

<u>Michael Walter</u>

joint work with Matthias Christandl, Brent Doran (ETH Zürich), and David Gross (Univ. Freiburg)

Multi-Particle Entanglement

How entangled is a given multi-particle quantum state prepared in the laboratory?

Multi-Particle Entanglement

How entangled is a given multi-particle quantum state prepared in the laboratory?

What (if anything) can be said using **local tomography**?

Multi-Particle Entanglement

How entangled is a given multi-particle quantum state prepared in the laboratory?

What (if anything) can be said using **local tomography**?

globally pure

Pure-State Entanglement

A <u>pure state</u> $\rho = |\psi\rangle\langle\psi|$ is entangled if and only if

$$|\psi\rangle \neq |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle$$

Equivalent:

 ρ is unentangled iff all reduced density matrices ρ_k are pure.

Pure-State Entanglement

A <u>pure state</u> $\rho = |\psi\rangle\langle\psi|$ is entangled if and only if

$$|\psi\rangle \neq |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle$$

Equivalent:

can verify using local tomography

 ρ is unentangled iff all reduced density matrices ρ_k are pure.

Two Qubits

Schmidt decomposition

$$\begin{vmatrix} \mathbf{v} \\ |\psi\rangle = \sqrt{\lambda} \ |00\rangle + \sqrt{1-\lambda} \ |11\rangle$$

$$(0.5 \le \lambda \le 1)$$

Two Qubits

Schmidt decomposition

$$|\psi\rangle = \sqrt{\lambda} |00\rangle + \sqrt{1-\lambda} |11\rangle$$

$$\overbrace{\mathbb{C}^2\otimes\mathbb{C}^2}^{\checkmark}$$

 $(0.5 \le \lambda \le 1)$

Schmidt decomposition

$$\begin{vmatrix} \mathbf{v} \\ |\psi\rangle = \sqrt{\lambda} \ |00\rangle + \sqrt{1-\lambda} \ |11\rangle$$

$$\overbrace{\mathbb{C}^2\otimes\mathbb{C}^2}^{\checkmark}$$

 $(0.5 \le \lambda \le 1)$

Two classes

 $\times \sqrt{0.5} \left(|00\rangle + |11\rangle \right)$

can be converted into $\times \sqrt{0.5} (|00\rangle + |11\rangle)$ by local operations and post-selection (SLOCC)

Eigenvalues of reduced density matrices characterize entanglement of global state.

Multi-Partite Systems

 $|\psi\rangle$

- <u>no</u> Schmidt decomposition
- rank of reduced density matrices <u>not</u> enough
- generically: <u>infinitely</u> many classes, labeled by exp(N) many continuous parameters
 < full tomography

Multi-Partite Systems

 $|\psi\rangle$

- <u>no</u> Schmidt decomposition
- rank of reduced density matrices <u>not</u> enough
- generically: <u>infinitely</u> many classes, labeled by exp(N) many continuous parameters
 < full tomography

Eigenvalues of reduced density matrices can still give useful information!

Six classes

 $|GHZ\rangle = |000\rangle + |111\rangle$ $|W\rangle = |100\rangle + |010\rangle + |001\rangle$ $|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle),$ $|B2\rangle, |B3\rangle$ $|000\rangle$

Dür, Vidal & Cirac (2000)

Han, Zhang & Guo (2004) Botero & Mitchison (p.c.) Sawicki, W. & Kus (2012)

Six classes

Sawicki, W. & Kus (2012)

Six classes

 $|GHZ\rangle = |000\rangle + |111\rangle$ $|W\rangle = |100\rangle + |010\rangle + |001\rangle$ $|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle),$ $|B2\rangle, |B3\rangle$ $|000\rangle$

Han, Zhang & Guo (2004) Botero & Mitchison (p.c.) Sawicki, W. & Kus (2012)

 $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$

Six classes

Han, Zhang & Guo (2004) Botero & Mitchison (p.c.) Sawicki, W. & Kus (2012)

 $\begin{aligned} |GHZ\rangle &= |000\rangle + |111\rangle \\ |W\rangle &= |100\rangle + |010\rangle + |001\rangle \\ |B1\rangle &= |0\rangle \otimes (|00\rangle + |11\rangle) , \\ |B2\rangle, |B3\rangle \\ |000\rangle \end{aligned}$

 $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$

Six classes

entanglement polytope of W class $\lambda_{\max}^{(2)}$ $\lambda_{\max}^{(3)}$ 0.5 $\lambda_{\max}^{(1)}$

 $\begin{aligned} |GHZ\rangle &= |000\rangle + |111\rangle \\ |W\rangle &= |100\rangle + |010\rangle + |001\rangle \\ |B1\rangle &= |0\rangle \otimes (|00\rangle + |11\rangle) \,, \end{aligned}$

|B2
angle, |B3
angle|000
angle

Han, Zhang & Guo (2004) Botero & Mitchison (p.c.) Sawicki, W. & Kus (2012)

 $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$

Six classes

 $\begin{aligned} |GHZ\rangle &= |000\rangle + |111\rangle \\ |W\rangle &= |100\rangle + |010\rangle + |001\rangle \\ |B1\rangle &= |0\rangle \otimes (|00\rangle + |11\rangle) , \\ |B2\rangle, |B3\rangle \\ |000\rangle \end{aligned}$

entanglement polytopes of biseparable states

Han, Zhang & Guo (2004) Botero & Mitchison (p.c.) Sawicki, W. & Kus (2012)

Six classes

 $|GHZ\rangle = |000\rangle + |111\rangle$ $|W\rangle = |100\rangle + |010\rangle + |001\rangle$ $|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle),$ $|B2\rangle, |B3\rangle$ $|000\rangle$

Han, Zhang & Guo (2004) Botero & Mitchison (p.c.) Sawicki, W. & Kus (2012)

Six classes

 $|GHZ\rangle = |000\rangle + |111\rangle$ $|W\rangle = |100\rangle + |010\rangle + |001\rangle$ $|B1\rangle = |0\rangle \otimes (|00\rangle + |11\rangle),$ $\lambda_{\max}^{(2)}$ $|B2\rangle, |B3\rangle$ $\lambda_{\max}^{(3)}$ $|000\rangle$ 0.5Lower pyramid is witness for GHZ class! Aan, Zhang & Guo (2004) Botero & Mitchison (p.c.) Dür, Vidal & Cirac (2000) Sawicki, W. & Kus (2012)

<u>Our main results:</u>

- convex polytope!
- finite hierarchy

using results from Brion (1987), Kempf & Ness (1979) algebraic geometry / GIT

 algorithm to compute using computational invariant theory (difficult)

<u>Our main results:</u>

- convex polytope!
- finite hierarchy

using results from Brion (1987), Kempf & Ness (1979) algebraic geometry / GIT

 algorithm to compute using computational invariant Christandl-Mitchison (2004) Christandl-Mitchison (2004) Klyachko (2004) Daftuar-Hayden (2004)

- efficient, requires only linearly many measurements
- robust against small noise ($\psi \approx$ pure)

- efficient, requires only linearly many measurements
- robust against small noise ($\psi \approx$ pure)

Purity and Noise

Purity:
$$p = \operatorname{tr} \rho^2$$

(can be estimated using two-body measurements)

<u>Fact</u>: If $p \ge 1 - \epsilon$ then there exists a pure state $|\psi\rangle$ with $\langle \psi | \rho | \psi \rangle \ge 1 - \varepsilon$ whose local eigenvalues differ by $\lesssim N\varepsilon$.

Impurity enlarges effective error bars!

Thank you!

Multi-Particle Entanglement from Single-Particle Information

http://www.itp.phys.ethz.ch/people/waltemic/polytopes