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Tensor network states

Efficient variational classes for many-body quantum systems:

|Ψ〉 =
∑

i1,...,in
Ψi1,...,in |i1, . . . , in〉

e.g.

matrix product states MERA

I can have interpretation as quantum circuit

Useful theoretical formalism:
I geometrize entanglement structure: generalized area law
I bulk-boundary dualities: lift physics to the virtual level
I quantum phases, topological order, RG, holography, . . .; other talks
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Tensor networks and quantum field theories

I tensor networks are discrete and finite representations
I quantum field theories are infinite and defined in the continuum

Two successful approaches:
I Lattice: MPS, PEPS, MERA
I Continuum: cMPS, cMERA

How to measure goodness of approximation?
What does the tensor network describe?
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Tensor networks for correlation functions

Given many-body system in state ρ and choice of operators {Oα}, define
correlation function:

C(α1, · · · , αn) = tr[ρOα1 · · ·Oαn ]

General definition

Given:

Underlying system can be continuous; discreteness is 
imposed in our choice of how to probe the system

state

operator choice

Goal: Design tensor network for correlation functions!
I unified perspective: system can be continuous, discreteness imposed by

how we probe it
I tensor network for state sufficient — but not optimal
I in lattice models can recover state, but only for complete set of {Oα}

Examples: Zaletel-Mong (MPS/q. Hall states), König-Scholz (MPS/CFTs),
cf. quantum marginal problem
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Our results

We construct tensor networks for free fermion systems:
I 1D Dirac fermions on lattice & continuum
I Non-relativistic 2D fermions on lattice

Key features:
I Rigorous approximation of correlation functions
I Quantum circuits: MERA & branching MERA (Fermi surface)
I Explicit circuit construction, no variational optimization required

Continuum Dirac fermions ; upcoming paper w/ Scholz & Swingle
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MERA: multi-scale entanglement renormalization ansatz (Vidal)

↓ quantum circuit that prepares
state from |0〉⊗N

↑ entanglement renormalization,
organize q. information by scale

I variational class for critical systems in 1D
I conjectured relationship to holography (Swingle)
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MERA and wavelets

Wavelet transforms organize classical information by scale:

input

I resolves discrete input signal in `2(Z) into different scales
I defined by low-pass (‘scaling’) filter h and high-pass (’wavelet’) filter g

Key fact: Second quantizing 1D wavelet transform ; MERA circuit!

I in fact, obtain ‘holographic’ mapping (Qi)
I length of filter ∼ depth of layers

(Evenbly-White)

Task: To produce free fermion ground state, design wavelet transform
adapted to positive/negative energy modes.
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1D Dirac fermions – Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

H1D = −
∑

n
b†1,nb2,n − b†2,nb1,n+1 + b†2,nb1,n − b†1,n+1b2,n

=
∫ π

−π

dk
2π

[
b1(k)
b2(k)

]†[
0 e−ik − 1

eik − 1 0

][
b1(k)
b2(k)

]
.

Diagonalize:

u(k) =
[
1 0
0 −i sign(k)eik/2

]
1√
2

[
1 1
1 −1

]
, u†hu =

[
E−(k) 0

0 E+(k)

]

I Fourier trafo highly nonlocal. But can choose any basis of Fermi sea!
I want pairs of modes related by −i sign(k)eik/2.
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1D Dirac fermions – Wavelets

Equivalent: Pair of wavelet transforms such that high-pass filters are related
by −i sign(k)eik/2.

I studied in signal processing, motivated by translation-invariance
I impossible with finite filters, but possible to arbitrary accuracy (Selesnick)
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1D Dirac fermions – MERA

!" = $%
"& ,	!& =

%
'

( = 1,	* = 1

|1〉|0〉 |1〉|0〉

|1〉|0〉 |1〉|0〉

|1〉|0〉 |1〉|0〉

−//4

234

234
−//4

−//4 −//4 −//4 −//4

Parameters:
I L – number of layers
I ε – accuracy of phase

relation of high-pass filters
I W – “size” of filters

Consider correlation function of N creation and annihilation operators

C({fi}) :=
〈
b†j1(f1) · · · b†jN (fN) bjN+1(fN+1) · · · bj2N (f2N)

〉
supported on S lattice sites.

Theorem (simplified)∣∣C({fi})exact − C({fi})MERA
∣∣ . √SNW max{2−L/4, ε}
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1D Dirac fermions – Numerics

Energy error
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1D Dirac fermions – Continuum

Massless Dirac fermions in (1+1)d:[
i(∂t + ∂x ) 0

0 i(∂t − ∂x )

] [
ψ+
ψ−

]
= 0

Filled Fermi sea

I need to produce modes ψ±(x) supported in k < 0 / k > 0

Natural construction: ‘Continuum limit’ of inverse wavelet transform!

output

1

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

I for pair of transforms as before: outputs ψ1/2 related by i sign(k)
; ψ± = ψ1 ± iψ2

Result: Rigorous quantum circuits for a quantum field theory!
12 / 15



1D Dirac fermions – Continuum

Massless Dirac fermions in (1+1)d:[
E − k 0

0 E + k

] [
ψ+
ψ−

]
= 0

Filled Fermi sea

I need to produce modes ψ±(x) supported in k < 0 / k > 0

Natural construction: ‘Continuum limit’ of inverse wavelet transform!

output

1

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

I for pair of transforms as before: outputs ψ1/2 related by i sign(k)
; ψ± = ψ1 ± iψ2

Result: Rigorous quantum circuits for a quantum field theory!
12 / 15



1D Dirac fermions – Continuum

Massless Dirac fermions in (1+1)d:[
E − k 0

0 E + k

] [
ψ+
ψ−

]
= 0

Filled Fermi sea

I need to produce modes ψ±(x) supported in k < 0 / k > 0

Natural construction: ‘Continuum limit’ of inverse wavelet transform!

output

1

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

I for pair of transforms as before: outputs ψ1/2 related by i sign(k)
; ψ± = ψ1 ± iψ2

Result: Rigorous quantum circuits for a quantum field theory!
12 / 15



Non-relativistic 2D fermions – Lattice model

H1D ∼= −
∑

n
a†nan+1 + h.c.

Non-relativistic fermions hopping on 2D square lattice at half filling:

H2D = −
∑
m,n

a†m,nam+1,n + a†m,nam,n+1 + h.c.

Fermi surface:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

I Green function factorizes w.r.t. rotated axes
I violation of area law: S(R) ∼ R log R (Wolf, Gioev-Klich, Swingle)

13 / 15



Non-relativistic 2D fermions – Lattice model

H1D ∼= −
∑

n
a†nan+1 + h.c.

Non-relativistic fermions hopping on 2D square lattice at half filling:

H2D = −
∑
m,n

a†m,nam+1,n + a†m,nam,n+1 + h.c.

Fermi surface:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

I Green function factorizes w.r.t. rotated axes
I violation of area law: S(R) ∼ R log R (Wolf, Gioev-Klich, Swingle)

13 / 15



Non-relativistic 2D fermions – Branching MERA

Natural construction: Tensor product of wavelet transforms!

Wψ = ψs ⊕ ψw ; (W ⊗W )ψ = ψss ⊕ ψws ⊕ ψsw ⊕ ψww

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

Similar approximation theorem holds.
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Summary and outlook
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Entanglement renormalization for free fermions:
I Rigorous approximation of correlation functions
I Explicit quantum circuits from wavelet transforms

Outlook:
I Massive theories, Dirac cones, beyond states at fixed times, . . .
I Wess-Zumino-Witten CFTs (Scholz-Swingle-W.)
I Interacting theories? Starting point for variational optimization?

Thank you for your attention!

PhD & post-doc positions available @ University of Amsterdam / QuSoft
15 / 15


