Rigorous free fermion entanglement renormalization from wavelets

Michael Walter

Caltech, October 2017
w/ Jutho Haegeman, Brian Swingle, Jordan Cotler, Glen Evenbly, and Volkher Scholz. See arXiv:1707.06243.

Tensor network states

Efficient variational classes for many-body quantum systems:

$$
|\Psi\rangle=\sum_{i_{1}, \ldots, i_{n}} \Psi_{i_{1} \ldots, i_{n}}\left|i_{1}, \ldots, i_{n}\right\rangle
$$

e.g.

- can have interpretation as quantum circuit

Useful theoretical formalism:

- geometrize entanglement structure: generalized area law
- bulk-boundary dualities: lift physics to the virtual level
- quantum phases, topological order, RG, holography, ... \sim other talks

Tensor networks and quantum field theories

- tensor networks are discrete and finite representations
- quantum field theories are infinite and defined in the continuum

Two successful approaches:

- Lattice: MPS, PEPS, MERA
- Continuum: cMPS, cMERA

How to measure goodness of approximation?
What does the tensor network really capture?

Tensor networks for correlation functions

Given many-body system in state ρ and choice of operators $\left\{O_{\alpha}\right\}$, define correlation function:

$$
C\left(\alpha_{1}, \cdots, \alpha_{n}\right)=\operatorname{tr}\left[\rho O_{\alpha_{1}} \cdots O_{\alpha_{n}}\right]
$$

Goal: Design tensor network for correlation functions!

- unified perspective: system can be continuous, discreteness imposed by how we probe it
- tensor network for state sufficient - but not optimal
- in lattice models can recover state, but only for complete set of $\left\{O_{\alpha}\right\}$

Examples: Zaletel-Mong (MPS/q. Hall states), König-Scholz (MPS/CFTs), cf. quantum marginal problem

Our results

We construct tensor networks for free fermion systems:

- 1D Dirac fermions on lattice \& continuum
- non-relativistic 2D fermions on lattice (Fermi surface)

Key features:

- tensor networks that target correlation functions
- rigorous approximation guarantees
- quantum circuits that 'renormalize entanglement': (branching) MERA
- explicit circuit construction, no variational optimization required

Continuum results \sim upcoming paper w/Scholz \& Swingle

MERA: multi-scale entanglement renormalization ansatz (Vidal)

\downarrow local quantum circuit that prepares state from $|0\rangle^{\otimes N}$
\uparrow entanglement renormalization
\downarrow organize q. information by scale

- layers are short-depth quantum circuits (disentangle \& coarse-grain)
- variational class for critical systems in 1D
- any MERA can be extended to a 'holographic' mapping
- reminiscent of holography (Swingle), starting point for
tensor network models (HaPPY; Hayden-...-W.)

MERA: multi-scale entanglement renormalization ansatz (Vidal)

\downarrow local quantum circuit that prepares state from $|0\rangle^{\otimes N}$
\uparrow entanglement renormalization
\downarrow organize q. information by scale

- layers are short-depth quantum circuits (disentangle \& coarse-grain)
- variational class for critical systems in 1D
- any MERA can be extended to a 'holographic' mapping
- reminiscent of holography (Swingle), starting point for
tensor network models (HaPPY; Hayden-...-W.)

MERA: multi-scale entanglement renormalization ansatz (Vidal)

\downarrow local quantum circuit that prepares state from $|0\rangle^{\otimes N}$
\uparrow entanglement renormalization
\downarrow organize q. information by scale

- layers are short-depth quantum circuits (disentangle \& coarse-grain)
- variational class for critical systems in 1D
- any MERA can be extended to a 'holographic' mapping
- reminiscent of holography (Swingle), starting point for tensor network models (HaPPY; Hayden-...-W.)

MERA: multi-scale entanglement renormalization ansatz (Vidal)

\downarrow local quantum circuit that prepares state from $|0\rangle^{\otimes N}$
\uparrow entanglement renormalization
\downarrow organize q. information by scale

- layers are short-depth quantum circuits (disentangle \& coarse-grain)
- variational class for critical systems in 1D
- any MERA can be extended to a 'holographic' mapping
- reminiscent of holography (Swingle), starting point for tensor network models (HaPPY; Hayden-...-W.)

Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:

- multi-resolution analysis: $L^{2}(\mathbb{R})=\bigoplus_{j} W_{j}$, spanned by $\psi\left(2^{-j_{X}}-n\right)$
- ψ is called the wavelet function

- smooth \& local functions need few W_{j} 's

Given signal at scale up to $j, V_{j}=\bigoplus_{j^{\prime}>j} W_{j^{\prime}}$, how to resolve it into scales? - V_{j} spanned by $\phi\left(2^{-j} X-n\right)$, - ϕ is known as scaling function

Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:

- multi-resolution analysis: $L^{2}(\mathbb{R})=\bigoplus_{j} W_{j}$, spanned by $\psi\left(2^{-j} x-n\right)$
- ψ is called the wavelet function

Given signal at scale up to $j, V_{j}=\bigoplus_{j^{\prime} \geq j} W_{j^{\prime}}$, how to resolve it into scales?

- V_{j} spanned by $\phi\left(2^{-j} x-n\right)$,
- ϕ is known as scaling function

Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:

- multi-resolution analysis: $L^{2}(\mathbb{R})=\bigoplus_{j} W_{j}$, spanned by $\psi\left(2^{-j} x-n\right)$
- ψ is called the wavelet function

Given signal at scale up to $j, V_{j}=\bigoplus_{j^{\prime} \geq j} W_{j^{\prime}}$, how to resolve it into scales?

- V_{j} spanned by $\phi\left(2^{-j} x-n\right)$,
- ϕ is known as scaling function

Discrete wavelet transform:

- defined by low-pass filter h and high-pass filter g

Wavelets

Wavelet transforms resolve classical signal into different scales, yet are local:

- multi-resolution analysis: $L^{2}(\mathbb{R})=\bigoplus_{j} W_{j}$, spanned by $\psi\left(2^{-j} x-n\right)$
- ψ is called the wavelet function

Given signal at scale up to $j, V_{j}=\bigoplus_{j^{\prime} \geq j} W_{j^{\prime}}$, how to resolve it into scales?

- V_{j} spanned by $\phi\left(2^{-j} x-n\right)$,
- ϕ is known as scaling function

Discrete wavelet transform:

- defined by low-pass filter h and high-pass filter g
- locally resolves discrete input signal in $\ell^{2}(\mathbb{Z})$ into different scales

MERA and wavelets

Key fact: Second quantizing 1D wavelet transform \sim MERA circuit!

- in fact, obtain 'holographic' mapping (Qi)
- length of classical filter \sim depth of quantum circuit (Evenbly-White)

MERA and wavelets

Key fact: Second quantizing 1D wavelet transform \sim MERA circuit!

- in fact, obtain 'holographic' mapping (Qi)
- length of classical filter \sim depth of quantum circuit (Evenbly-White)

Task: To produce free fermion ground state, design wavelet transform that targets positive/negative energy modes.

1D Dirac fermions - Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

$$
H_{1 \mathrm{D}}=-\sum_{n} b_{1, n}^{\dagger} b_{2, n}-b_{2, n}^{\dagger} b_{1, n+1}+b_{2, n}^{\dagger} b_{1, n}-b_{1, n+1}^{\dagger} b_{2, n}
$$

$$
=\int_{-\pi}^{\pi} \frac{\mathrm{d} k}{2 \pi}\left[\begin{array}{l}
b_{1}(k) \\
b_{2}(k)
\end{array}\right]^{\dagger}\left[\begin{array}{cc}
0 & \mathrm{e}^{-\mathrm{i} k}-1 \\
\mathrm{e}^{\mathrm{i} k}-1 & 0
\end{array}\right]\left[\begin{array}{l}
b_{1}(k) \\
b_{2}(k)
\end{array}\right]
$$

Diagonalize:

$u(k)=\left[\begin{array}{cc}1 & 0 \\ 0 & -i \operatorname{sign}(k) e^{i k / 2}\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right], u^{\dagger} h u=\left[\begin{array}{cc}E_{-}(k) & 0 \\ 0 & E_{+}(k)\end{array}\right]$

- Fourier trafo highly nonlocal. But can choose any basis of Fermi sea!
- want pairs of modes related by $-\mathrm{i} \operatorname{sign}(k) \mathrm{e}^{\mathrm{i} k / 2}$.

1D Dirac fermions - Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

$$
\begin{aligned}
H_{1 \mathrm{D}} & =-\sum_{n} b_{1, n}^{\dagger} b_{2, n}-b_{2, n}^{\dagger} b_{1, n+1}+b_{2, n}^{\dagger} b_{1, n}-b_{1, n+1}^{\dagger} b_{2, n} \\
& =\int_{-\pi}^{\pi} \frac{\mathrm{d} k}{2 \pi}\left[\begin{array}{l}
b_{1}(k) \\
b_{2}(k)
\end{array}\right]^{\dagger}\left[\begin{array}{cc}
0 & \mathrm{e}^{-\mathrm{i} k}-1 \\
\mathrm{e}^{\mathrm{i} k}-1 & 0
\end{array}\right]\left[\begin{array}{l}
b_{1}(k) \\
b_{2}(k)
\end{array}\right] .
\end{aligned}
$$

Diagonalize:

$$
u(k)=\left[\begin{array}{cc}
1 & 0 \\
0 & -i \operatorname{sign}(k) \mathrm{e}^{\mathrm{i} k / 2}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad u^{\dagger} h u=\left[\begin{array}{cc}
E_{-}(k) & 0 \\
0 & E_{+}(k)
\end{array}\right]
$$

- Fourier trafo highly nonlocal. But can choose any basis of Fermi sea!
- want pairs of modes related by $-i \operatorname{sign}(k) \mathrm{e}^{\mathrm{i} k / 2}$.

1D Dirac fermions - Wavelets

Task: Find pair of wavelet transforms such that high-pass filters are related by $-i \operatorname{sign}(k) \mathrm{e}^{\mathrm{i} k / 2}$.

- studied in signal processing, motivated by translation-invariance (!)
- impossible with finite filters, but possible to arbitrary accuracy (Selesnick)

1D Dirac fermions - MERA

Parameters:

- \mathcal{L} - number of layers
- ε - accuracy of phase relation of filters
- W - "size" of filters

Consider correlation function of N creation and annihilation operators

supported on S lattice sites.
Theorem (simpllfied)

1D Dirac fermions - MERA

Parameters:

- \mathcal{L} - number of layers
- ε - accuracy of phase relation of filters
- W - "size" of filters

Consider correlation function of N creation and annihilation operators

$$
C\left(\left\{f_{i}\right\}\right):=\left\langle b_{j_{1}}^{\dagger}\left(f_{1}\right) \cdots b_{j_{N}}^{\dagger}\left(f_{N}\right) b_{j_{N+1}}\left(f_{N+1}\right) \cdots b_{j_{2 N}}\left(f_{2 N}\right)\right\rangle
$$

supported on S lattice sites.
Theorem (simplified)

$$
\left|C\left(\left\{f_{i}\right\}\right)_{\text {exact }}-C\left(\left\{f_{i}\right\}\right)_{\text {MERA }}\right| \lesssim \sqrt{S N} W \max \left\{2^{-\mathcal{L} / 4}, \varepsilon\right\}
$$

1D Dirac fermions - MERA

Parameters:

- \mathcal{L} - number of layers
- ε - accuracy of phase relation of filters
- W - "size" of filters

Consider correlation function of N creation and annihilation operators

$$
C\left(\left\{f_{i}\right\}\right):=\left\langle b_{j_{1}}^{\dagger}\left(f_{1}\right) \cdots b_{j_{N}}^{\dagger}\left(f_{N}\right) b_{j_{N+1}}\left(f_{N+1}\right) \cdots b_{j_{2 N}}\left(f_{2 N}\right)\right\rangle
$$

supported on S lattice sites.
Theorem (simplified)

$$
\left|C\left(\left\{f_{i}\right\}\right)_{\text {exact }}-C\left(\left\{f_{i}\right\}\right)_{\text {MERA }}\right| \lesssim \sqrt{S N} W \max \left\{2^{-\mathcal{L} / 4}, \varepsilon\right\}
$$

1D Dirac fermions - MERA

Parameters:

- \mathcal{L} - number of layers
- ε - accuracy of phase relation of filters
- W - "size" of filters

Consider correlation function of N creation and annihilation operators

$$
C\left(\left\{f_{i}\right\}\right):=\left\langle b_{j_{1}}^{\dagger}\left(f_{1}\right) \cdots b_{j_{N}}^{\dagger}\left(f_{N}\right) b_{j_{N+1}}\left(f_{N+1}\right) \cdots b_{j_{2 N}}\left(f_{2 N}\right)\right\rangle
$$

supported on S lattice sites.
Theorem (simplified)

$$
\left|C\left(\left\{f_{i}\right\}\right)_{\text {exact }}-C\left(\left\{f_{i}\right\}\right)_{\text {MERA }}\right| \lesssim \sqrt{S N} W \max \left\{2^{-\mathcal{L} / 4}, \varepsilon\right\}
$$

1D Dirac fermions - Numerics

Green function $C(x, y)=\left\langle a_{x}^{\dagger} a_{y}\right\rangle$

bond dimension 2^{2}

bond dimension 2^{6}

1D Dirac fermions - Continuum

Massless Dirac fermions in $(1+1)$ d:

$$
\left[\begin{array}{cc}
\mathrm{i}\left(\partial_{t}+\partial_{x}\right) & 0 \\
0 & \mathrm{i}\left(\partial_{t}-\partial_{x}\right)
\end{array}\right]\left[\begin{array}{l}
\psi_{+} \\
\psi_{-}
\end{array}\right]=0
$$

Natural construction: 'Continuum limit' of inverse wavelet transform!

- for pair of transforms as before: outputs ψ_{1}, ψ_{2} (wavelet functions) related by $i \operatorname{sign}(k) \leadsto \psi_{ \pm}=\psi_{1} \pm i \psi_{2}$

Result: Rigorous quantum circuits for a quantum field theory!

1D Dirac fermions - Continuum

Massless Dirac fermions in $(1+1) \mathrm{d}$:

$$
\left[\begin{array}{cc}
E-k & 0 \\
0 & E+k
\end{array}\right]\left[\begin{array}{l}
\psi_{+} \\
\psi_{-}
\end{array}\right]=0
$$

- need to produce modes $\psi_{ \pm}(x)$ supported in $k<0 / k>0$

Natural construction: 'Continuum limit' of inverse wavelet transform!

- for pair of transforms as before: outputs ψ_{1}, ψ_{2} (wavelet functions)
related by $i \operatorname{sign}(k) \leadsto \psi_{ \pm}=\psi_{1} \pm i \psi_{2}$

1D Dirac fermions - Continuum

Massless Dirac fermions in $(1+1) \mathrm{d}$:

$$
\left[\begin{array}{cc}
E-k & 0 \\
0 & E+k
\end{array}\right]\left[\begin{array}{l}
\psi_{+} \\
\psi_{-}
\end{array}\right]=0
$$

- need to produce modes $\psi_{ \pm}(x)$ supported in $k<0 / k>0$

Natural construction: 'Continuum limit' of inverse wavelet transform!

- for pair of transforms as before: outputs ψ_{1}, ψ_{2} (wavelet functions) related by $i \operatorname{sign}(k) \sim \psi_{ \pm}=\psi_{1} \pm \mathrm{i} \psi_{2}$

Result: Rigorous quantum circuits for a quantum field theory!

1D Dirac fermions - Extracting conformal data

- central charge: $S(R)=\frac{c}{3} \log R+c^{\prime}$
- scaling dimensions: find operators that coarsegrain to themselves (figures from Evenbly-\/idal)

1D Dirac fermions - Extracting conformal data

- central charge: $S(R)=\frac{c}{3} \log R+c^{\prime}$
- scaling dimensions: find operators that coarsegrain to themselves (figures from Evenbly-Vidal)

1D Dirac fermions - Extracting conformal data

- central charge: $S(R)=\frac{c}{3} \log R+c^{\prime}$
- scaling dimensions: find operators that coarsegrain to themselves (figures from Evenbly-Vidal)

\sim diagonalize 'scaling superoperator' (eigenvalues $2^{-\Delta_{\alpha}}$)
- OPE coefficients: similar

Similarly: evaluate quantum error correction capabilities (cf. Kim-Kastoryano)

Non-relativistic 2D fermions - Lattice model

$$
H_{1 \mathrm{D}} \cong-\sum_{n} a_{n}^{\dagger} a_{n+1}+\text { h.c. }
$$

Non-relativistic fermions hopping on 2D square lattice at half filling:

$$
H_{2 \mathrm{D}}=-\sum_{m, n} a_{m, n}^{\dagger} a_{m+1, n}+a_{m, n}^{\dagger} a_{m, n+1}+\text { h.c. }
$$

Fermi surface:

- violation of area law: $S(R) \sim R \log R$ (Wolf, Gioev-Klich, Swingle)
- Green function factorizes w.r.t. rotated axes

Non-relativistic 2D fermions - Lattice model

$$
H_{1 \mathrm{D}} \cong-\sum_{n} a_{n}^{\dagger} a_{n+1}+\text { h.c. }
$$

Non-relativistic fermions hopping on 2D square lattice at half filling:

$$
H_{2 D}=-\sum_{m, n} a_{m, n}^{\dagger} a_{m+1, n}+a_{m, n}^{\dagger} a_{m, n+1}+\text { h.c. }
$$

Fermi surface:

- violation of area law: $S(R) \sim R \log R$ (Wolf, Gioev-Klich, Swingle)
- Green function factorizes w.r.t. rotated axes

Non-relativistic 2D fermions - Branching MERA

Natural construction: Tensor product of wavelet transforms!

$$
W \psi=\psi_{s} \oplus \psi_{w} \quad \sim \quad(W \otimes W) \psi=\psi_{s s} \oplus \psi_{w s} \oplus \psi_{s w} \oplus \psi_{w w}
$$

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

Similar approximation theorem holds.

Summary and outlook

Entanglement renormalization for free fermions:

- Rigorous approximation of correlation functions
- Explicit quantum circuits from wavelet transforms

Outlook:

- Massive theories, Dirac cones, beyond states at fixed times, ...
- Wess-Zumino-Witten CFTs (w/ Scholz \& Swingle); building block ...
- Interacting theories? Starting point for variational optimization?

Thank you for your attention!

