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Prelude: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

Y =

( a1
...

an

)
X
(

b1
...

bn

)
(a1, . . . , bn > 0).

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling problem: Given X , find (approximately) d.s. scalings.

Algebra: Possible iff per(X ) > 0!
▶ . . . iff ∃ bipartite perfect matching in support of X
▶ can be decided in polynomial time

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .
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Sinkhorn (flip flop) algorithm

To scale matrix, alternatingly normalize rows & columns:(
1 2
4 0

)
rows−→

(
1/3 2/3
1 0

)
cols−→

(
1/4 1
3/4 0

)
−→ . . . −→

(
ε 1

1−ε 0

)
This converges whenever possible! In turn, scaled matrices give
exponential approximations for permanent.

Three questions:
▶ Why does such a simple “greedy” algorithm work?
▶ What is the connection between scaling and the permanent?
▶ Is there a general perspective?
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Overview

There are geometric and algebraic problems, arising from group actions,
that are amenable to geodesic convex optimization.

Scaling & marginal problems ←→ Norm minimization

These capture a wide range of surprising applications – from algebra and
analysis to computer science and quantum information.

Plan for today:
1 Introduction to the framework
2 Panorama of applications
3 Geometry
4 Algorithmic solutions

Optimization algorithms for problems with natural symmetries!
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.

Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:
▶ no polynomial-time algorithm known for graph isomorphism
▶ matrices equivalent under row and column operations iff equal rank;

not true for tensor rank which is also NP-hard
▶ derandomizing polynomial identity testing implies circuit lower bounds
▶ computing normal forms, describing moduli spaces and invariants. . .

We will see many more examples in a moment. . .
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Orbit problems

Group G ⊆ GLn(C) “nice” (reductive), such as GLn, SLn, or Tn = (C∗)n

Action on V = Cm by linear transformations
Orbits Gv = {g · v : g ∈ G} and their closures Gv

Example: G = C∗, V = C2

g ·
( x

y
)
=
( gx

g−1y
)

Orbit problems:
▶ Given v and w , are they in the same orbit? That is, is Gv = Gw?
▶ Robust versions: w ∈ Gv? Gv ∩ Gw ̸= ∅?
▶ Null cone problem: 0 ∈ Gv?
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Example: Conjugation

G = GLn, V = Matn, g · X = gXg−1


λ1 1

λ1
λ2

. . .



▶ X , Y are in same orbit iff same Jordan normal form
▶ X , Y have intersecting orbit closures iff same eigenvalues
▶ X is in null cone iff nilpotent
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Big picture: Null cone, optimization, and scaling

For concreteness, focus on null cone problem:

Is P(v) = P(0) for every invariant polynomial P? Algebra

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Norm Minimization

Find g ∈ G s.th. ∇g∥g · v∥ ≈ 0.

Scaling/Marginal Problem

Polytopes
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geodesic

convexity



Big picture: Null cone, optimization, and scaling

Is P(v) = P(0) for every invariant polynomial P? Algebra

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Norm Minimization

Why care? Applications, plausibly
solvable in poly time, offers path to other
orbit problems. . . let’s get started!

Find g ∈ G s.th. ∇g∥g · v∥ ≈ 0.

Scaling/Marginal Problem

Polytopes
8 / 31

geodesic

convexity



Hold on, isn’t this is a Quantum Information workshop!?

Two motivations:

1 Quantum problems: Orbit problems (for noncommutative groups)
capture interesting quantum information applications.

2 Quantum solutions: Quantum computers are good at linear algebra
and optimization. Can they solve orbit problems faster?

Today we focus on the first direction. Harold will discuss the second
tomorrow.
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A panorama of applications
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Example: Matrix scaling revisited

Let G = Tn×Tn act on V = Matn(C) by row-column scaling:

(g , h) ·M =

( g1
...

gn

)
M
(

h1
...

hn

)
Norm minimization:

infg,h∥(g , h) ·M∥2 = infg,h
∑
i,j

|giMijhj |
2 = infx,y∈Rn

∑
i,j

|Mij |
2exi+yj

▶ geometric program, log-convex in x , y

Gradient:

∇x=y=0 log(. . . ) = 1
∥M∥2

(
r(M), c(M)

)
where r(M), c(M) row and column sums of matrix with entries |Mij |

2.

Norm minimization and matrix scaling are equivalent by convexity! ,
Motivates why Sinkhorn works and starting point for cutting-edge algos.
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Example: Matrix scaling revisited
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Example: Laurent polynomials

Let G = Tn act on Laurent polynomials in n variables by scaling variables:

P =
∑
ω∈Zn

pωZω ⇒ g · P =
∑
ω∈Zn

pωgωZω

Norm minimization:

infg∈Tn∥g · P∥2 = infg∈Tn

∑
ω

|pω|2 |gω|2 = infx∈Rn
∑
ω

|pω|2 ex ·ω

▶ again geometric program, log-convex in x
▶ inf > 0 iff 0 ∈ Newton polytope of P






























DID DCP

Gradient: ∇x=0 log(. . . ) =
∑

ω|pω|2 ω∑
ω|pω|2

∈ ∆(P)

Captures linear and (unconstrained) geometric programming!
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Example: Operator and tensor scaling

What might a quantum version of the matrix scaling problem look like?
For an operator ρ ∈ PSD(Cn ⊗ Cn), say a scaling is of the form

σ = (g ⊗ h)ρ(g∗ ⊗ h∗) (g , h ∈ GLn).

Operator scaling problem: Given ρ, find scaling such that σ1, σ2 ≈ I.

Interesting to generalize to more tensor factors and arbitrary marginals:

Tensor scaling (quant. marginal) problem: Given
ρ, which (σ1, . . . , σd) can be obtained by scaling?

▶ eigenvalues form convex polytopes with exp. many vertices and facets
▶ encode local info about entanglement, tensor ranks, . . .

Key challenge: Can we find efficient algorithmic solution?
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Example: Operator scaling and polynomial identity testing

We can interpret ρ, σ as Choi operators of completely positive maps

Φ(A) =
∑

k
XkAXk

∗, Ψ(A) =
∑

k
YkAYk

∗.

Scaling translates into left-right action on Kraus operators: Yk = gXkhT .
The condition σ1 = σ2 = I means that Ψ is unital and trace-preserving.

Operator scaling problem: Given Φ, find unital & trace-preserving scaling.

Algebra: Possible iff ∃ matrices ck s.th. det
∑

kck ⊗ Xk ̸= 0.
▶ matrix X (c) =

∑
k ckXk in NC variables ck has maximal NC-rank

▶ when ck restricted to scalars: major open problem in TCS!

Operator scaling can be solved in deterministic poly-time [Garg et al, cf. Ivanyos et al]

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, . . . ).
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Connections and applications

Invariant theory: Null cone & orbit closure intersection, moment polytopes

Analysis: Brascamp-Lieb inequalities, solution of Paulsen’s problem

Symplectic geometry: Horn’s problem ∃ A + B = C with spectrum α, β, γ?
Combinatorics: Positivity of Littlewood-Richardson coefficients

Statistics: MLE in Gaussian models, Tyler M-estimator
Machine Learning: Optimal transport
Optimization: Efficient algorithms for class of quadratic equations

Computational complexity: Polynomial identity testing, tensor ranks
Quantum information: Marginal problems, entanglement transformations,
normal forms of tensors
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From Euclidean to geodesic convexity

16 / 31



Norm minimization and gradient

We want to minimize the function:

F : G → R, F (g) := log ∥g · v∥

Consider G = GLn. By the polar decomposition, if Un preserves the norm
we can restrict the minimization to:

PDn = {p = eX : X ∈ Hermn}

We can use this change of variables to define gradient at p = I:

µ : V \ {0}→ Hermn, µ(v) =

∇X=0F (eX )

▶ arises from natural Riemannian metric on PDn
▶ known as moment map in Hamiltonian physics, symplectic geometry
▶ It turns out that µ(v) = 0 captures natural scaling problems!

Analogously for, e.g., G = SLn ; X traceless.
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▶ known as moment map in Hamiltonian physics, symplectic geometry
▶ It turns out that µ(v) = 0 captures natural scaling problems!

Analogously for, e.g., G = SLn ; X traceless.
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Example: Operator scaling revisited

Let G = GLn×GLn act on V = Lin(Cn ⊗ Cn):

(g , h) ·M = (g ⊗ h)M

Norm minimization:
infg,h∥(g ⊗ h)M∥2F = infX ,Y∈Hermn tr(eX ⊗ eY )MM∗

Gradient:

µ(M) = ∇X=Y=0 log(. . . ) = 1
trρ
(
ρ1, ρ2

)
where ρ = MM∗. Restricted to G = SLn× SLn: captures operator scaling!

However, the objective is not convex in X , Y . . .
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Geodesic convexity

F : PDn → R, F (p) := log ∥p · v∥

is convex along the curves eXt for X ∈ Hermn, which are geodesics of PDn.
That is, F is geodesically convex!
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DCPbye I we

Ito ex

Proof? {eXt } ⇒ commutative subgroup ⇒ Laurent polynomials ,

Just like in the Euclidean case, convexity implies critical points are minima:

∥v∥ = infg∥g · v∥ ⇔ µ(v) ≡ ∇X=0F (eX ) = 0

How convex for given action? Necessary for algorithms!
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Geodesic convexity made quantitative

The objective F (p) = log ∥p · v∥ is geodesically smooth, meaning

∂2
t F (eXt) ⩽ L∥X∥2F .

Theorem: Noncommutative duality estimates

1 −
∥µ(v)∥F

γ
⩽

infg∥g · v∥2

∥v∥2 ⩽ 1 −
∥µ(v)∥2F

2L

, norm minimization ⇔ scaling in a quantitative way
, null cone membership reduces to solving either
, scaling is possible iff not in null cone [Kempf-Ness ’79]

Parameters L, γ depend on combinatorial data of action.
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Interlude: Weights of action

Take any action of GLn. If we restrict to Tn =
(. . .), can find basis of

V ∼= Cm s.th. action equivalent to scaling Laurent polys. The exponents

Ω = {ω1, . . . ,ωm} ⊆ Zn.

are called weights, and they completely characterize the action.
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Their geometry determine the geodesic convexity parameters L, γ.
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Summary so far: Noncommutative group optimization [BFGOWW]

Action of “nice” G ⊆ GLn on V ∼= Cm, µ(v) = ∇p=I log ∥p · v∥.

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Norm Minimization

Find g ∈ G s.th. µ(g · v) ≈ 0.

Scaling Problem

▶ Geodesic convexity explains why simple greedy algorithms can work.
▶ Scaling, norm minimization, and null cone related in quantitative way.
▶ Non-commutative generalization of convex programming duality.
▶ All examples mentioned before fall into this framework.

22 / 31
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Interlude: Beyond GLn and SLn

All the preceding generalizes to complex reductive groups – not just SLn,
Tn, STn, and products thereof. Concretely, this means a subgroup

G ⊆ GLn(C)

defined by polynomial equations that is closed under taking adjoints.

Any such group has a polar decomposition g = up, so we can reduce to

G ∩ PDn = {g∗g : g ∈ G}.

This is a Hadamard manifold (in fact a symmetric space of noncompact
type), a particularly nice Riemannian manifold of nonpositive curvature.

However, nonpositive curvature poses unique challenges for optimization.
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Algorithms
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First order algorithm for scaling (“gradient descent”)

Idea: Repeatedly perform geodesic gradient steps

g ← e−
1
L∇F(g)g = e−

1
Lµ(g·v)g .

Theorem
Let v ∈ V be not in the null cone. Then the algorithm outputs g ∈ G
such that ∥µ(g · v)∥ ⩽ ε within T = poly( 1

ε , input size) steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori
lower bound obtained using constructive invariant theory.

Corollary
Same algorithm solves null cone problem in time poly( 1

γ , input size).
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Second order algorithm for norm minimization

Rough idea: Minimize local quadratic approximation (after regularization)

Q(H) = F (g) +∇F (g)[H] +
1
2∇

2F (g)[H,H] ≈ F (eHg)

on small neighborhoods, where it can be trusted. Need F “robust”.

Theorem
Let v ∈ V be not in the null cone. Then the algorithm outputs g ∈ G such
that F (g) ⩽ infg∈G F (g) + ε within T = poly(log 1

ε , input size, 1
γ) steps.

Analysis: Complexity depends on neighborhood size and diameter bound. Former
is controlled by weight norm L, latter by inverse weight margin 1

γ
.

State of the art: Two general algorithms for geodesic convex
optimization, which can solve norm minimization, scaling, null cone.
Polynomial time for many interesting actions – but not always!
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Polytopes
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Moment maps and polytopes

Recall the scaling problem: Given v ∈ V , find g ∈ G s.th. µ(g · v) ≈ 0.
▶ depending on the action, µ = 0 means doubly stochastic matrix,

trace-preserving and unital map, . . . , uniform marginals

Nonuniform scaling problem:

Given v ∈ V and p, find g ∈ G s.th. µ(g · v) ≈ p.

Possible marginals are captured by

∆(v) = {p : ∃w ∈ Gv : µ(w) = p}

▶ if G = Tn commutative, simply a Newton polytope [Kostant, Atiyah, . . . ]

▶ in general, still convex polytope if defined properly (magically!), but
arise without explicit vertices or facets! [Kirwan, Mumford, Brion, . . . ]
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Examples of moment polytopes

G commutative (easy):
▶ Matrix scaling: ∆ = {(r , c) : ∃ scaling of M} ⊆ R2n.
▶ Schur-Horn: ∆ = {diagonal of Hermitian matrix with eigenvalues λ}.

G noncommutative (difficult):
▶ Horn:

∆ = {(λA,λB,λC ) : A + B = C } ⊆ R3n

Complete set of linear inequalities known [Horn, Klyachko, Knutson-Tao, . . . ].
Membership in polynomial time, nonuniform scaling open [Mulmuley, Franks].

▶ Brascamp-Lieb: Validity of integral inequalities in analysis.
▶ Quantum marginals: What marginals arise by scaling q. states?

Applications in quantum information, algebraic complexity, algebra. . .

Typically exponentially many vertices and facets, but succinctly encoded
by group action! Which polytopes are captured in this way?
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Moment polytopes and noncommutat. group optimization

Given v and p, find g ∈ G such that µ(g · v) ≈ p.

Key idea: Reduce to p = 0 by a “shifting trick”:
▶ Laurent polynomials: simply shift exponents ω 7→ ω−p

▶ If G noncommutative, more involved V 7→ Vp

State of the art: Either algorithm discussed above can solve nonuniform
scaling problem. Polynomial dependence on most parameters for many
interesting actions – but exponential dependence on bitsize of p!
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Summary and outlook

Effective optimization algorithms for g 7→ ∥g · v∥, enabled
by geodesic convexity and geometric invariant theory.

Moment maps (gradient) capture natural scaling and
marginal problems involving probability distributions,
quantum states, isotropic position. . . with many applications.

Moment polytopes encode answers to these problems.
Often exp. many facets, yet can admit efficient algorithms.

Many exciting open questions: Poly-time algorithms for general actions?
Better tools for geodesic convex optimization in nonpositive curvature?
Structured tensors? Tackle other problems with natural symmetries?
Thank you for your attention!
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