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Notation

Young diagram A : ~ e jt |
-row [engths 3 > .. S Y2\ 20 —
- partition of < into £y parts k boxas

They parametrize the irreducible representations of:

Symmetric group Sy General linear group GL(w)
Specht module X\ Weyl module \/g
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Kronecker coefficients =™ {

[N ® [M = @ Jxpv ]

Many interesting connection to other areas of mathematics as well as
applications (quantum physics, geometric complexity theory), in part via

Sym“@ocmoc™ = (D Irpv VX ®V 5 ®©\’

)\‘u\f

Despite 75+ years of history, many properties remain mysterious!

Littlewood-Richardson coefficients are special Kronecker coefficients [Murnaghan]. 3/19



. . . {
Kronecker coefficients: asymptotics = jL

Asymptotic support IS convex cone: [Mumford], [Kirwan]

- outside: 3-—:0 inside: ag: 38)\\3\0(8\/ S O

/

In general,S > |: failure of saturation, "holes”!

- piecewise quasi—polynomiality [Guillemin-Sternberg], [Meinrenken-Sjamaar]

. , , (1 T
Various other asymptotics have been studied: @ , A 419




The Kronecker polytopes “‘JL |

I

..1s a convex polytope: the Kronecker polytope. %

More generally: Define moment polytope

AGO\Q = % % BV San Uﬁ&

where G compact connected Lie group, Y unitary representation.

Ay ={ 2D g o

E.g., Littlewood-Richardson coefficients give rise to Horn polytopes. | 5/19



This talk em J

k boxeas

AN\ = {Q\t‘ﬂ © G > OF

1. Effective “combinatorial” description of moment polytopes
[Vergne-W., 2014]

2. Computational complexity: NP n coNP.
[Blirgisser-Christandl-Mulmuley-W., 2015]

Motivation: Interest In computing moment polytopes in practice, guantum
marginal problem; understand hardness vs. failure of saturation (cf. [BIH])
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1. Inequalities for moment polytopes

7/19



N . N ‘
Geometric description é'“{

AA\(m) = {Q\‘Pm © I 2 of

where 1~ gAYA= e ¥y @T @ X (> etc (“reduced density matrices”)

Proof via basic GIT. ~ Quantum marginal problem, g. version of discrete tomography!
Similar: Horn polytopes vs. spectra of Hermitian matrices with A+ B + C = 0. 8/19



Basic 1dea

\"\ ‘P = (HA\HQ'HC) : CVA\“QJQ = Z

We derive necessary conditions on -\ and 2 to be a valid inequality by studying
the moment map in first and second order (seometric picture):

IP((( ™ )®1) S ¢

Result can be expressed purely in terms of representation-theoretic datal!

cf. [Berenstein-Sjamaar], [Klyachko], [Ressayre]. | 9/19



Roots and weights G=SU* G M=~

o o
Negative roots: N = 'Z (e; -€, 0.0 ¢ \%3 .. ;

GCE (
WeightS: .Sz = { Ce ) ceJ \ek'\& O
E.g., m=2

@/% D negative roots of %u(&)z
I 71/ weights of C*®C’e®C*
d

10/19




Inequalities for the Kronecker polytopes [Vergne-W, 2014]

s p
Theorem: The Kronecker polytope A(m) IS cut out by inequalities

H-:vr22 satisfying the following conditions (“Ressayre elements”):

\

* Q(H=2)=39¥ e Hu?-z%& span hyperplane

¢ N(H<d) = fvel: Hew<o§
QCH<) = S e Hewv<2§

have same cardinality, and

del [Z X 3u++-.-m\ £0
-(’éSZCusg) L ¢

Sufficiency: Characterization of via highest weight polynomials in the coordinate ring. 11/19



Numerical results [Vergne-W, 2014]

Conditions are concrete - effective in _# Hx Hp Hc

low dimensions (can go beyond what ~ * (=>~L33) (=533 -1)  (51,-3,-3)

> (=5,-1,3,3) (1,-3,-3,5) (3,3,—1,—5)
had been computed before). s (=5.3,-13) (-53-13) (5133

L. ekc. ...

L% 1 IR ) R ) B

However: Number of inequalities grows rapidly!

(a,b,c)  (2,2,2) [43] (3,3,3) [45] (4,4,4)

Inequalities (913) 5) (1749 B323)

Facets 6 (2) 45 (10) 270 (50)
Extreme Rays 5(3) 33 (11) 328 (65)
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Aside: Determinant & Horn condition [Vergne-W, 2014

Recall the last condition:

del [Z X‘Q SM_("(, =N‘X £0
(]

e SZCL(:é) %4

This "determinant polynomial” is highest weight vector (w.r.t. subgroup).

Thus determines point in (lower-dimensional) moment polytope:
X, € AG‘ (M) necessary condition!

In the case of the Horn polytopes, this reduces precisely to the recursive definition of Horn'’s
inequalities (i.e., also sufficient). 13/19



2. Computational complexity

problem
Instance

Algorithm >

input, encoded in bits
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Kronecker polytopes as a decision problem = { |

k boxas

KRONPOLYTOPES: Given three Young diagrams as input, decide If

Equivalently, decide If 3S= %9“%&"5\(>O ¢

Importantly, the height m is not bounded.

Challenges: No useful bounds on stretching factor s. Quadratically constrained program (NP-hard
in general). Large # of Ressayre elements. 15/19



The complexity classes P NP, and coNP

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.
CoNP: If answer NO then there exists small certificate that can be efficiently verified.

FACTORING, GRAPHISO, UNKNOT

3SAT,
3COLOR, IP

PRIMALITY, LP, LINALG

n

“efficient” = polynomial time; “small” = polynomial bitsize (in the bitsize of the input) 16/19



Complexity of Kronecker polytopes isirgisser-christandt-mutmutey-w, 20151

[Theorem: The problem KrRONPOLYTOPES IS In NP and coNP. }

NP: Certificate Is vector In CoNP: Certificate is Ressayre element
(C"‘)@l (H2) for separating hyperplane.

~ ] A

o =

— e
Point in polytope can be computed efficiently. Ressayre condition can be checked efficiently
We prove that finite precision is not an issue (if also given point at which to evaluate
(walls of polytope are not too steep). determinant polynomial).

Generalization to arbitrary groups, representations requires efficient algos for Lie algebra representation. 17/19



The bigger picture: classical & quantum complexity

Kronecker coefficients Littlewood-R.
COUNTING #P-hard, GapP [Blrgisser-lkenmeyer, Narayanan]
SQ\'P'V) = 7 #BQP [Harrow-Christand[-W.] #P—Complete
POSITIVITY NP-hard [Christian’s talk] »
) ~ ) [Knut -Tao],
%(X.\U\v\ > O QMA [Harrow-Christandl-W.] [BTausizekI:] a0
Mulmuley-
Sohoni]
MOMENTPOLYTOPES NP O coNP [this talk] P
30 8(Q>“QFle)>O

NB: For bounded height (fixed m), all these problems are in P [Christandl-Doran-W.]. 18/19



summary

Moment polytopes describe the asymptotic support of representation-
theoretic multiplicities. They have been studied in many different
contexts (including GCT, quantum physics, ...).

1. Effective “combinatorial” description ////\

[Vergne-W., 2014]

2. Computational complexity: NP n coNP.
[Blrgisser-Christandl-Mulmuley-W., 2015]

Results generalize to unitary representations of compact connected Lie groups.

Is the membership problem in fact in P? Positivity in NP? The coefficient in #P? Quantum gap? 19/19



Thank you for your attention
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