# The holographic entropy cone

Michael Walter, Stanford University

QIP '16

# Holography: the gauge/gravity correspondence



Entanglement is "explained" via geometry, and vice versa.

[Swingle]

cf. [Czech et al] at QIP '15



Holographic systems behave like q. error correcting codes. Further curious QIT properties (...)

[Almheiri et al]

QIT ideas useful to construct rigorous toy models of holography!



$$S(A) = \min_{A' \sim A} |A'|$$

entanglement entropy in boundary

length of minimal geodesic in bulk

#### This talk

$$S(A) = \min_{A' \sim A} |A'|$$



"Deconstruction" of the holographic entropy formula:

- Entropy cone
- Combinatorics
- Applications

$$S(A) = \min |A'|$$

$$\mathcal{C}_{\mathbf{n}} = \{ (S(A_1), \dots, S(A_1 A_2), \dots, S(A_1 \dots A_n)) \in \mathbb{R}^{2^n - 1} \}$$

where we allow for arbitrary geometries and boundary regions.

This is a convex cone, the holographic entropy cone.

rescaling disjoint union



facets: entropy inequalities

extreme rays: most extreme entropy vectors

"Phase space" of holographic entropies.

### A combinatorial version of holographic entropy

Instead of studying all possible smooth geometries, we may reduce to graphs:



Holographic entropy of subsystem = weight of min-cut in graph

### Application 1: Polyhedrality

Theorem: Each holographic entropy cone is polyhedral.

That is, there are:

- Finitely many entropy inequalities
- Finitely many extreme rays



Proof by reduction to graphs with a *fixed* number of vertices.

Application 2: Holographic entropy inequalities

$$S(AB) + S(BC) \geqslant S(B) + S(ABC)$$



$$S(AB) + S(BC) =$$



$$S(AB) + S(BC) \geqslant S(B) + S(ABC)$$



Making this precise requires finding decompositions of the minimal surfaces that work in *all* geometric configurations.

Of course, strong subadditivity for general quantum states is much more difficult [Lieb-Ruskai]. 12/20

#### Proofs by contraction

$$S(AB) + S(BC) + S(AC) \geqslant S(A) + S(B) + S(C) + S(ABC)$$

A | 1 | 0 | 1 | 1 | 0 | 0 | 1

B | 1 | 1 | 0 | 0 | 1 | 0 | 0

C | 0 | 1 | 1 | 0 | 0 | 1 | 1

O | 0 | 0 | 0 | 0 | 0 | 0

"occurrence vectors"

Theorem: If table can be extended to Hamming contraction then the entropy inequality is valid.

0

В

0

()

0

$$S(AB) + S(BC) + S(AC) \ge S(A) + S(B) + S(C) + S(ABC)$$

$$\begin{vmatrix}
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1
\end{vmatrix}$$

()

$$I(A : B) + I(A : C) \leq I(A : BC)$$

Does *not* hold for general quantum systems. It "excludes" non-trivial quantum Markov states, GHZ states, ...

## A cyclic family of entropy inequalities

$$\sum_{i=1}^{2k+1} S(A_i|A_{i+1}...A_{i+k}) \geqslant S(A_1...A_{2k+1})$$

Part of an infinite new family; unifies all previously known holographic entropy inequalities.

We could also verify entropy inequalities conjectured for the von Neumann entropy.

Proof by construction of explicit family of contractions.

Main application: Entropic constraints on the existence of smooth dual geometries.



### The holographic entropy cones

 $n \le 4$  subsystems: subadditivity and monogamy are complete



n ≥ 5 subsystems: several new inequalities



extreme rays have higher genus, nontrivial interior cycles

Theorem: Holographic entropies are entropies of stabilizer states.

Probabilistic method: random tensor network states satisfy RT formula with high probability.

In particular, always quantum mechanical. Strong consistency check!



An extension of the method can be used to construct a toy model for the holographic correspondence.

[Hayden-Nezami-Qi-Thomas-W.-Zhao]

These are not graph states! Interestingly, stabilizers also have classical dual. Cf. [Ruskai et al], [Gross-W.]. 18/20

#### Entropy cones – the big picture





In particular, the RT formula really does behave like a von Neumann entropy. Conversely, can check conjectures about the latter via holography. Amusing aside: Kitaev-Preskill topological entropy (I\_3) emerges as unique measure of area law violation. 19/20

#### Holographic entropy cone as organizing principle



Min-cuts in graphs as combinatorial model

- "proofs by contraction" of new entropy inequalities
- back to geometry: Lorentzian wormholes
- back to quantum states: random tensor networks



Thank you for your attention!