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Overview

There are geometric and algebraic problems, originating in invariant theory,
that are amenable to numerical optimization algorithms over groups.

Marginal & scaling problems ←→ Null cone problems

These capture a wide range of surprising applications – from algebra and
analysis to computer science and quantum information.

Plan for today:
1 Introduction to the framework
2 Panorama of applications
3 Algorithmic solution

Optimization algorithms for problems with natural symmetries!
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.

Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:
I no polynomial-time algorithms are known for graph isomorphism
I matrices equivalent under row and column operations iff equal rank;

but tensor rank is NP-hard
I derandomizing PIT implies circuit lower bounds [Kabanets-Impagliazzo]

I computing normal forms, describing moduli spaces and invariants. . .

We will see many more examples in a moment. . .
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Setup and orbit problems

Group G ⊆ GLn(C), such as GLn, SLn, or Tn = (C∗)n

Action on V = Cm by linear transformations
Orbits Gv = {g · v : g ∈ G} and their closures Gv

Example: G = C∗, V = C2

g ·
( x
y
)
=
( gx
g−1y

)

Orbit problems:
I Given v and w , are they in the same orbit? That is, is Gv = Gw?
I Robust versions: v ∈ Gw? Gv ∩ Gw 6= ∅?
I Null cone problem: 0 ∈ Gv?

Classical problems. The last two can be solved via invariants. Are there more efficient ways?
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Example: Conjugation

G = GLn, V = Matn, g · X = gXg−1


λ1 1

λ1 1
λ1

. . .


I X , Y are in same orbit iff same Jordan normal form
I X , Y have intersecting orbit closures iff same eigenvalues
I X is in null cone iff nilpotent

NB: The last two problems have a meaningful approximate version!
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Orbit problems and optimization

For concreteness, focus on the null cone problem: Is 0 ∈ Gv?

We can translate this into an optimization problem on the group G :

infg∈G ‖g · v‖ = ?

 

o

w min Hull we g

First-order condition? Clearly, the gradient at any minimizer g is zero.
Remarkably, this is also sufficient! [Kempf-Ness]

Thus, we can equivalently minimize the gradient.
Moreover, in many applications the gradient is object of primary interest!
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Summary so far

G ⊆ GLn acting linearly on V = Cm

Null cone problem: Given v , is 0 ∈ Gv?

 

o

w min Hull we g

. . . and its relaxations:

Norm minimization problem: Given v , find g ∈ G s.th. ‖g · v‖ ≈ inf.

Scaling problem: Given v ∈ V , find g ∈ G s.th. ∇‖g · v‖ ≈ 0.

I The last two problems are dual, and either can solve null cone!
I But they also provide path to other orbit problems.

Useful model problems. Plausibly solvable in polynomial time, but rich
enough to have interesting applications. Let us look at some. . .

7 / 23



Summary so far

G ⊆ GLn acting linearly on V = Cm

Null cone problem: Given v , is 0 ∈ Gv?

 

o

w min Hull we g

. . . and its relaxations:

Norm minimization problem: Given v , find g ∈ G s.th. ‖g · v‖ ≈ inf.

Scaling problem: Given v ∈ V , find g ∈ G s.th. ∇‖g · v‖ ≈ 0.

I The last two problems are dual, and either can solve null cone!
I But they also provide path to other orbit problems.

Useful model problems. Plausibly solvable in polynomial time, but rich
enough to have interesting applications. Let us look at some. . .

7 / 23



A panorama of applications
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Example: Matrix scaling (raking, IPFP, . . . )

Let X be matrix with nonnegative entries. A scaling of X is a matrix

Y =

a1
. . .

an

X

b1
. . .

bn

 (a1, . . . , bn > 0).

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X , ∃ (approximately) d.s. scalings?

Permanent (Algebra): . . . iff per(X ) > 0!
I . . . iff ∃ bipartite perfect matching in support of X
I can be decided in polynomial time
I find scalings by alternatingly fixing rows & columns , [Sinkhorn]

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .
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I . . . iff ∃ bipartite perfect matching in support of X
I can be decided in polynomial time
I find scalings by alternatingly fixing rows & columns , [Sinkhorn]

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .

V = Matn, G = Tn×Tn, (g1, g2)v = g1vg2.

Then, ∇‖g · v‖2 = (row sums, column sums) of Xij = |vij |
2.
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Example: Sinkhorn algorithm

(
1 2
4 0

)
fix rows−→

(1
3

2
3

1 0

)
fix cols−→

(1
4 1
3
4 0

)
−→ . . . −→

( 1
2t 1

2t−1
2t 0

)
after t steps. Why does it work? Permanent increases monotonically – can
be used to control convergence:

50 100 150 200

0.236

0.238

0.240

0.242

0.244

0.246

0.248

permanent

50 100 150 200

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

distance to doubly stochastic

State-of-the-art algorithms directly optimize the norm square (in disguise).
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Example: Operator scaling and non-commutative PIT

Let T (ρ) =
∑

i XiρX †i be a CP map. A scaling of T is of the form

S(ρ) = AT (BρB†)A† (A,B ∈ GLn)

Say T is quantum doubly stochastic if T (I) = T †(I) = I.

Operator scaling: Given T , ∃ approximately quantum d.s. scalings?

Polynomial identity testing: . . . iff ∃ matrices Yk s.th. det
∑

kYk ⊗Xk 6= 0.
I natural iterative algorithm: alternatingly make unital and

trace-preserving [Gurvits]

I can solve in deterministic polynomial time [Garg et al, Ivanyos et al]

When Yk restricted to scalars? Major open problem in TCS!
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Applications and connections

Invariant theory: Null cone & orbit closure intersection, moment polytopes

Analysis: Brascamp-Lieb inequalities, solution of Paulsen’s problem

Symplectic geometry: Horn’s problem ∃ A + B = C with spectrum α, β, γ?
Combinatorics: Positivity of Littlewood-Richardson coefficients

Statistics: MLE in Gaussian models, Tyler’s M-approximation
Optimization: Efficient algorithms for classes of quadratic equations

Computational complexity: Polynomial identity testing, tensor ranks
Quantum information: Marginal problems, entanglement transformations

All these are special cases of a general class of problems! We now focus on
one scenario that is in many ways ‘representative’.

12 / 23



Quantum states and marginals

Pure quantum state of d particles is described by unit-norm tensor:

X ∈ V = Cn1 ⊗ · · · ⊗ Cnd

State of individual particles described by density matrices ρ1, . . . , ρd :

tr[ρ1H1] = 〈X |H1 ⊗ I ⊗ . . .⊗ I |X 〉 ∀H1

Quantum marginal problem: Which ρ1, . . . , ρd are
consistent with a global pure state X?

Answer only depends on the eigenvalues λi of ρi !
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Examples

Two particles: ρA and ρB compatible with global pure state iff same
nonzero eigenvalues (Schmidt decomposition)

Three particles:

λA,max + λB,max 6 λC,max + 1
λA,max + λC,max 6 λB,max + 1
λB,max + λC,max 6 λA,max + 1

I necessary and sufficient for qubits [Higuchi, Sudbery, Szulc]

I follows from variational principle: λA,max = maxφA 〈φA|ρA|φA〉 etc.

14 / 23



Tensor scaling and SLOCC

A scaling of X is a tensor of the form

Y = (A1 ⊗ . . .⊗ Ad)X (Ai ∈ GLni )

I state that can be obtained by SLOCC (postselected local operations
& classical communication)

I X constrains the entanglement class

Tensor scaling problem: Which ρ1, . . . , ρd arise from scaling of given X?

I e.g. for ρi ∝ I, each system maximally entangled with rest
(= locally maximally mixed = quantum version of stochastic tensor)

I again, answer only depends on eigenvalues λi of ρi
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Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem is encoded by:

∆(X ) =
{
(λ1, . . . ,λd) for scalings of X (and limits)

}
⊆ Rdn

e.g., for three qubits, GHZ = |000〉+ |111〉 and
W = |100〉+ |010〉+ |001〉:

In general, always convex polytopes: [Kirwan, Mumford]

I encode local info about entanglement [W-Christandl-Doran-Gross, Sawicki et al]

I encode recent notions of tensor ranks [Christandl et al, Derksen]

However, explicit description intractable. [Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.]

Exponential number of vertices and facets!

We provide algorithmic solution!
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Geodesic optimization algorithms

 

o

w min Hull we g
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The Algorithm

Given state X , want to find scaling Y with desired marginals – whenever
possible. For simplicity, uniform marginals (ρi ∝ I, λi ∝ 1) and d = 3.

Algorithm: Start with Y = X . For t = 1, . . . ,T :
Compute marginals ρ1, ρ2, ρ3 of Y . If ε-close to uniform, stop.
Otherwise, replace Y by (e−ηρo

1 ⊗ e−ηρo
2 ⊗ e−ηρo

3))Y . Xo = traceless part

η = suitable step size

Theorem
Algorithm finds Y = (A1 ⊗ A2 ⊗ A3)X with marginals ε-close to uniform
within T = poly( 1ε , input size) steps.

I generalizes to arbitrary λi , d > 3, (anti)symmetric tensors, MPS, . . .
I can run on quantum computer (but how well? ,)
I solve quantum marginal problem by using random X

cf. algorithm by Verstraete et al which we analyzed in prior work 18 / 23



Why does it work?

“Otherwise, replace Y by (e−ηρo
1 ⊗ e−ηρo

2 ⊗ e−ηρo
3 )Y .”

Consider the problem of minimizing the norm

N(A1,A2,A3) = ‖(A1 ⊗ A2 ⊗ A3)X‖ (Ai ∈ SLni )

Its derivative in direction given by traceless H1, H2, H3 is

∂t=0N(etH1 , etH2 , etH3) = tr[ρo
1H1] + tr[ρo

2H2] + tr[ρo
CH3].

Therefore, the gradient can be identified with ∇N = (ρo
1, ρ

o
2, ρ

o
3).

I Algorithm implements geodesic gradient descent. . .
I . . . and minimizing the gradient makes the marginals uniform! ,

How to make quantitative? What is the big picture?
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Non-commutative optimization

In general, consider N(g) = ‖g · X‖.

We discussed that the following optimization problems are equivalent:

infg∈G N(g) ⇐⇒ infg∈G ‖∇N(g)‖ [Kempf-Ness]

I primal: norm minimization, dual: scaling problem
I non-commutative version of linear programming duality

We develop quantitative duality theory and 1st & 2nd order methods.

All examples from introduction fall into this framework.
Numerical algorithms that solve algebraic problems!

Everything works for general actions of reductive G. Norm is log-convex along geodesics.
20 / 23



Geodesic convexity

Why does the duality hold? Consider geodesics gt = etHg in the group G .

Proposition: N(g) = ‖g · v‖ satisfies along these geodesics:
1 convexity: ∂2t=0N(gt) > 0
2 smoothness: ∂2t=0N(gt) 6 2C2‖H‖2F

C is typically small, upper-bounded by degree of action.

Smoothness implies that

N(eHg) 6 N(g) +∇N(g) · H + C2‖H‖2F .

Thus, gradient descent makes progress if steps not too large!
21 / 23



Analysis of Algorithm

“Unless ε-close to uniform, replace Y by (e−ηρo
1 ⊗ e−ηρo

2 ⊗ e−ηρo
3 )Y .”

To obtain rigorous algorithm, show:
I progress in each step: ‖Ynew‖ 6 (1− c1ε)‖Y ‖
I a priori lower bound: infdet=1‖(A1 ⊗ A2 ⊗ A3)X‖ > c2

Then, (1− c1ε)T > c2 bounds the number of steps T .

The first point follows from smoothness, as just discussed.

For the second, construct ‘explicit’ invariants with ‘small’ coefficients, so
that P(X ) 6= 0 implies bound in terms of bitsize of X .
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Summary and outlook

Marginal & scaling problems
l duality

Norm minimization & null cone

Effective algorithms for large class of optimization problems over groups,
incl. quantum marginal and tensor scaling problems. Based on geodesic
convex optimization and geometric invariant theory.

Many exciting directions:
I Polynomial-time algorithms in all cases?
I Better tools for geodesic optimization? Quantum algorithms?
I Tensors in quantum information are often special. Implications?
I Can we tackle other problems with natural symmetries?

Thank you for your attention!
23 / 23



A general equivalence V ⊆ P(V )

All points in ∆(V) can be described via invariant theory:

Vλ ⊆ C[V](k) ⇒ λ

k ∈ ∆(V)

(λ highest weight, k degree)

I Can also study multiplicities g(λ, k) := #Vλ ⊆ C[V](k).
I This leads to interesting computational problems:

g =? g > 0? ∃s > 0 : g(sλ, sk) > 0?

(#-hard) (NP-hard) (our problem!)

Completely unlike Horn’s problem: Knutson-Tao saturation property does
not hold, and hence we can hope for efficient algorithms!

1 / 1
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