

Kronecker coefficients and complexity theory

Michael Walter, Stanford University

University of Rome Tor Vergata, March 2016

Kronecker coefficients and complexity theory

Michael Walter, Stanford University

University of Rome Tor Vergata, March 2016

Young diagrams

Young diagram λ :

- row lengths $\lambda_1 \ge ... \ge \lambda_m \ge 0$
- partition of k into k parts

They parametrize the irreducible representations of:

Symmetric group
$$S_{\kappa}$$
:

Specht module
$$[\lambda]$$

Weyl module
$$\bigvee_{}^{\infty}$$

Well-known decompositions

Clebsch-Gordan rule for SU(2):

$$\bigvee_{i} \bigotimes \bigvee_{j} = \bigoplus_{k=|i-j|}^{i+j} \bigvee_{k}$$

Schur-Weyl duality:

$$\mathbb{C}_{m} \mathbb{S}^{k} = \mathbb{A}^{k} \mathbb{Z}^{m} \mathbb{S}^{k}$$

e.g., IIIIII is the symmetric subspace

Littlewood-Richardson coefficients

$$\bigwedge_{m}^{y} \otimes \bigwedge_{m}^{h} = \bigoplus_{m}^{v} C_{yh}^{h} \bigwedge_{m}^{h}$$

Littlewood-Richardson rule:

$$C_{V}^{\lambda p}$$
 = # of LR tableaux of shape $\sqrt{\lambda}$ with weight p

Honeycomb and hive models: [Knutson-Tao]

 $C_{\mathbf{v}}^{\mathbf{p}}$ = # of honeycombs with boundary conditions

= # of integral hives with boundary conditions

Both formulas count combinatorial gadgets – they are evidently positive!

Moreover, we can efficiently determine if nonzero. [Mulmuley-Sohoni]

Littlewood-Richardson coefficients

$$\bigwedge_{m}^{\infty} \bigwedge_{m}^{h} = \bigoplus_{m=1}^{N} C_{\gamma h}^{n} \bigwedge_{m}^{n}$$

Saturation property: [Knutson-Tao]

$$C_{SV}^{SV} > 0 \implies C_{V}^{V} > 0$$

Symplectic geometry: directly related to eigenvalues of Hermitian matrices with

$$A + B = C$$

→ Horn's inequalities

$$[\lambda] \otimes [\mu] = \bigoplus_{V} g_{\lambda\mu\nu} [\nu]$$

Many interesting connection to other areas of mathematics & applications (→later). In part via:

Despite 75+ years of history, many properties remain poorly understood!

Kronecker coefficients: formulas

$$[\lambda] \otimes [\mu] = \bigoplus_{V} g_{\lambda\mu\nu} [\nu]$$

Explicit formulas in various special cases:

- Two rows
- Hooks

[Orellana et al], [Blasiak-Mulmuley-Sohoni]

[Remmel], [Blasiak]

Recent progress on the Saxl conjecture:

[Ikenmeyer], [Pak-Panova-Vallejo]

Open problem: Find combinatorial interpretation!

Kronecker coefficients: asymptotics

$$G(m) = \{(\lambda, \mu, v) : g_{\lambda \mu v} > 0\}$$

Asymptotic support is convex cone: symplectic geometry [Mumford], [Kirwan]

inside:
$$3s: 9s\lambda_1sp_1sv > 0$$

in general, **S > **: failure of saturation, "holes"!

g xpx is piecewise quasi-polynomial.

[Meinrenken-Sjamaar]

Motivation I: The Kronecker polytopes

$$\Delta(m) = \left\{ \frac{(\lambda, \mu, v)}{K} : 9 \times \mu v > 0 \right\}$$

...is a convex polytope: the Kronecker polytope.

More generally: moment polytope associated with arbitrary representation of a compact connected Lie group.

symplectic geometry

- explicit inequalities known

[Klyachko], [Berenstein-Sjamaar], [Ressayre], [Vergne-W.]

- efficient algorithms of high interest in quantum physics: quantum marginal problem

Motivation II: Geometric complexity theory

How many multiplications are required to multiply 2 x 2 matrices?

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{2} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} a_{11} & b_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{2} \\ a_{21} & a_{22} \end{bmatrix}$$

In fact, 7 < 8 are enough! $\rightarrow O(n^{2.807...})$ elementary multiplications for n x n [Strassen]

Best known algorithm: O(n^{2.3729...})

[Stothers], [Vassilevska-Williams], [Winograd]

What is the minimal exponent of matrix multiplications?

Idea: Rephrase in terms of tensor varieties, study using algebraic geometry!

Vhood
$$\in$$
 $M_n \otimes M_n \otimes M_n^* \subseteq \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$
Versy $= \sum_{i=1}^p e_i \otimes e_i \otimes e_i$ $G = GL(m)^3$

The goal is to show that: $V_{hard} \notin \overline{G} \cdot V_{easy}$

This would imply that we need $\gt \vdash$ elementary multiplications for $n \succ n$ matrices. [Burgisser-Ikenmeyer]

Instead of determining equations for the varieties, we seek to find "representation-theoretic obstructions":

$$V_{\lambda} \subseteq R(\overline{G \cdot v_{hard}})$$
 but $V_{\lambda} \nsubseteq R(\overline{G \cdot v_{easy}})$

This naturally leads to certain Kronecker coefficients and related multiplicities (symmetric Kronecker coefficients, plethysms, ...). E.g.:

[Buergisser-Landsberg-Manivel-Weyman]

Much recent work on Kronecker coefficients has been motivated by this connection to geometric complexity theory.

Kronecker coefficients: mathematical challenges

$$[\lambda] \otimes [\mu] = \bigoplus_{V} g_{\lambda\mu\nu} [\nu]$$

- 1. Decide when a Kronecker coefficient is non-zero!

 Asymptotic polytopes well-understood, but failure of saturation makes it "difficult".
- 2. Find a positive, combinatorial formula! Like the Littlewood-Richardson rule.
- 3. Understand the failure of saturation! *Minimal stretching factor? How to find holes?*

This talk: Explicitly study the <u>complexity</u> of these problems!

Computational complexity primer

Computational complexity theory

Study of computational problems: decision problems ("is na prime?") and counting problems ("how many prime factors does n have?").

problem instance

input, encoded in bits

Algorithm

in a formal computational model, e.g., Turing machine

output, encoded in bits

<u>Central question:</u> What is the difficulty of a computational problem?

I.e., can we hope for an efficient solution? Or will all algorithms take a long time? Contrast with computability theory ("does there exist *any* algorithm") & algorithm engineering ("find a *fast* algorithm").

The complexity class P

P: Computational problems that admit an efficient algorithm.

i.e., runtime polynomial in the input size

Intuition: Those are the computationally feasible problems.

<u>Examples:</u> Linear algebra; linear optimization; min-cut; Fourier transforms; ... Often due to mathematical structure, dualities, ...

We may then zoom in and ask for the most efficient algorithm & matching lower bounds. E.g., know how to multiply two n by n matrices in time $O(n^{2.372...})$ [Le Gall], but best lower bound is $3n^2 - o(n^2)$ [Landsberg]!

The complexity class NP

Not all decision problems are known to admit an efficient algorithm. But often the answer can be efficiently verified!

e.g., factoring a number vs. verifying a factorization; coloring a graph vs. checking a coloring

NP: If answer "YES" then there exists small certificate that can be efficiently verified.

P vs. NP

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.

<u>Conjecture</u>: P ≠ NP.

Widely believed to be true, for empirical as well as philosophical reasons:

"Surely, finding a proof must be harder than verifying it..."

A glimpse at the complexity landscape

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.

CONP: If answer NO then there exists small certificate that can be efficiently verified.

Comparing complexity

X can be reduced to Y if X can be solved efficiently using an efficient algorithm for Y.

Y is NP-hard if any problem in NP can be reduced to Y.

Y is NP-complete if NP-hard and contained in NP.

NP-complete problems exist! [Cook], [Levin]

In fact, many natural combinatorial problems are NP-complete. [Karp]

If any NP-complete problem has an efficient solution, then P=NP.

Complexity of counting problems

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.

#P: Answer = number of certificates accepted by an NP-algorithm.

[Valiant]

Natural complexity class for counting gadgets that are easily verified.

e.g., counting 3-colorings of a graph, integral hives, ...

Arguably what we would call a "positive, combinatorial formula"!

[Mulmuley]

Complexity & representation theory

Branching problems as computational problems

$$V = (+) m_{\lambda} V_{\lambda}$$

- <u>Decision problem:</u> Decide if multiplicity > 0.
- <u>Counting problem:</u> Compute the multiplicity.

We may thus use computational complexity theory to study their difficulty!

Complexity of Littlewood-Richardson coefficients

$$\bigwedge_{m}^{y} \otimes \bigwedge_{m}^{h} = \bigoplus_{m}^{v} C_{yh}^{h} \bigwedge_{m}^{h}$$

Input: Three Young diagrams such that $|\lambda| + |\omega| = |v|$

- <u>Decision problem:</u> P Proof relies on honeycombs & LP results.
- Counting problem: #P-complete

[Mulmuley-Sohoni]

[Narayanan]

Combinatorial formula shows that in #P. Hardness by reduction from contingency tables.

Thus any other #P problem can be solved by computing LR coefficients! E.g., exists mapping {graphs} → {Young diagrams} s.th. # of 3-colorings = f(LR coeff). Consequences largely unexplored...

25/31

Complexity of Kronecker coefficients

$$[\lambda] \otimes [\rho] = \bigoplus_{V} g_{\lambda\rho V} [v]$$

Input: Three Young diagrams such that $|\lambda| = |\psi| = |\gamma|$

- <u>Decision problem:</u> NP-hard Is it in NP?

[Ikenmeyer-Mulmuley-W.]

This was previously conjectured to be in P!

"Hopeless" to look for efficient algorithm (i.e., to find a simple characterization).

- Counting problem: #P-hard Is there a #P formula?

...since LR coefficients are special Kronecker coefficients.

For Young diagrams of bounded height, both problems in P! [Christandl-Doran-W.]

Theorem: Deciding positivity of Kronecker coefficients is NP-hard.

Alternative characterization:

$$\# V_{X}^{M} \otimes V_{M}^{M} \otimes V_{M}^{M} \subseteq V_{N} ((\mathbb{C}_{M})_{\otimes 3})$$

Weight vectors = point sets; weight = slice sums

Deciding if there exists a point set with given slice sums is NP-hard. [Brunetti et al]

Relevant point sets are always "pyramids" \rightarrow correspond to highest weight vectors.

We are interested in finding examples of "holes":

Corollary: There exist "many" such holes and they can be constructed explicitly and efficiently.

Proof: We have a sequence of injective reductions

& 3D MATCHING has many "NO" instances.

Asymptotic positivity

We may also consider the asymptotic positivity problem:

Given three Young diagrams,

That is, is the triple contained in the cone C(m)?

Theorem: Deciding asymptotic positivity is in NP and CoNP.

"not" NP-hard! efficient algorithm?

- Motivation: Computing moment polytopes in practice, quantum marginal problem.
- Suggests hardness of positivity problem is in part due to failure of saturation.

Theorem: Deciding asymptotic positivity is in NP and CoNP.

NP: Certificate is vector in

Point in polytope can be computed efficiently. We prove that finite precision is not an issue (walls of polytope are not too steep).

CoNP: Certificate is separating hyperplane (H₁z)

Inequality can be verified efficiently (if also [Vergne-W.] given point at which to evaluate determinant polynomial).

Generalization to arbitrary groups, representations requires efficient algos for Lie algebra representation. 30/31

Summary

#P = "combinatorial formula"

NP-hardness of the positivity problem

explicit "holes"

Complexity theory: conceptual framework for studying the difficulty of mathematical problems; a theory that can yield new mathematical results

New challenges in representation theory motivated by applications in geometric complexity theory, theoretical quantum physics

Thank you for your attention