gross, Christandl, Entanglement Polytopes, Science 340 (6137), 1205-1208 (2013)

