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Tensor network states

Efficient variational classes for many-body quantum systems:

vy = > mm,...,m

A

e.g.

. MERA
matrix product states

» can have interpretation as quantum circuit

Useful theoretical formalism:
» geometrize entanglement structure: generalized area law
» bulk-boundary dualities: lift physics to the virtual level
» quantum phases, topological order, RG, holography, ...~ other talks

2/17



Tensor networks and quantum field theories

> tensor networks are discrete and finite representations

» quantum field theories are infinite and defined in the continuum

Two successful approaches:
» Lattice: MPS, PEPS, MERA
» Continuum: cMPS, cMERA

How to measure goodness of approximation?
What does the tensor network really capture?
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Tensor networks for correlation functions

Given many-body system in state p and choice of operators {O,}, define
correlation function:

Clai, - ,an) =tr[pOqy - -+ On,]

Goal: Design tensor network for correlation functions!
» unified perspective: system can be continuous, discreteness imposed by
how we probe it
» tensor network for state sufficient — but not optimal

> in lattice models can recover state, but only for complete set of {O,}

Examples: Zaletel-Mong (MPS/q. Hall states), Konig-Scholz (MPS/CFTs),
cf. quantum marginal problem
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Our results

We construct tensor networks for free fermion systems:
» 1D Dirac fermions on lattice & continuum

» non-relativistic 2D fermions on lattice (Fermi surface)

Key features:
> tensor networks that target correlation functions
> rigorous approximation guarantees
» quantum circuits that ‘renormalize entanglement’: (branching) MERA

» explicit circuit construction, no variational optimization required

Continuum results ~ upcoming paper w/ Scholz & Swingle
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MERA: multi-scale entanglement renormalization ansatz (Vidal)
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J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale
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> layers are short-depth quantum circuits (disentangle & coarse-grain)

» variational class for critical systems in 1D
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MERA: multi-scale entanglement renormalization ansatz (Vidal)

J local quantum circuit that
prepares state from [0)®"

1 entanglement renormalization

1 organize q. information by scale

v

layers are short-depth quantum circuits (disentangle & coarse-grain)

v

variational class for critical systems in 1D

v

any MERA can be extended to a ‘holographic’ mapping

» reminiscent of holography (Swingle), starting point for
tensor network models (HaPPY; Hayden-...-W.)
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Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:
> multi-resolution analysis: L*(R) = é; W, , spanned by /(2/x — n)

» 1 is called the wavelet function 7ﬂ‘ ,ﬂ :

» smooth & local functions need few W;'s
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Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:
> multi-resolution analysis: L*(R) = é; W, , spanned by /(2/x — n)

S A Ll

» 1) is called the wavelet function

Given signal at scale up to j, Vj = @;~; Wy , how to resolve it into scales?

J

> V; spanned by ¢(27/x — n), I %Jr T
» ¢ is known as scaling function v
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Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:
> multi-resolution analysis: L*(R) = é; W, , spanned by /(2/x — n)

> 9 is called the wavelet function 0 ] )
' e S [N

Given signal at scale up to j, Vj = @;~; Wy , how to resolve it into scales?
> V; spanned by ¢(27/x — n), I —qur R
» ¢ is known as scaling function e N

Discrete wavelet transform:

Vo

il
"

» defined by low-pass filter h and high-pass filter g
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Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:
> multi-resolution analysis: L*(R) = é; W, , spanned by /(2/x — n)

» 1 is called the wavelet function 7ﬂ‘ ,ﬂ :

Given signal at scale up to j, Vj = @;~; Wy , how to resolve it into scales?
> V; spanned by ¢(27/x — n), I %Jr N
» ¢ is known as scaling function e

Discrete wavelet transform:

» defined by low-pass filter h and high-pass filter g
> locally resolves discrete input signal in £2(Z) into different scales
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MERA and wavelets

Key fact: Second quantizing 1D wavelet transform ~ MERA circuit!

» in fact, obtain ‘holographic’ mapping (Qi)
> length of classical filter ~ depth of quantum circuit (Evenbly-White)
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MERA and wavelets

Key fact: Second quantizing 1D wavelet transform ~ MERA circuit!

» in fact, obtain ‘holographic’ mapping (Qi)
> length of classical filter ~ depth of quantum circuit (Evenbly-White)

Task: To produce free fermion ground state, design wavelet transform that
targets positive/negative energy modes.
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1D Dirac fermions — Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

Hio = =Y bl 62,0 — B bunr1 + B nbin = b 1B
n
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1D Dirac fermions — Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

Hip = = b} \bon — bS \brnst + b5 \bin — bl b2
B /w dk [B(0)]T 0 e —1][bi(k)
g 2w |ba(k)| |ef—1 0 ba(k)| "
Diagonalize:

B 0 11 1 CJE(k) 0
u(k) = [o isign(k)e“‘p] 2 [1 —11’ uthu = [ 0 E+(k)]

» Fourier trafo highly nonlocal. But can choose any basis of Fermi seal

» want pairs of modes related by —isign(k)e'/2.
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1D Dirac fermions — Wavelets

Task: Find pair of wavelet transforms such that high-pass filters are related
by —isign(k)e'¥/2.

» studied in signal processing, motivated by translation-invariance (1)

» impossible with finite filters, but possible to arbitrary accuracy (Selesnick)

n/2

3n/8

n/4 4

n/8 4

—n/8 4

phase difference
o

—n/4 4

—3n1/8 A

—n/2

0.0

-n -3m4 -n2 -m4 0 w4 m2 3mA ¢
momentum (k)
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1D Dirac fermions — MERA

11)(0) 11)[0)
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U Parameters:
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i Y ; » L — number of layers
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1D Dirac fermions — MERA

11)10)

.

1 !

11)]0) 11)10) |1)0)
! ’ *

TEEe

e

Hr

SR .
REKERERRN

11)(0)
*
U Parameters:
RG
» L — number of layers
Do) » & — accuracy of phase
relation of filters
o X |Urc » W — “size” of filters
-

Consider correlation function of N creation and annihilation operators

C({f,}) = <b;r1(f1) T b}N(fN) bJN+1(fN+1) J2N(f2N)>

supported on S lattice sites.

Theorem (simplified)

| C({fi})exact —

C({fi})MERA| S \/S_NW max{27[’/4, &?}
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1D Dirac fermions — MERA

o) 11)[0)
* *
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i >1 ; » L — number of layers
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relation of filters
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Consider correlation function of N creation and annihilation operators

C({£i}) == (B (A) -+ bl (fn) bjy s (1) -+ - b (fon))
supported on S lattice sites.

Theorem (simplified)

|C({fi})exact — C({fi})MERA| 5 \/S_NW max{2_’5/475}
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1D Dirac fermions — MERA

11)(0) 11)(0)
* *
U Parameters:
RG
i Y » L — number of layers
|1,>|o> oo > c— accuracy of phase
relation of filters
[':j)J . ¥|Urc > W — “size” of filters
‘E::J‘ ,E] - -
I ¢
KERERNRKN

Consider correlation function of N creation and annihilation operators

bl (f) bjsy (fus1) - iy (fon))

C({fi}) =<

supported on S lattice sites.

Theorem (simplified)

| C({fi})exact —

bj.(f) -

C({fi})meral S VSNW max{27%/4 ¢}
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1D Dirac fermions — Numerics

Energy error
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1D Dirac fermions — Continuum

Massless Dirac fermions in (141)d:

i(0: + 0k) 0 lm} %
(.

0 i(0; — )
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1D Dirac fermions — Continuum

Massless Dirac fermions in (141)d:

¢+] —0

E—k 0
(e

0 E+k

> need to produce modes 4 (x) supported in k <0 / k>0

Natural construction: ‘Continuum limit' of inverse wavelet transform!
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1D Dirac fermions — Continuum

Massless Dirac fermions in (141)d:
E-k 0 Yyl 0
0 E+k||v-|

> need to produce modes 4 (x) supported in k <0 / k>0

Natural construction: ‘Continuum limit' of inverse wavelet transform!

output v M‘\
e A
<] <] T .

» for pair of transforms as before: outputs 11, 1> (wavelet functions)
related by isign(k) ~ ¥y =11 +1ithy

Result: Rigorous quantum circuits for a quantum field theory!
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1D Dirac fermions — Extracting conformal data

> central charge: S(R) = §log R+ ¢

— Lllog(R) +0.73
+ + x=64

o 100 200
subsystem size
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1D Dirac fermions — Extracting conformal data

> central charge: S(R) = §log R+ ¢

» scaling dimensions: find operators that coarse-
grain to themselves (figures from Evenbly-Vidal)

10
— Llog(R) +0.73
0754/ . x=64

o 100 200
subsystem size
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1D Dirac fermions — Extracting conformal data

> central charge: S(R) = §log R+ ¢

» scaling dimensions: find operators that coarse-
grain to themselves (figures from Evenbly-Vidal)

— Lllog(R) +0.73
+ + x=64

o 100 200
subsystem size

[0) {10)|10)

~> diagonalize ‘scaling superoperator’ (eigenvalues 272«)

» OPE coefficients: similar

Similarly: evaluate quantum error correction capabilities (cf. Kim-Kastoryano)
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Non-relativistic 2D fermions — Lattice model

Hip & — Z ai,a,,H + h.c.
n

15 /17



Non-relativistic 2D fermions — Lattice model

Hipp = — Z ai,a,,Jrl + h.c.
n

Non-relativistic fermions hopping on 2D square lattice at half filling:

Hop = — Z a;fn’namﬂ,n + a:fn’,,am,,,ﬂ + h.c.

m,n

Fermi surface:

A

v

» violation of area law: S(R) ~ Rlog R (Wolf, Gioev-Klich, Swingle)
> Green function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions — Branching MERA

Natural construction: Tensor product of wavelet transforms!

szws@ww ~ (W®W)w:¢ss@¢ws@wsw@¢ww

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

Similar approximation theorem holds.
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Summary and outlook

11)10) 4 110y
. i .
]
Urg

Entanglement renormalization for free fermions:
» Rigorous approximation of correlation functions
» Explicit quantum circuits from wavelet transforms

Outlook:
» Massive theories, Dirac cones, beyond states at fixed times, ...
» Wess-Zumino-Witten CFTs (w/ Scholz & Swingle); building block ...
» Interacting theories? Starting point for variational optimization?

Thank you for your attention!
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