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Entanglement Entropy
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S(A) = —trpalogpa

Measure of quantum information, entanglement, ...
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Entanglement Entropy in Spin Systems [Hastings]
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Area law for gapped phases: S(A) < c|0A]

Exponential decay of correlations: (A : B) < e~ 4/B)/&
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Entanglement Entropy in Spin Systems [Hastings]
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Entanglement Entropy in Spin Systems [Hastings]
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Critical Systems [Evenbly—Vidal

Entanglement at each scale (MERA)
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Critical Systems [Evenbly—Vidal
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Critical Systems [Evenbly—Vidal
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Critical Systems [Evenbly—Vidal
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Critical Systems [Evenbly—Vidal

_ & : Y

e &

,,7’,57\’\‘?', o S(A) ~log %

o~

A
Entanglement at each scale (MERA)

gure from [Evenbly—Vidal] 10/53



Critical Systems & Hyperbolic Geometry [Swinglel
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Critical Systems & Hyperbolic Geometry [Swinglel

bulk
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2 = length of minimal geodesic
in bulk geometry

boundary —
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Hyperbolic half-plane as? = & ;;dy
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Critical Systems & Hyperbolic Geometry [Swinglel
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Entanglement Entropy In Holography

[Maldacena]

Gauge/gravity correspondence (“holography”):

d-dim QFT <> d+1-dim gravity theories

boundary bulk
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Entanglement Entropy in Holography [Maldacenal

Gauge/gravity correspondence (“holography”):

large N, strongly coupled semiclassical
d-dim QFT <> d+1-dim gravity theories
boundary bulk
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Entanglement Entropy in Holography [Maldacenal

Gauge/gravity correspondence (“holography”):

large N, strongly coupled semiclassical

d-dim QFT < d+1-dim gravity theories ('
boundary bulk

Ryu-Takayanagi formula: A
1

S(A) = —— min|A’

\ 4GN A~A /

entanglement entropy of boundary region
“area” of minimal (homologous) “surface” in bulk

« for time-independent states
(static space-times)

 typically infinite > UV cut-off
(IR cut-off)

e proved to various degrees 16/53



Entanglement Entropy in Holography AdS241 [ CFTy 44

e 1 N R
S(A) = —— min |A’] 26
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Vacuum state: Thermal state:
Q) crr pcrT(B) =2 4, e PEn n)n|

hyperbolic
annulus

/\ hyperbolic ;\

diSk 0.. “‘0 )
horizZbn

Empty AdS BTZ black hole

(T large enough) 17/53



Entanglement Entropy In Holography

[Van Raamsdonck],

[Maldacena], [M.—Susskind]
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“Thermofield double” state:

W) crr acrme = 2n e PEn/2n) n)

horizon

Einstein-Rosen bridge

no causality
violation

not traversable

entangled state of two CFTs

geometry from
entanglement;
“ER=EPR”
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Properties of Holographic Entanglement Entropy

4 1 )

_ . /
SIA) = 15 A A
N\ J

« S(A) = S(A°) for pure states

« Strong subadditivity:  S(AB) + S(BC) > S(B) + S(ABC) [Headrick—

Takayanagi]

« Monogamy: I(A:B)+I(A:C)<I(A:BC) [Hayden et al]

Z e BEn/2 n) n) n) n) '% %
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This Talk

What are the holographic constraints on entropy?
When can an entangled state have a smooth dual geometry?

What are the extremal states/geometries?
l.e., those that are on the brink of violating an entropy inequality
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Constraining Holographic Entropy
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[Headrick—

Proof of strong subadditivity Takayanagi

S(AB) 4+ S(BC) > S(B) 4+ S(ABC)
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[Headrick—

Proof of strong subadditivity Takayanagi

S(AB) + S(BC)
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[Headrick—

Proof of strong subadditivity Takayanagi

S(AB) 4+ S(BC) =
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[Headrick—

Proof of strong subadditivity Takayanagi

S(AB) + S(BC) > S(B) + S(ABC)
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Proving holographic entropy inequalities

A similar cartoon proves monogamy inequality.

Making this precise, however, requires finding decompositions of
the minimal surfaces that work in all geometric configurations.

We now show that there is a general combinatorial method to
achieve this.
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Inclusion/exclusion and the hypercube

S(AB)+S(BC) > S(B) + S(ABC)

Each minimal surface comes with a bulk region:

AN

A B C

27/53



Inclusion/exclusion and the hypercube

S(AB)+S(BC) > S(B) + S(ABC)

Each minimal surface comes with a bulk region:
oo

10 [n\ ©4
A B C

Inclusion-exclusion = bulk is cut into 2' pieces
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Inclusion/exclusion and the hypercube

S(AB)+S(BC) > S(B) + S(ABC)

Each minimal surface comes with a bulk region:
oo

10 [Hy\ O©4
A B C

Inclusion-exclusion = bulk Is cut into 2t pieces - hypercube graph:

M (B)
() 10 \ 64 (C) { vertices = bulk pieces }
edges - boundary pieces
N
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Hypercube proofs of holographic entropy inequalities

S(AB)+S(BC) > S(B) + S(ABC)

1. Construct hypercube graph:
A (B)

e
(A) 10 N 04 (C) [

Noo©)

vertices = bulk pieces }

edges = boundary pieces
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Hypercube proofs of holographic entropy inequalities

S(AB)+ S(BC) > S(B) 4+ S(ABC)

1. Construct hypercube graph:

: A (B)
ZSN ices > bulk pi
vertices u leces
(A)10 o4 (C) L pieces }
\. \ y edges - boundary pieces
00(5

2. Choose subset for each right-hand side term s.th. each edge cut at most once.

[Then the holographic entropy inequality Is correct.}

Surprisingly powerful: Can be fully algebraized (“proofs by contraction”); greedy algorithm; many new
entropy inequalities; equality conditions; ... 31/53



Hypercube proof of monogamy

S(AB)+ S(BC) + S(AC) = S(A) + S(B) + S(C) + S(ABC)

4 NA )

|
l(B)MO | 4649044(@]
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The cyclic inequalities n=2k+1
Theorem. We have
o N
Z S(A{[Aif1 ... Aigx) = S(A1 .. Ay)
—r— y,

Here, S(A|B) = S(AB) — S(B) Is the conditional entropy.

Part of a new, infinite family that generalizes monogamy and SSA.
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The cyclic inequalities n=2k+1
—— p
Z S(AilAis1.. . Aigx) = S(A1.. . Ap)
k 1=1

Interpretation for contigsuous boundary regions (n—>co):

length of enveloping curve of family of geodesics
= length of horizon

[Balasubramanian et al.]

[ But our inequality hold for arbitrary boundary regions in arbitrary geometries!}
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The Holographic Entropy Cone
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Entropy Cones

1
Ryu-Takayanagi entropy formula S(A) = e /AI\IliI/%\’A”
N A~

v
{Gn : (S(Al),,S(AlAg),,S(AlAn)) €R2n1}}

where we allow for arbitrary bulk geometries and boundary regions.

rescaling
disjoint union

This 1s a convex cone, the holographic entropy cone.

S(AB) 4

facets: entropy inequalities
extreme rays: most extreme entropy vectors
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Few regions

We find that (strong) subadditivity and monogamy are sufficient for
N < 4 regions.

Extreme rays up to permutations (L small):
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Five and more regions

For n > 5 regions, we prove several new inequalities (facets)
Including the family of cyclic inequalities.

New kinds of extreme rays:
« Higher genus
* Interior cycles become relevant

All can be explained by multiboundary wormhole geometries.
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Aside: Quantum Error Correction

Tensor network models for AdS/CFT correspondence have been
proposed that are realized via stabilizer states.

This would imply that holographic entropies are
stabilizer entropies.

stabilizer quantum
C, C C! C 4

Figure from [Harlow et al]

We find that all known stabilizer entropy inequalities are implied by
holographic ones (n <5). V

Interestingly, stabilizer states have an effective classical description, too (discrete phase space). 40/53



Graph Models & Lorentzian Wormholes
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1 , ,
Graph Models S(A) = Jg= min|A

Goal: Combinatorial description of holographic entropies.

vertices = bulk pieces
edges = boundary pieces
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1 , ,
Graph Models S(A) = Jg= min|A

Goal: Combinatorial description of holographic entropies.

vertices = bulk pieces
edges = boundary pieces

A B C

Consider bulk pieces cut out by all minimal surfaces.
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1 , ,
Graph Models S(A) = Jg= min|A

Goal: Combinatorial description of holographic entropies.
O

vertices = bulk pieces
edges = boundary pieces

Consider bulk preces cut out by all minimal surfaces.
Define corresponding dual graph. Then:

[ S(A) = weight of minimal cut } discrete entropy
44 /53




1 , ,
Graph Models S(A) = Jg= min|A

Goal: Combinatorial description of holographic entropies.

vertices = bulk pieces
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Consider bulk preces cut out by all minimal surfaces.
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[ S(A) = weight of minimal cut *}— discrete entropy
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1 , ,
Graph Models S(A) = Jg= min|A

Goal: Combinatorial description of holographic entropies.

vertices = bulk pieces
edges = boundary pieces

Consider bulk preces cut out by all minimal surfaces.
Define corresponding dual graph. Then:

[ S(A) = weight of minimal cut «}— discrete entropy
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Examples of Graph Models

B
A B A
v X :
C O < -
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Discrete Entropy = Ryu-Takayanagi Entropy

Trivalent graphs determine “pair of pants” decomposition of a
hyperbolic surface:

K « 0: thin collars
> S(A) = S*(A)

e )
Graph models provide a completely equivalent, combinatorial

description of holographic entropy.
- /)
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Structural Insights

Holographic entropy cones are polyhedral:

 finitely many entropy inequalities S(AB)4
 finitely many extreme rays
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Holographic Entropy Cone & CFT

The geometries constructed from graph models can be thought of
time slices of Lorentzian wormholes: [skenderis-van Rees] B o

« Each asymptotic region looks like
BTZ black hole

* Minimal surfaces can probe deep
Into the bulk

* No divergences in Ryu-Takayanagi formula

e )
Any holographic entropy vector can be explained by multiboundary

wormhole geometry.
(S /

Fine print: dual CFT state # Hartle-Hawking state; spacetimes not static, but RT can be argued to hold. 50/53



ER > EPR?

Extreme rays = entropic building blocks (for fixed n)
some require multipartite entanglement

Convex combination = disjoint union
explains entropies, but not very physical

51/53



ER > EPR?

Extreme rays = entropic building blocks (for fixed n) \‘:‘*-'::;;;;;v.f‘jj--..\\
some require multipartite entanglement Ay

Convex combination = disjoint union
explains entropies, but not very physical Yy W

Can we use local unitaries on the CFT state to
“stitch together” the geometry?

Can all smooth geometries be obtained in this way?
Can we identify building blocks in a stronger sense?
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Summa ry arXiv:1505.xxxx

Holographic entropy inequalities:
* hypercube proofs
« found several new inequalities

S(AB)

Holographic entropy cone
» Surprising new features for n>5

« Graph models & -
Lorentzian wormholes =

Many open questions: HRT, multipartite entanglement, cond-mat, ..
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Thank you for your attention
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