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Young diagrams

Young diagram N 2 |
-row lengths X > .. 2 Y 2O - [
- partition of |< into £y parts k boxas

They parametrize the irreducible representations of:

Symmetric group Sy : General linear group GL(m):
Specht module [}l Weyl module \/;\“
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Well-known decompositions

Clebsch-Gordan rule for SU(2):

1t
\/" ®\/0 =® Vie

k=i

Schur-Weyl duality:

(C % --CJ?V;“@ oY

e.g., LWL js the symmetric subspace
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Littlewood-Richardson coefficients

™ m
V@V, =@ e v
VvV

Littlewood-Richardson rule:

CXP = # of LR tableaux of shape v/)\ with weight V 2 I
v L=
Honeycomb and hive models: [Knutson-Tao]
C>"“’ = ## of honeycombs with boundary conditions .

\'
= # of integral hives with boundary conditions
Both formulas count combinatorial gadgets - they are evidently positive!

Moreover, we can efficiently determine if nonzero. [Mulmuley-Sohoni] /3



Littlewood-Richardson coefficients

™M ™M
V, @V, =) e v
% > Y \/v
\%%
Saturation property:  [Knutson-Tao]

CENP so = c:);" SO

SV

Symplectic geometry: directly related to eigenvalues of Hermitian matrices with

A+DB =G

- Horn's inequalities
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Kronecker coefficients (Murnaghan]

[N ® [M = @ Jxpv ]

Many interesting connection to other areas of mathematics & applications (- later).
In part via:

Sym“@ocmoc™ = (D Irpv VX ®\/';3 ®©\’

APV
Despite 75+ years of history, many properties remain poorly understood!

Littlewood-Richardson coefficients are special Kronecker coefficients. 7131



Kronecker coefficients: formulas

[N ® [M = G\:\’) Jxpv ]

Explicit formulas in various special cases:

- TWO rows TS AL [Orellana et al], [Blasiak-Mulmuley-Sohoni]

- Hooks - [Remmel], [Blasiak]
al

Recent progress on the Saxl conjecture: [lkenmeyer], [Pak-Panova-Vallejo]

7 ‘
88&Y >O whenever 8=

—

Open problem: Find combinatorial interpretation! 8/3"



. . . {
Kronecker coefficients: asymptotics = SL

Asymptotic support IS convex cone: symplectic geometry [Mumford], [Kirwan]

outside: 3-—30 Inside: ag: QSX\S\«S\/ S O

/

In general,S > |: failure of saturation, "holes”!

3 v IS plecewise quasi-polynomial. [Meinrenken-Sjamaar]

T A L=tA —>

1\
Various other asymptotics have been studied: %} ! 9/31




..I1s a convex polytope: the Kronecker polytope.

More generally: moment polytope associated with arbitrary
representation of a compact connected Lie group. symplectic geometry

- explicit inequalities known [Klyachko], [Berenstein-Sjamaar], [Ressayre], [Vergne-W.]

- efficient algorithms of high interest in quantum physics: A
quantum marginal problem ":((CM) )3 4

Another example: Littlewood-Richardson coefficients give rise to Horn polytopes. 10/31



Motivation Il: Geometric complexity theory

How many multiplications are required to multiply 2 x 2 matrices?

ay )| /b \Q.Zl _ lawbyu+ageor
Q2 G ba b2 --- - -

—d

In fact, 7 < 8 are enough! > 0(n%8%-) elementary multiplications forn x n  [Strassen]

Best known algorithm: O(n23729-) [Stothers], [Vassilevska-Williams], [Winograd]

What 1s the minimal exponent of matrix multiplications?
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Motivation Il: Geometric complexity theory — mutmuley-sononi

ldea: Rephrase in terms of tensor varieties, study using algebraic geometry!

il
. X . ES
Veos, = 2_31@3@\@6& G= QL)

1=

—_—

The goal is to show that: V4 4: G Veag‘ﬁ

This would imply that we need > i elementary multiplications for N %" matrices.
[Burgisser-lkenmeyer]

Landsberg: r=7 is optimal for n=2. Similarly: Permanent vs. determinant (Valiant's conjecture).  12/31



Representation-theoretic obstructions Mulmuley-Sohoni]

Instead of determining equations for the varieties, we seek to find "representation-
theoretic obstructions™

\/ C R(G\/hmd) but \/XQ ﬁ(G Vea&;)

This naturally leads to certain Kronecker coefficients and related multiplicities
(symmetric Kronecker coefficients, plethysms, ...). E.g.:

S ‘ Vv [Buergisser-Landsberg-Manivel-Weyman]

Much recent work on Kronecker coefficients has been motivated by this

connection to geometric complexity theory:. 13/31



Kronecker coefficients: mathematical challenges

[N ® [M = @ Jxpv ]

1. Decide when a Kronecker coefficient Is non-zero!
Asymptotic polytopes well-understood, but failure of saturation makes it “difficult”

2. Find a positive, combinatorial formula!
Like the Littlewood-Richardson rule.

3. Understand the failure of saturation!
Minimal stretching factor? How to find holes?

This talk: Explicitly study the complexity of these problems!
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Computational complexity primer
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Computational complexity theory

Study of computational problems: decision problems (“is n
a prime?”) and counting problems (“how many prime
factors does n have?”).

problem -
Instance Algorlthm -

in a formal computational model, output, encoded in bits
e.g., Turing machine

]

=
=,

input, encoded in bits

Central question: What is the difficulty of a computational problem?

l.e., can we hope for an efficient solution? Or will all algorithms take a long time? Contrast with computability

theory (“does there exist any algorithm”) & algorithm engineering (“find a fast algorithm”). 16/31



The complexity class P

input, encoded in bits

[ P: Computational problems that admit an efficient algorithm. } e, runtime polynomial
In the input size

Intuition: Those are the computationally feasible problems.

Examples: Linear algebra; linear optimization; min-cut; Fourier transforms; ...
Often due to mathematical structure, dualities, ...

We may then zoom in and ask for the most efficient algorithm & matching lower bounds. E.g., know how to
multiply two n by n matrices in time O(n2372-) [Le Gall], but best lower bound is 3n? - o(n2) [Landsberg]! 17/31



The complexity class NP

Not all decision problems are known to admit an efficient algorithm. But often the

answer can be efficiently verified! e.qg., factoring a number vs. verifying a factorization;
coloring a graph vs. checking a coloring

problem
Instance

Cae >

[ NP: If answer “YES” then there exists small certificate that can be efficiently verified. }

accept/

Algorithm re) ect

Can be rather nontrivial to prove that a problem is in NP (e.g., UNKNOT). Many problems not in NP, 18/31



Pvs. NP

P: There exists an efficient algorithm.
NP: If answer YES then there exists small certificate that can be efficiently verified.

Conjecture: P # NP.

Widely believed to be true, for empirical as well as philosophical reasons:

“Surely, finding a proof must be harder than verifying it..”

Interestingly, there are proofs that exclude entire proof strategies of P # NP! 19/31



A glimpse at the complexity landscape

P: There exists an efficient algorithm.

NP: If answer YES then there exists small certificate that can be efficiently verified.
CoNP: If answer NO then there exists small certificate that can be efficiently verified.

FACTORING, GRAPHISO, UNKNOT

3SAT,
3COLOR, IP

PRIMALITY, LP, LINALG

Only a small part of the complexity landscape (time, space, random, quantum, ...). 20/31



Comparing complexity

X can be reduced to Y If X can be solved efficiently using an efficient algorithm forY.
Y 1s NP-hard if any problem in NP can be reduced to Y.
Y 1s NP-complete if NP-hard and contained in NP.

/ \ [ NP-complete problems exist! [Cook], [Levin]}

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE

NODE SET

—/ \ / \ In fact, many natural combinatorial

ARG SET ML coverane covEs Covi problems are NP-complete.  [Karp]

oy o AN If any NP-complete problem has an
PEUUEICING BARTITION efficient solution, then P=NP.

Various possible definitions of reduction (reuse, post-processing, ...). 21/31



Complexity of counting problems

P: There exists an efficient algorithm.
NP: If answer YES then there exists small certificate that can be efficiently verified.

[#P: Answer = number of certificates accepted by an NP-algorithm. } [Valiant]

Natural complexity class for counting gadgets that are easily verified.

e.g., counting 3-colorings of a graph, integral hives, ...

Arguably what we would call a "positive, combinatorial formula” [Mulmuley]
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Complexity & representation theory
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Branching problems as computational problems

V=Co) mVa
N

- Decision problem: Decide if multiplicity > 0.
- Counting problem: Compute the multiplicity.

We may thus use computational complexity theory to study their difficulty!

We always need to consider a family of representations (complexity is about asymptotics). 24/31



Complexity of Littlewood-Richardson coefficients

™ m
V@V, =@ e v
VvV

Input: Three Young diagrams such that ||+ l\u\-z Vv |

- Decision problem: P Mulmuley-Sohoni]

Proof relies on honeycombs & LP results.

- Counting problem: #P-complete [Narayanan]

Combinatorial formula shows that in #P. Hardness by reduction from contingency tables.

Thus any other #P problem can be solved by computing LR coefficients!
E.g., exists mapping {graphs} = {Young diagrams} s.th. # of 3-colorings = f(LR coeff).

Consequences largely unexplored... 25/31



Complexity of Kronecker coefficients

[N ® [M = G\:\’) Jxpv ]

Input: Three Young diagrams such that |X| =ljol= v |

- Decision problem: NP-hard Isitin NP? [Ilkenmeyer-Mulmuley-W.]

This was previously conjectured to be in P!

“Hopeless” to look for efficient algorithm (i.e., to find a simple characterization).

- Counting problem: #P-hard s there a #P formula?

..since LR coefficients are special Kronecker coefficients.

For Young diagrams of bounded height, both problems in P! [Christandl-Doran-W.] ~ 26/31




SketCh Of prOOf [lkenmeyer-Mulmuley-W.]

[Theorem: Deciding positivity of Kronecker coefficients is NP-hard. }

Alternative characterization: i \/‘;_Y\r‘ @V\?\' @VS\TQ /\M (C@m\®l>

Weight vectors = point sets; weight = slice sums

Deciding If there exists a point set with given slice
[Szabol sums 1S NP-hard. [Brunetti et al]

Relevant point sets are always “pyramids” = correspond to highest weight vectors.

2731



The failure of saturation [Ikenmeyer-Mulmuley-W.

We are interested in finding examples of “holes™:

3>\\_N=O but 39\\%‘)\%\(>® for some >\ © 1 //

Corollary: There exist “many” such holes and they can be constructed
explicitly and efficiently.

Proof: We have a sequence of injective reductions

3D MATCHING 4D PARTITION |F— —> 3D CONSISTENCY » KRONECKER>0

& 3D MATCHING has many “NO” instances.

The resulting holes are significantly beyond current methods - cannot even verify! 28/31



Asym ptOU C p 0S |t|V|ty [Buergisser-Christandl-Mulmuley-W.]

We may also consider the asymptotic positivity problem:
Given three Young diagrams,

38: %&)\\%V\SY>O 2

o . . . )
That Is, Is the triple contained in the cone Cl(m) ?

. : e “not” NP-hard!
[Theorem: Deciding asymptotic positivity i1s in NP and CoNP. J

efficient algorithm?

- Motivation: Computing moment polytopes in practice, quantum marginal problem.

- Suggests hardness of positivity problem is in part due to failure of saturation.
29/31



SketCh Of prOOf [Buergisser-Christandl-Mulmuley-W.]

[Theorem: Deciding asymptotic positivity 1s in NP and CoNP. }

NP: Certificate Is vector In CoNP: Certificate Is separating
(C"‘)@l hyperplane (Hz2)

B ] A

o =

— e
Point in polytope can be computed efficiently. Inequality can be verified efficiently (if also [Vergne-w.]
We prove that finite precision Is not an issue given point at which to evaluate determinant
(walls of polytope are not too steep). polynomial).

Generalization to arbitrary groups, representations requires efficient algos for Lie algebra representation. 30/31



summary

NP-hardness of the positivity problem

#P = “combinatorial formula” explicit “holes”

Complexity theory: conceptual framework for studying the difficulty of
mathematical problems; a theory that can yield new mathematical results

New challenges in representation theory motivated by applications in
geometric complexity theory, theoretical quantum physics
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Thank you for your attention
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