Hidden Symmetries II: Noncommutative Duality, Geodesic Convexity, Polytopes

Michael Walter (University of Amsterdam)

based on joint works with Peter Bürgisser, Levent Dogan, Cole Franks, Ankit Garg, Visu Makam, Harold Nieuwboer, Rafael Oliveira, Avi Wigderson

Geometric Methods in Optimization and Sampling Boot Camp Simons Institute, Berkeley 2021

Recap of Part I

Alternating minimization - one algorithm that solves two problems:

- matrix, operator, tensor scaling with many applications
- null cone membership in invariant theory: $0 \in \overline{G v}$?

Hidden symmetries: Algorithm moves inside group $G=G_{1} \times \cdots \times G_{d}$. Invariants key to analysis (permanent, Ω-process, ...).

Three questions:

- Why should a simple "greedy" algorithm work?
- What is the connection between scaling and null cone?
- How to go beyond multilinear actions of product groups?
simultaneous conjugation, symmetric tensor scaling,

Recap of Part I

Alternating minimization - one algorithm that solves two problems:

- matrix, operator, tensor scaling with many applications
- null cone membership in invariant theory: $0 \in \overline{G v}$?

Hidden symmetries: Algorithm moves inside group $G=G_{1} \times \cdots \times G_{d}$. Invariants key to analysis (permanent, Ω-process, ...).

Three questions:

- Why should a simple "greedy" algorithm work?
- What is the connection between scaling and null cone?
- How to go beyond multilinear actions of product groups?
E.g., simultaneous conjugation, symmetric tensor scaling, ...

Plan for Part II

(1) Group actions and optimization
(2) From Euclidean to geodesic convexity
(3) Noncommutative duality
(9) Algorithms for geodesic optimization
(5) Polytopes and nonuniform scaling

Big picture: Null cone, optimization, and scaling

Is $0 \in \overline{G v}$?

Big picture: Null cone, optimization, and scaling

Is $P(v)=P(0)$ for every invariant polynomial P ?
Algebra

Big picture: Null cone, optimization, and scaling

Is $P(v)=P(0)$ for every invariant polynomial P ?
Algebra

Minimize $\|g \cdot v\|$ over $g \in G$.
Norm Minimization

Big picture: Null cone, optimization, and scaling

Is $P(v)=P(0)$ for every invariant polynomial P ? Algebra

Minimize $\|g \cdot v\|$ over $g \in G$.
Norm Minimization
Find $g \in G$ s.th. $\nabla_{g}\|g \cdot v\| \approx 0$.
Scaling Problem

Big picture: Null cone, optimization, and scaling

Is $P(v)=P(0)$ for every invariant polynomial P ? Algebra

Minimize $\|g \cdot v\|$ over $g \in G$.
Norm Minimization
Scaling Problem

Big picture: Null cone, optimization, and scaling

Is $P(v)=P(0)$ for every invariant polynomial P ?
Algebra

Minimize $\|g \cdot v\|$ over $g \in G$.
Norm Minimization

Let's get started!
Scaling Problem

Polytopes

Setup

Group $G \subseteq G L_{n}(\mathbb{C})$ "nice" (reductive), such as $\mathrm{GL}_{n}, \mathrm{SL}_{n}$, or $\mathrm{T}_{n}=\left(\mathbb{C}^{*}\right)^{n}$
Action on $V=\mathbb{C}^{m}$ by linear transformations
Orbits $G v=\{g \cdot v: g \in G\}$ and their closures $\overline{G v}$

Example: $G=\mathbb{C}^{*}, V=\mathbb{C}^{2}$

$$
g \cdot\binom{x}{y}=\binom{g x}{g^{-1} y}
$$

The minimum ℓ^{2}-norm in an orbit closure is called the capacity:

- the basic optimization problem that we wish to solve!
- generalizes notions of matrix, polynomial, operator capacity

Setup

Group $G \subseteq G L_{n}(\mathbb{C})$ "nice" (reductive), such as $\mathrm{GL}_{n}, \mathrm{SL}_{n}$, or $\mathrm{T}_{n}=\left(\mathbb{C}^{*}\right)^{n}$
Action on $V=\mathbb{C}^{m}$ by linear transformations
Orbits $G v=\{g \cdot v: g \in G\}$ and their closures $\overline{G v}$

$$
\text { Example: } G=\mathbb{C}^{*}, V=\mathbb{C}^{2}
$$

$$
g \cdot\binom{x}{y}=\binom{g x}{g^{-1} y}
$$

The minimum ℓ^{2}-norm in an orbit closure is called the capacity:

$$
\operatorname{cap}(v):=\inf _{g \in G}\|g \cdot v\|=\min _{w \in \overline{G v}}\|w\|
$$

- the basic optimization problem that we wish to solve!
- generalizes notions of matrix, polynomial, operator capacity

Setup

Group $G \subseteq G L_{n}(\mathbb{C})$ "nice" (reductive), such as $\mathrm{GL}_{n}, \mathrm{SL}_{n}$, or $\mathrm{T}_{n}=\left(\mathbb{C}^{*}\right)^{n}$
Action on $V=\mathbb{C}^{m}$ by linear transformations
Orbits $G v=\{g \cdot v: g \in G\}$ and their closures $\overline{G v}$

$$
\text { Example: } G=\mathbb{C}^{*}, V=\mathbb{C}^{2}
$$

$$
g \cdot\binom{x}{y}=\binom{g x}{g^{-1} y}
$$

The minimum ℓ^{2}-norm in an orbit closure is called the capacity:

$$
\operatorname{cap}(v):=\inf _{g \in G}\|g \cdot v\|=\min _{w \in \overline{G v}}\|w\|
$$

- the basic optimization problem that we wish to solve!
- generalizes notions of matrix, polynomial, operator capacity

Warmup: Commutative Group Actions

Example: Matrix scaling revisited

Let $G=\mathrm{T}_{n}(\mathbb{C}) \times \mathrm{T}_{n}(\mathbb{C})$ act on $V=\mathrm{Mat}_{n}(\mathbb{C})$ by row-column scaling:

$$
(g, h) \cdot M=\left(\begin{array}{llll}
g_{1} & & \\
& \ddots & \\
& \ddots & g_{n}
\end{array}\right) M\left(\begin{array}{lll}
h_{1} & & \\
& & \\
& & \\
& & h_{n}
\end{array}\right)
$$

Capacity:

Gradient:

$$
\nabla_{x=y=0} \log (\ldots)=(\mathbf{r}(M), \mathbf{c}(M))
$$

where $\mathbf{r}(M), \mathbf{c}(M)$ row and column sums of matrix with entries $\frac{\left|M_{i j}\right|^{2}}{\|M\|^{2}}$

Norm minimization and matrix scaling are equivalent! (:) Motivates why Sinkhorn solves either and is starting point for cutting-edge algorithms.

Example: Matrix scaling revisited

Let $G=\mathrm{T}_{n}(\mathbb{C}) \times \mathrm{T}_{n}(\mathbb{C})$ act on $V=\mathrm{Mat}_{n}(\mathbb{C})$ by row-column scaling:

$$
(g, h) \cdot M=\left(\begin{array}{llll}
g_{1} & & \\
& \ddots & \\
& \ddots & g_{n}
\end{array}\right) M\left(\begin{array}{lll}
h_{1} & & \\
& & \\
& & \\
& & h_{n}
\end{array}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i, j}\left|g_{i} M_{i j} h_{j}\right|^{2}
$$

Gradient:

Norm minimization and matrix scaling are equivalent! © Motivates why Sinkhorn solves either and is starting point for cutting-edge algorithms.

Example: Matrix scaling revisited

Let $G=\mathrm{T}_{n}(\mathbb{C}) \times \mathrm{T}_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})$ by row-column scaling:

$$
(g, h) \cdot M=\left(\begin{array}{llll}
g_{1} & & \\
& \ddots & \\
& & g_{n}
\end{array}\right) M\left(\begin{array}{lll}
h_{1} & & \\
& & \\
& & \\
& & h_{n}
\end{array}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i, j}\left|g_{i} M_{i j} h_{j}\right|^{2}=\inf _{x, y \in \mathbb{R}^{n}} \sum_{i, j}\left|M_{i j}\right|^{2} e^{x_{i}+y_{j}}
$$

- geometric program, log-convex in x, y

Gradient:

Example: Matrix scaling revisited

Let $G=\mathrm{T}_{n}(\mathbb{C}) \times \mathrm{T}_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})$ by row-column scaling:

$$
(g, h) \cdot M=\left(\begin{array}{lll}
g_{1} & & \\
& \ddots & \\
& & g_{n}
\end{array}\right) M\left(\begin{array}{lll}
h_{1} & & \\
& & \\
& & \\
& & h_{n}
\end{array}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i, j}\left|g_{i} M_{i j} h_{j}\right|^{2}=\inf _{x, y \in \mathbb{R}^{n}} \sum_{i, j}\left|M_{i j}\right|^{2} e^{x_{i}+y_{j}}
$$

- geometric program, log-convex in x, y

Gradient:

$$
\nabla_{x=y=0} \log (\ldots)=(\mathbf{r}(M), \mathbf{c}(M))
$$

where $\mathbf{r}(M), \mathbf{c}(M)$ row and column sums of matrix with entries $\frac{\left|M_{i j}\right|^{2}}{\|M\|^{2}}$.
Norm minimization and matrix scaling are equivalent! (3) Motivates why Sinkhorn solves either and is starting point for cutting-edge algorithms.

Example: Matrix scaling revisited

Let $G=\mathrm{ST}_{n}(\mathbb{C}) \times \mathrm{ST}_{n}(\mathbb{C})$ act on $V=\mathrm{Mat}_{n}(\mathbb{C})$ by row-column scaling:

$$
(g, h) \cdot M=\left(\begin{array}{lll}
g_{1} & & \\
& \ddots & \\
& & g_{n}
\end{array}\right) M\left(\begin{array}{lll}
h_{1} & & \\
& \ddots & \\
& & h_{n}
\end{array}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i, j}\left|g_{i} M_{i j} h_{j}\right|^{2}=\inf _{x, y \in \mathbb{R}_{\Sigma=0}^{n}} \sum_{i, j}\left|M_{i j}\right|^{2} e^{x_{i}+y_{j}}
$$

- geometric program, log-convex in x, y

Gradient:

$$
\nabla_{x=y=0} \log (\ldots)=(\mathbf{r}(M), \mathbf{c}(M))-\frac{1}{n}(\mathbf{1}, \mathbf{1})
$$

where $\mathbf{r}(M), \mathbf{c}(M)$ row and column sums of matrix with entries $\frac{\left|M_{i j}\right|^{2}}{\|M\|^{2}}$.
Norm minimization and matrix scaling are equivalent! © Motivates why Sinkhorn solves either and is starting point for cutting-edge algorithms.

Example: Laurent polynomials

$G=\mathrm{T}_{n}(\mathbb{C})$ acts on Laurent polynomials in n variables by scaling:

$$
P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} Z^{\omega} \quad \Rightarrow \quad g \cdot P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} g^{\omega} Z^{\omega}
$$

- again geometric program, log-convex in x

Example: Laurent polynomials

$G=\mathrm{T}_{n}(\mathbb{C})$ acts on Laurent polynomials in n variables by scaling:

$$
P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} Z^{\omega} \quad \Rightarrow \quad g \cdot P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} g^{\omega} Z^{\omega}
$$

Capacity:

$$
\operatorname{cap}(P)^{2}=\inf _{g \in \mathrm{~T}_{n}} \sum_{\omega}\left|p_{\omega}\right|^{2}\left|g^{\omega}\right|^{2}=\inf _{x \in \mathbb{R}^{n}} \sum_{\omega}\left|p_{\omega}\right|^{2} e^{x \cdot \omega}
$$

- again geometric program, log-convex in x

Example: Laurent polynomials

$G=\mathrm{T}_{n}(\mathbb{C})$ acts on Laurent polynomials in n variables by scaling:

$$
P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} Z^{\omega} \quad \Rightarrow \quad g \cdot P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} g^{\omega} Z^{\omega}
$$

Capacity:

$$
\operatorname{cap}(P)^{2}=\inf _{g \in \mathrm{~T}_{n}} \sum_{\omega}\left|p_{\omega}\right|^{2}\left|g^{\omega}\right|^{2}=\inf _{x \in \mathbb{R}^{n}} \sum_{\omega}\left|p_{\omega}\right|^{2} e^{x \cdot \omega}
$$

- again geometric program, log-convex in x
- $\operatorname{cap}(P)>0$ iff $0 \in$ Newton polytope of P

Example: Laurent polynomials

$G=\mathrm{T}_{n}(\mathbb{C})$ acts on Laurent polynomials in n variables by scaling:

$$
P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} Z^{\omega} \quad \Rightarrow \quad g \cdot P=\sum_{\omega \in \mathbb{Z}^{n}} p_{\omega} g^{\omega} Z^{\omega}
$$

Capacity:

$$
\operatorname{cap}(P)^{2}=\inf _{g \in \mathrm{~T}_{n}} \sum_{\omega}\left|p_{\omega}\right|^{2}\left|g^{\omega}\right|^{2}=\inf _{x \in \mathbb{R}^{n}} \sum_{\omega}\left|p_{\omega}\right|^{2} e^{x \cdot \omega}
$$

- again geometric program, log-convex in x
- $\operatorname{cap}(P)>0$ iff $0 \in$ Newton polytope of P

Gradient:

$$
\nabla_{x=0} \log (\ldots)=\frac{\sum_{\omega}\left|p_{\omega}\right|^{2} \omega}{\sum_{\omega}\left|p_{\omega}\right|^{2}}
$$

Any action of T_{n} is essentially of this form. Rich and nontrivial!

From Euclidean to geodesic convexity

Norm minimization and gradient

We want to minimize the function:

$$
F: G \rightarrow \mathbb{R}, \quad F(g):=\log \|g \cdot v\|
$$

Consider $G=G L_{n}$. By the polar decomposition, if U_{n} preserves the norm we can restrict the minimization to:

$$
\mathrm{PD}_{n}=\left\{p=e^{X}: X \in \operatorname{Herm}_{n}\right\}
$$

The gradient after this change of variables is called the moment map:

- Riemannian gradient at $p=I$, as a function of v
- Hamiltonian physics, symplectic geometry
- It turns out that $\mu(v)=0$ captures natural scaling problems!

Analogously for, e.g., $G=S L_{n} \leadsto X$ traceless.

Norm minimization and gradient

We want to minimize the function:

$$
F: G \rightarrow \mathbb{R}, \quad F(g):=\log \|g \cdot v\|
$$

Consider $G=G L_{n}$. By the polar decomposition, if U_{n} preserves the norm we can restrict the minimization to:

$$
\mathrm{PD}_{n}=\left\{p=e^{X}: X \in \operatorname{Herm}_{n}\right\}
$$

The gradient after this change of variables is called the moment map:

- Riemannian gradient at $p=I$, as a function of v
- Hamiltonian physics, symplectic geometry
- It turns out that $\mu(v)=0$ captures natural scaling problems!

Norm minimization and gradient

We want to minimize the function:

$$
F: G \rightarrow \mathbb{R}, \quad F(g):=\log \|g \cdot v\|
$$

Consider $G=G L_{n}$. By the polar decomposition, if U_{n} preserves the norm we can restrict the minimization to:

$$
\mathrm{PD}_{n}=\left\{p=e^{X}: X \in \operatorname{Herm}_{n}\right\}
$$

The gradient after this change of variables is called the moment map:
$\mu: V \backslash\{0\} \rightarrow \operatorname{Herm}_{n}, \quad \mu(v)=\nabla_{X=0} F\left(e^{X}\right)$

- Hamiltonian physics, symplectic geometry
- It turns out that $\mu(v)=0$ captures natural scaling problems!

Norm minimization and gradient

We want to minimize the function:

$$
F: G \rightarrow \mathbb{R}, \quad F(g):=\log \|g \cdot v\|
$$

Consider $G=G L_{n}$. By the polar decomposition, if U_{n} preserves the norm we can restrict the minimization to:

$$
\mathrm{PD}_{n}=\left\{p=e^{X}: X \in \operatorname{Herm}_{n}\right\}
$$

The gradient after this change of variables is called the moment map:

$$
\mu: V \backslash\{0\} \rightarrow \operatorname{Herm}_{n}, \quad \mu(v)=\nabla_{X=0} F\left(e^{X}\right)=\nabla_{p=1} F(p)
$$

- Riemannian gradient at $p=I$, as a function of v
- Hamiltonian physics, symplectic geometry
- It turns out that $\mu(v)=0$ captures natural scaling problems!

Analogously for, e.g., $G=\mathrm{SL}_{n} \leadsto X$ traceless.

Example: Operator scaling revisited

Let $G=\mathrm{GL}_{n}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})^{\oplus d}$ by left-right action:

$$
(g, h) \cdot\left(M_{1}, \ldots, M_{d}\right)=\left(g M_{1} h^{-1}, \ldots, g M_{d} h^{-1}\right)
$$

Capacity:

Moment map (gradient):

Example: Operator scaling revisited

Let $G=\mathrm{GL}_{n}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})^{\oplus d}$ by left-right action:

$$
(g, h) \cdot\left(M_{1}, \ldots, M_{d}\right)=\left(g M_{1} h^{-1}, \ldots, g M_{d} h^{-1}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i=1}^{d}\left\|g M_{i} h^{-1}\right\|_{F}^{2}
$$

$$
\text { If we restrict to } G=\mathrm{SL}_{n} \times \mathrm{SL}_{n} \text { : captures operator scaling! }
$$

Example: Operator scaling revisited

Let $G=\mathrm{GL}_{n}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})^{\oplus d}$ by left-right action:

$$
(g, h) \cdot\left(M_{1}, \ldots, M_{d}\right)=\left(g M_{1} h^{-1}, \ldots, g M_{d} h^{-1}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i=1}^{d}\left\|g M_{i} h^{-1}\right\|_{F}^{2}=\inf _{X, Y \in \operatorname{Herm}_{n}} \sum_{i=1}^{d} \operatorname{tr} e^{X} M_{i} e^{-Y} M_{i}^{*}
$$

Moment map (gradient):

Example: Operator scaling revisited

Let $G=\mathrm{GL}_{n}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})^{\oplus d}$ by left-right action:

$$
(g, h) \cdot\left(M_{1}, \ldots, M_{d}\right)=\left(g M_{1} h^{-1}, \ldots, g M_{d} h^{-1}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i=1}^{d}\left\|g M_{i} h^{-1}\right\|_{F}^{2}=\inf _{X, Y \in \operatorname{Herm}_{n}} \sum_{i=1}^{d} \operatorname{tr} e^{X} M_{i} e^{-Y} M_{i}^{*}
$$

Moment map (gradient):

$$
\mu(M)=\frac{1}{\|M\|^{2}}\left(\sum_{i=1}^{d} M_{i} M_{i}^{*},-\sum_{i=1}^{d} M_{i}^{*} M_{i}\right)
$$

If we restrict to $G=S L_{n} \times \mathrm{SL}_{n}$: captures operator scaling!

Example: Operator scaling revisited

Let $G=G L_{n}(\mathbb{C}) \times G L_{n}(\mathbb{C})$ act on $V=\operatorname{Mat}_{n}(\mathbb{C})^{\oplus d}$ by left-right action:

$$
(g, h) \cdot\left(M_{1}, \ldots, M_{d}\right)=\left(g M_{1} h^{-1}, \ldots, g M_{d} h^{-1}\right)
$$

Capacity:

$$
\operatorname{cap}(M)^{2}=\inf _{g, h} \sum_{i=1}^{d}\left\|g M_{i} h^{-1}\right\|_{F}^{2}=\inf _{X, Y \in \operatorname{Herm}_{n}} \sum_{i=1}^{d} \operatorname{tr} e^{X} M_{i} e^{-Y} M_{i}^{*}
$$

Moment map (gradient):

$$
\mu(M)=\frac{1}{\|M\|^{2}}\left(\sum_{i=1}^{d} M_{i} M_{i}^{*},-\sum_{i=1}^{d} M_{i}^{*} M_{i}\right)
$$

If we restrict to $G=S L_{n} \times S L_{n}$: captures operator scaling!

However, the objective is not convex in X, Y.

Geodesic convexity

Why does the equivalence between norm minimization and scaling hold?

$$
F: \mathrm{PD}_{n} \rightarrow \mathbb{R}, \quad F(p):=\log \|p \cdot v\|
$$

is convex along the curves $e^{X t}$ for any $X \in \operatorname{Herm}_{n}$, which are geodesics for a natural Riemannian metric on PD_{n}. That is, F is geodesically convex!

Proof? $\left\{e^{X t}\right\}=$ commutative subgroup \Rightarrow Laurent polynomials ©
Just like in the Euclidean case, geodesic convexity implies that critical points are global minima:

$$
\|v\|=\operatorname{cap}(v) \quad \Leftrightarrow \quad \mu(v)=0
$$

Geodesic convexity

Why does the equivalence between norm minimization and scaling hold?

$$
F: \mathrm{PD}_{n} \rightarrow \mathbb{R}, \quad F(p):=\log \|p \cdot v\|
$$

is convex along the curves $e^{X t}$ for any $X \in \operatorname{Herm}_{n}$, which are geodesics for a natural Riemannian metric on PD_{n}. That is, F is geodesically convex!

Proof? $\left\{e^{X t}\right\}=$ commutative subgroup \Rightarrow Laurent polynomials \odot
Just like in the Euclidean case, geodesic convexity implies that critical points are global minima:

Geodesic convexity

Why does the equivalence between norm minimization and scaling hold?

$$
F: \mathrm{PD}_{n} \rightarrow \mathbb{R}, \quad F(p):=\log \|p \cdot v\|
$$

is convex along the curves $e^{X t}$ for any $X \in \operatorname{Herm}_{n}$, which are geodesics for a natural Riemannian metric on PD_{n}. That is, F is geodesically convex!

Proof $?\left\{e^{X t}\right\}=$ commutative subgroup \Rightarrow Laurent polynomials \odot
Just like in the Euclidean case, geodesic convexity implies that critical points are global minima:

$$
\|v\|=\operatorname{cap}(v) \quad \Leftrightarrow \quad \mu(v)=0
$$

Geodesic convexity

Why does the equivalence between norm minimization and scaling hold?

$$
F: \mathrm{PD}_{n} \rightarrow \mathbb{R}, \quad F(p):=\log \|p \cdot v\|
$$

is convex along the curves $e^{X t}$ for any $X \in \operatorname{Herm}_{n}$, which are geodesics for a natural Riemannian metric on PD_{n}. That is, F is geodesically convex!

Proof $?\left\{e^{X t}\right\}=$ commutative subgroup \Rightarrow Laurent polynomials \odot
Just like in the Euclidean case, geodesic convexity implies that critical points are global minima:

$$
\|v\|=\operatorname{cap}(v) \quad \Leftrightarrow \quad \mu(v)=0
$$

How convex for given action? Necessary for algorithms!

Geodesic convexity made quantitative

The objective $F(p)=\log \|p \cdot v\|$ is geodesically smooth, meaning

$$
\partial_{t}^{2} F\left(e^{X t}\right) \leqslant L\|X\|^{2}
$$

(;) norm minimization \Leftrightarrow scaling in a quantitative way
(). null cone membership reduces to solving either
(3) scaling is possible iff not in null cone

Geodesic convexity made quantitative

The objective $F(p)=\log \|p \cdot v\|$ is geodesically smooth, meaning

$$
\partial_{t}^{2} F\left(e^{X t}\right) \leqslant L\|X\|^{2}
$$

Noncommutative duality estimates

$$
1-\frac{\|\mu(v)\|}{\gamma} \leqslant \frac{\operatorname{cap}(v)^{2}}{\|v\|^{2}} \leqslant 1-\frac{\|\mu(v)\|^{2}}{2 L}
$$

() norm minimization \Leftrightarrow scaling in a quantitative way
(.) null cone membership reduces to solving either
() scaling is possible iff not in null cone

Noncommutative duality

The objective $F(p)=\log \|p \cdot v\|$ is geodesically smooth, meaning

$$
\partial_{t}^{2} F\left(e^{X t}\right) \leqslant L\|X\|^{2}
$$

Noncommutative duality estimates

$$
1-\frac{\|\mu(v)\|}{\gamma} \leqslant \frac{\operatorname{cap}(v)^{2}}{\|v\|^{2}} \leqslant 1-\frac{\|\mu(v)\|^{2}}{2 L}
$$

() norm minimization \Leftrightarrow scaling in a quantitative way
© null cone membership reduces to solving either
© scaling is possible iff not in null cone

Noncommutative duality

The objective $F(p)=\log \|p \cdot v\|$ is geodesically smooth, meaning

$$
\partial_{t}^{2} F\left(e^{X t}\right) \leqslant L\|X\|^{2}
$$

Noncommutative duality estimates

$$
1-\frac{\|\mu(v)\|}{\gamma} \leqslant \frac{\operatorname{cap}(v)^{2}}{\|v\|^{2}} \leqslant 1-\frac{\|\mu(v)\|^{2}}{2 L}
$$

() norm minimization \Leftrightarrow scaling in a quantitative way
© null cone membership reduces to solving either
©. scaling is possible iff not in null cone

Parameters L, γ depend on combinatorial data of action.

Interlude: Weights of action

Take any action of GL_{n}. If we restrict to $\mathrm{T}_{n}=(\because \cdot)$, can find basis of $V \cong \mathbb{C}^{m}$ s.th. action equivalent to scaling Laurent polys. The exponents

$$
\Omega=\left\{\omega_{1}, \ldots, \omega_{m}\right\} \subseteq \mathbb{Z}^{n}
$$

are called weights, and they completely characterize the action.

Their geometry determine the geodesic convexity parameters L,

Interlude: Weights of action

Take any action of GL_{n}. If we restrict to $\mathrm{T}_{n}=(\ddots$.$) , can find basis of$ $V \cong \mathbb{C}^{m}$ s.th. action equivalent to scaling Laurent polys. The exponents

$$
\Omega=\left\{\omega_{1}, \ldots, \omega_{m}\right\} \subseteq \mathbb{Z}^{n}
$$

are called weights, and they completely characterize the action.

Their geometry determine the geodesic convexity parameters L, γ.

Summary so far: Noncommutative group optimization [BFGowm]

Action of "nice" $G \subseteq \mathrm{GL}_{n}$ on $V \cong \mathbb{C}^{m}, \quad \mu(v)=\nabla_{p=1} \log \|p \cdot v\|$.

Minimize $\|g \cdot v\|$ over $g \in G$.
Norm Minimization

$$
\text { Is } 0 \in \overline{G v} ?
$$

$$
\sqrt[\mathbf{g}_{\text {-convexity }}^{\text {NC-duality }}]{\text { Find } g \in G \text { s.th. } \mu(g \cdot v) \approx 0 \text {. }}
$$

Scaling Problem

- Geodesic convexity explains why simple greedy algorithms can work.
- Scaling, norm minimization, and null cone related in quantitative way.
- Non-commutative generalization of convex programming duality.
- All examples (not) discussed in Avi' talk fall into this framework.

Interlude: Beyond GL_{n} and SL_{n}

All the preceding generalizes to complex reductive groups - not just SL_{n}, $\mathrm{T}_{n}, \mathrm{ST}_{n}$, and products thereof. Concretely, this means a subgroup

$$
G \subseteq G L_{n}(\mathbb{C})
$$

defined by polynomial equations that is closed under taking adjoints.
Any such group has a polar decomposition $g=u p$, so we can reduce to

$$
G \cap P D_{n}=\left\{g^{*} g: g \in G\right\} .
$$

This is a Hadamard manifold (in fact a symmetric space of noncompact type), a particularly nice Riemannian manifold of nonpositive curvature.

NB: Nonpositive curvature poses unique challenges for optimization.

Algorithms

First order algorithm for scaling ("gradient descent")

Idea: Repeatedly perform geodesic gradient steps

$$
g \leftarrow e^{-\frac{1}{L} \nabla F(g)} g=e^{-\frac{1}{L} \mu(g \cdot v)} g .
$$

> Theorem
> Let $v \in V$ be not in the null cone. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \varepsilon$ within $T=\operatorname{poly}\left(\frac{1}{\varepsilon}\right.$, input size $)$ steps.

> Analysis: Smoothness implies F decreases in each step (Nicholas's talk). Combine with a priori lower bound obtained using constructive invariant theory (Avi's talk),

First order algorithm for scaling ("gradient descent")

Idea: Repeatedly perform geodesic gradient steps

$$
g \leftarrow e^{-\frac{1}{L} \nabla F(g)} g=e^{-\frac{1}{L} \mu(g \cdot v)} g .
$$

Theorem

Let $v \in V$ be not in the null cone. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \varepsilon$ within $T=\operatorname{poly}\left(\frac{1}{\varepsilon}\right.$, input size $)$ steps.

Analysis: Smoothness implies F decreases in each step (Nicholas's talk). Combine with a priori lower bound obtained using constructive invariant theory (Avi's talk).

Same algorithm solves null cone problem in time poly $\left(\frac{1}{\gamma}\right.$, input size $)$

First order algorithm for scaling ("gradient descent")

Idea: Repeatedly perform geodesic gradient steps

$$
g \leftarrow e^{-\frac{1}{L} \nabla F(g)} g=e^{-\frac{1}{L} \mu(g \cdot v)} g .
$$

Theorem

Let $v \in V$ be not in the null cone. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \varepsilon$ within $T=\operatorname{poly}\left(\frac{1}{\varepsilon}\right.$, input size $)$ steps.

Analysis: Smoothness implies F decreases in each step (Nicholas's talk). Combine with a priori lower bound obtained using constructive invariant theory (Avi's talk).

Corollary

Same algorithm solves null cone problem in time poly ($\frac{1}{\gamma}$, input size).

Second order algorithm for norm minimization

Rough idea: Minimize local quadratic approximation (after regularization)

$$
Q(H)=F(g)+\nabla F(g)[H]+\frac{1}{2} \nabla^{2} F(g)[H, H] \approx F\left(e^{H} g\right)
$$

on small neighborhoods, where it can be trusted. Need F "robust".

Theorem

Let $v \in V$ be not in the null cone. Then the algorithm outputs $g \in G$ such that $F(g) \leqslant \inf _{g \in G} F(g)+\varepsilon$ within $T=$ poly $\left(\log \frac{1}{\varepsilon}\right.$, input size, $\left.\frac{1}{\gamma}\right)$ steps.

Analysis: Complexity depends on neighborhood size and diameter bound. Former is controlled by weight norm L, latter by inverse weight margin $\frac{1}{\gamma}$.

Second order algorithm for norm minimization

Rough idea: Minimize local quadratic approximation (after regularization)

$$
Q(H)=F(g)+\nabla F(g)[H]+\frac{1}{2} \nabla^{2} F(g)[H, H] \approx F\left(e^{H} g\right)
$$

on small neighborhoods, where it can be trusted. Need F "robust".

Theorem

Let $v \in V$ be not in the null cone. Then the algorithm outputs $g \in G$ such that $F(g) \leqslant \inf _{g \in G} F(g)+\varepsilon$ within $T=$ poly $\left(\log \frac{1}{\varepsilon}\right.$, input size, $\left.\frac{1}{\gamma}\right)$ steps.

Analysis: Complexity depends on neighborhood size and diameter bound. Former is controlled by weight norm L, latter by inverse weight margin $\frac{1}{\gamma}$.

State of the art: Two general algorithms for geodesic convex optimization, which can solve norm minimization, scaling, null cone. Polynomial time for many interesting actions - but not always!

Polytopes

Moment maps and polytopes

Recall the scaling problem: Given $v \in V$, find $g \in G$ s.th. $\mu(g \cdot v) \approx 0$.

- depending on the action, $\mu=0$ means doubly stochastic matrix, isotropic frame, ..., uniform marginals

Possible marginals are captured by

- if $G=T_{n}$ commutative, simply a Newton polytope
- in general, still convex polytope if defined properly (magically!), but arise without explicit vertices or facets! [Kirwan, Mumford, Brion,

Moment maps and polytopes

Recall the scaling problem: Given $v \in V$, find $g \in G$ s.th. $\mu(g \cdot v) \approx 0$.

- depending on the action, $\mu=0$ means doubly stochastic matrix, isotropic frame, ..., uniform marginals

Nonuniform scaling problem:
Given $v \in V$ and p, find $g \in G$ s.th. $\mu(g \cdot v) \approx p$.

Possible marginals are captured by

- if $G=T_{n}$ commutative, simply a Newton polytope
- in general, still convex polytope if defined properly (magically!), but arise without explicit vertices or facets! [Kirwan, Mumford, Brion,

Moment maps and polytopes

Recall the scaling problem: Given $v \in V$, find $g \in G$ s.th. $\mu(g \cdot v) \approx 0$.

- depending on the action, $\mu=0$ means doubly stochastic matrix, isotropic frame, ..., uniform marginals

Nonuniform scaling problem:
Given $v \in V$ and p, find $g \in G$ s.th. $\mu(g \cdot v) \approx p$.

Possible marginals are captured by

$$
\Delta(v)=\{\mathbf{p}: \exists w \in \overline{G v}: \mu(w)=\mathbf{p}\}
$$

- if $G=T_{n}$ commutative, simply a Newton polytope
- in general, still convex polytope if defined properly (magically!), but arise without explicit vertices or facets!

Moment maps and polytopes

Recall the scaling problem: Given $v \in V$, find $g \in G$ s.th. $\mu(g \cdot v) \approx 0$.

- depending on the action, $\mu=0$ means doubly stochastic matrix, isotropic frame, ..., uniform marginals

Nonuniform scaling problem:
Given $v \in V$ and p, find $g \in G$ s.th. $\mu(g \cdot v) \approx p$.

Possible marginals are captured by

$$
\Delta(v)=\{\mathbf{p}: \exists w \in \overline{G v}: \mu(w)=\mathbf{p}\}
$$

- if $G=\mathrm{T}_{n}$ commutative, simply a Newton polytope
- in general, still convex polytope if defined properly (magically!), but arise without explicit vertices or facets!

Moment maps and polytopes

Recall the scaling problem: Given $v \in V$, find $g \in G$ s.th. $\mu(g \cdot v) \approx 0$.

- depending on the action, $\mu=0$ means doubly stochastic matrix, isotropic frame, ..., uniform marginals

Nonuniform scaling problem:
Given $v \in V$ and p, find $g \in G$ s.th. $\mu(g \cdot v) \approx p$.

Possible marginals are captured by moment polytope:

$$
\Delta(v)=\{\mathbf{p}: \exists w \in \overline{G v}: \mu(w)=\mathbf{p}\}
$$

- if $G=\mathrm{T}_{n}$ commutative, simply a Newton polytope
- in general, still convex polytope if defined properly (magically!), but arise without explicit vertices or facets!

Examples of moment polytopes

G commutative (easy):

- Matrix scaling: $\Delta=\{(r, c): \exists$ scaling of $M\} \subseteq \mathbb{R}^{2 n}$.
- Schur-Horn: $\Delta=\{$ diagonal of Hermitian matrix with eigenvalues $\boldsymbol{\lambda}\}$.

G noncommutative (difficult):

- Horn:

$$
\Delta=\left\{\left(\lambda_{A}, \lambda_{B}, \lambda_{C}\right): A+B=C\right\} \subseteq \mathbb{R}^{3 n}
$$

Complete set of linear inequalities known [Horn, Klyachko, Knutson-Tao, Membership in polynomial time, nonuniform scaling open [Mulmule, Franks].

- Brascamp-Lieb: Validity of integral inequalities in analysis.
- Quantum marginals: What marginals arise by scaling tensors?

Applications in quantum information, algebraic complexity, algebra.

Typically exponentially many vertices and facets, but succinctly encoded by group action! Which polytopes are captured in this way?

Examples of moment polytopes

G commutative (easy):

- Matrix scaling: $\Delta=\{(r, c): \exists$ scaling of $M\} \subseteq \mathbb{R}^{2 n}$.
- Schur-Horn: $\Delta=\{$ diagonal of Hermitian matrix with eigenvalues $\boldsymbol{\lambda}\}$.
G noncommutative (difficult):
- Horn:

$$
\Delta=\left\{\left(\boldsymbol{\lambda}_{A}, \boldsymbol{\lambda}_{B}, \boldsymbol{\lambda}_{C}\right): A+B=C\right\} \subseteq \mathbb{R}^{3 n}
$$

Complete set of linear inequalities known [Horn, Klyachko, Knutson-Tao, ...]. Membership in polynomial time, nonuniform scaling open [Mulmuley, Franks].

Quantum marginals: What marginals arise by scaling tensors?
Applications in quantum information, algebraic complexity, algebra

Examples of moment polytopes

G commutative (easy):

- Matrix scaling: $\Delta=\{(r, c): \exists$ scaling of $M\} \subseteq \mathbb{R}^{2 n}$.
- Schur-Horn: $\Delta=\{$ diagonal of Hermitian matrix with eigenvalues $\boldsymbol{\lambda}\}$.
G noncommutative (difficult):
- Horn:

$$
\Delta=\left\{\left(\boldsymbol{\lambda}_{A}, \boldsymbol{\lambda}_{B}, \boldsymbol{\lambda}_{C}\right): A+B=C\right\} \subseteq \mathbb{R}^{3 n}
$$

Complete set of linear inequalities known [Horn, Klyachko, Knutson-Tao, ...].
Membership in polynomial time, nonuniform scaling open [Mulmuley, Franks].

- Brascamp-Lieb: Validity of integral inequalities in analysis.

Applications in quantum information, algebraic complexity, algebra.
Typically by group action! Which polytopes are captured in this way?

Examples of moment polytopes

G commutative (easy):

- Matrix scaling: $\Delta=\{(r, c): \exists$ scaling of $M\} \subseteq \mathbb{R}^{2 n}$.
- Schur-Horn: $\Delta=\{$ diagonal of Hermitian matrix with eigenvalues $\boldsymbol{\lambda}\}$.
G noncommutative (difficult):
- Horn:

$$
\Delta=\left\{\left(\boldsymbol{\lambda}_{A}, \boldsymbol{\lambda}_{B}, \boldsymbol{\lambda}_{C}\right): A+B=C\right\} \subseteq \mathbb{R}^{3 n}
$$

Complete set of linear inequalities known [Horn, Klyachko, Knutson-Tao, ...]. Membership in polynomial time, nonuniform scaling open [Mulmuley, Franks].

- Brascamp-Lieb: Validity of integral inequalities in analysis.
- Quantum marginals: What marginals arise by scaling tensors? Applications in quantum information, algebraic complexity, algebra...

Typically exponentially many vertices and facets, but succinctly encoded by group action! Which polytopes are captured in this way?

Moment polytopes and noncommutative optimization

Given v and \mathbf{p}, find $g \in G$ such that $\mu(g \cdot v) \approx \mathbf{p}$.

```
Key idea: Reduce to p=0 by a "shifting trick"
    - Laurent polynomials: simply shift exponents
    \omega}\mapsto\omega-
    > If G noncommutative, more involved
State of the art: Either algorithm discussed above can solve nonuniform
scaling problem. Polynomial dependence on most parameters for many
interesting actions - but exponential dependence on bitsize of p!
```


Moment polytopes and noncommutative optimization

$$
\text { Given } v \text { and } \mathbf{p} \text {, find } g \in G \text { such that } \mu(g \cdot v) \approx \mathbf{p}
$$

Key idea: Reduce to $\mathbf{p}=0$ by a "shifting trick":

- Laurent polynomials: simply shift exponents

$$
\begin{array}{r}
\omega \mapsto \omega-p \\
\quad V \mapsto V_{p}
\end{array}
$$

State of the art: Either algorithm discussed above can solve nonuniform scaling problem. Polynomial dependence on most parameters for many interesting actions - but exponential dependence on bitsize of \mathbf{p} !

Summary and outlook

Geodesic convexity of $g \mapsto\|g \cdot v\|$ underlies unreasonable effectiveness of alternating minimization, is key to general efficient algorithms that exploit hidden symmetries.

Moment maps (gradient) capture natural scaling and marginal problems involving probability distributions, quantum states, isotropic position. . . with many applications.

Moment polytopes encode answers to these problems. Often exp. many facets, yet can admit efficient algorithms.

Many exciting open questions: Poly-time algorithms for general actions? Better tools for geodesic convex optimization in nonpositive curvature? What is tractable in invariant theory? How to tackle other difficult problems with natural symmetries? Thank you for your attention!

