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Overview

There are algebraic and geometric problems in invariant theory that are
amenable to numerical optimization algorithms over noncommut. groups.

Null cone & moment polytopes ←→ Norm minimization

These capture a wide range of surprising applications – from algebra and
analysis to computer science and even quantum information.

Plan for today:
1 Introduction to framework
2 Panorama of applications
3 Geodesic first-order algorithms

‘Computational invariant theory without computing invariants’
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.

Problem: How can we algorithmically and efficiently determine when two
objects are equivalent?

I computing normal forms, describing moduli spaces and invariants. . .

Interesting (and often difficult) problems with many applications:
I no polynomial-time algorithms are known for graph isomorphism.
I matrices equivalent under left-right action iff equal rank;

but tensor rank is NP-hard.

We will see many more examples in a moment. . .
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General setup

G ⊆ GLn complex reductive group, e.g., GLn, SLn, or Tn = (C∗)n

π : G → GL(V ) regular representation on f.d. complex vector space
I orbits Gv = {π(g)v : g ∈ G} and their closures Gv

Orbit equality problem: Given v1 and v2, is Gv1 = Gv2? Robust version:

Orbit closure intersection problem: Given v1 and v2, is Gv1 ∩ Gv2 6= ∅?
I equivalently, p(v1) = p(v2) for all G-invariant polynomials p
I captures equality in Mumford’s GIT quotient

Null cone membership problem: Given v , is 0 ∈ Gv? [Hilbert]

I v is called unstable if yes, semistable if no
I equivalently, p(v) = p(0) for all G-invariant polynomials p
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Example: Conjugation

G = GLn, V = Matn, π(g)X = gXg−1


λ1 1

λ1 1
λ1

. . .


I X , Y are in same orbit iff same Jordan normal form
I X , Y have intersecting orbit closures iff same eigenvalues

(counted with algebraic multiplicity)
I X is in null cone iff nilpotent

NB: The last two problems have a meaningful approximate version!
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Null cone and norm minimization

We can characterize the null cone N = {v ∈ V : 0 ∈ Gv } by an
optimization problem. Capacity of v :

cap(v) := minu∈Gv‖u‖ = infg∈G‖π(g)v‖

I v in null cone iff cap(v) = 0
 

o

w min Hull we g

Norm minimization problem: Given v , find g ∈ G s. th. ‖π(g)v‖ ≈ cap(v).
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Norm minimization and its dual

Use K -invariant inner product, where K = G ∩ Un is maximal compact.
We want to minimize the function:

Fv : G → R, Fv (g) := log ‖π(g)v‖

Its gradient at g = I defines the moment map:

µ : V \ {0}→ i Lie(K ), tr(µ(v)H) = ∂t=0Fv (eHt) ∀H ∈ i Lie(K )

(Fv should really be defined on K\G; then TI ∼= i Lie(K); µ should be defined on P(V ))

Kempf-Ness: Let 0 6= w ∈ Gv . Then, µ(w) = 0 iff w has minimal norm.

Thus we are led to:

Scaling problem: Given v , find g ∈ G such that µ(π(g)v) ≈ 0.
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Summary so far

G ⊆ GLn complex reductive, π : G → GL(V ) regular representation
K ⊆ G maximally compact, µ : V \ {0}→ i Lie(K ) moment map

Null cone membership problem: Given v , is 0 ∈ Gv?

. . . and its relaxations:

Norm minimization problem: Given v , find g ∈ G s. th. ‖π(g)v‖ ≈ cap(v).

Scaling problem: Given v ∈ V , find g ∈ G s. th. µ(π(g)v) ≈ 0.

The last two problems are dual to each other, and either can be used to
solve null cone membership!

Let us look at some examples. . .
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A panorama of applications
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Example: Matrix scaling (raking, IPFP, . . . )

Let X be matrix with nonnegative entries. A scaling of X is a matrix

Y =

a1
. . .

an

X

b1
. . .

bn

 (a1, . . . , bn > 0).

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X , ∃ (approximately) d.s. scalings?

Permanent (Invariant Theory): . . . iff per(X ) > 0!
I . . . iff ∃ bipartite perfect matching in support of X
I can be decided in polynomial time
I find scalings by alternatingly fixing rows & columns , [Sinkhorn]

I convergence controlled by permanent [Linial et al]

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .
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I . . . iff ∃ bipartite perfect matching in support of X
I can be decided in polynomial time
I find scalings by alternatingly fixing rows & columns , [Sinkhorn]

I convergence controlled by permanent [Linial et al]

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .

V = Matn, G = Tn×Tn, π(g , h)v = gvh.

µ : V \ {0}→ Rn ⊕ Rn

µ(v) = (row sums, column sums) of Xi,j =
|vi,j |2

‖v‖
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Example: Schur-Horn theorem

Let λ1 > · · · > λn and δ1, . . . , δn be integers.

Given λ and δ, ∃ Hermitian matrix with spectrum λ and diagonal δ?

U

λ1 . . .
λn

U∗ =

δ1 ? ?

?
. . . ?

? ? δn


Schur-Horn theorem: . . . iff δ in conv(Sn · λ)!

Kostka numbers (Representation Theory): . . . iff branching multiplicity Kλδ
for Tn ⊂ GLn is nonzero.

Starting point for convexity results in symplectic geometry [Kostant, Atiyah, Guillemin-Sternberg,
Duistermaat-Heckman, Mumford, Kirwan, . . . ]
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Kostka numbers (Representation Theory): . . . iff branching multiplicity Kλδ
for Tn ⊂ GLn is nonzero.

Starting point for convexity results in symplectic geometry [Kostant, Atiyah, Guillemin-Sternberg,
Duistermaat-Heckman, Mumford, Kirwan, . . . ]

V = Vλ Weyl module of GLn, restricted to G = Tn.
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Torus actions

Any representation of G = Tn = (C∗)n decomposes as V =
⊕
ω∈Ω Vω

for weights Ω ⊆ Zn. If v =
∑
ω∈Ω vω then π(z)v =

∑
ω zωvω.

Capacity:

cap(v)2 = infz∈Tn

∑
ω

|zω|2 ‖vω‖2 = infx∈Rn
∑
ω

ex ·ω ‖vω‖2

I norm minimization is geometric programming (log-convexity in x)

I cap(v) = 0 iff 0 6∈ ∆(v) := conv {ω : vω 6= 0}; linear programming

Moment map:

µ : V \ {0}→ Rn, µ(v) =
∑
ωω‖vω‖2∑
ω‖vω‖2

I Atiyah: µ(Gv) = ∆(v)
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Moment polytopes

It is often interesting to characterize the image of the moment map:
I For G = Tn, we saw on the previous slide that

∆(v) = {µ(w) : w ∈ Gv } ⊆ Rn

is a convex polytope.

 

I If G non-commutative? For G = GLn, µ(w) ∈ Hermn and
∆(v) = {spec(µ(w)) : w ∈ Gv } ⊂ Rn

is a convex polytope. General case similar. [Mumford, Kirwan]

These are moment polytopes of G-orbit closures in P(V ).

Moment polytope membership problem: Given v and λ, is λ ∈ ∆(v)?

Often even interesting when not restricted to orbits. We will denote the
corresponding polytope by ∆. It coincides with ∆(v) for generic v .
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Example: Horn problem

Let α1 > . . . > αn > 0, β1 > . . . > βn > 0, γ1 > . . . > γn > 0 be
integers.

Horn problem (Geometry): When ∃ Hermitian n × n matrices A, B, C
with spectrum α, β, γ such that A+ B = C?

I Horn conjectured linear inequalities on α, β, γ.

Saturation property (Invariant theory): . . . iff Littlewood-Richardson
coefficient cγα,β > 0 [Knutson-Tao]

I Horn inequalities sufficient
I lead to only known poly-time algorithm [Mulmuley]

I can find A, B, C by natural iterative algorithm [Franks]
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coefficient cγα,β > 0 [Knutson-Tao]

I Horn inequalities sufficient
I lead to only known poly-time algorithm [Mulmuley]

I can find A, B, C by natural iterative algorithm [Franks]

V = Mat2n, G = GLn×GLn×GLn,
π(g1, g2, g3)(X ,Y ) := (g1Xg−1

3 , g2Yg−1
3 ).

µ : V \ {0}→ Herm3
n

µ(X ,Y ) = (XX ∗,YY ∗,−X ∗X − Y ∗Y )

∆ = {(α,β,−γ) : A > 0,B > 0, tr(A) + tr(B) = 1}
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Example: Left-right action and noncommutative PIT

Let X = (X1, . . . ,Xd) be a tuple of matrices. A scaling of X is a tuple

Y = (gX1h−1, . . . , gXdh−1) (g , h ∈ GLn)

Say X is quantum doubly stochastic (q.d.s.) if
∑

k XkX∗k =
∑

k X∗k Xk = I.

Operator scaling (Geometry): Given X , ∃ (approx.) q.d.s scalings?

Polynomial identity testing (Invariant Theory): . . . iff ∃ matrices Yk such
that

∑
k Yk ⊗ Xk is invertible.

I numerical algorithms can solve this in deterministic polynomial time
[Garg et al, cf. Ivanyos et al]

I when Yk restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, . . . ).
15 / 24



Example: Left-right action and noncommutative PIT

Let X = (X1, . . . ,Xd) be a tuple of matrices. A scaling of X is a tuple

Y = (gX1h−1, . . . , gXdh−1) (g , h ∈ GLn)

Say X is quantum doubly stochastic (q.d.s.) if
∑

k XkX∗k =
∑

k X∗k Xk = I.

Operator scaling (Geometry): Given X , ∃ (approx.) q.d.s scalings?

Polynomial identity testing (Invariant Theory): . . . iff ∃ matrices Yk such
that

∑
k Yk ⊗ Xk is invertible.

I numerical algorithms can solve this in deterministic polynomial time
[Garg et al, cf. Ivanyos et al]

I when Yk restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, . . . ).
15 / 24



Example: Left-right action and noncommutative PIT

Let X = (X1, . . . ,Xd) be a tuple of matrices. A scaling of X is a tuple

Y = (gX1h−1, . . . , gXdh−1) (g , h ∈ GLn)

Say X is quantum doubly stochastic (q.d.s.) if
∑

k XkX∗k =
∑

k X∗k Xk = I.

Operator scaling (Geometry): Given X , ∃ (approx.) q.d.s scalings?

Polynomial identity testing (Invariant Theory): . . . iff ∃ matrices Yk such
that

∑
k Yk ⊗ Xk is invertible.

I numerical algorithms can solve this in deterministic polynomial time
[Garg et al, cf. Ivanyos et al]

I when Yk restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, . . . ).

V = Matd
n , G = GLn×GLn, π(g , h) as above.

µ : V \ {0}→ Hermn⊕Hermn
µ(X1, . . . ,Xd) = (

∑
k XkX ∗k ,−

∑
k X ∗k Xk)
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Example: Quivers

Quiver: Directed graph with vertex set Q0 and edge set Q1.

Given dimension vector (nx )x∈Q0 , consider natural action of

G =
∏

x∈Q0

GL(nx ) on V =
⊕

x→y∈Q1

Matny×nx

I generalizes Horn and left-right action:

Many structural results known:
I semi-invariants characterized by [King, Derksen-Weyman, Schofield-Van den Bergh, . . . ]

I moment polytopes characterized by Horn-like inequalities [Baldoni-Vergne-W]

. . . but efficient algorithms only in special cases.
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Example: Tensors and quantum marginals

Let X ∈ Cn1 ⊗ · · · ⊗Cnd be a tensor. A scaling of X is a tensor of the form

Y = (g1 ⊗ . . .⊗ gd)X (gk ∈ GLnk )

Consider ρk = XkX∗k , where Xk is k-th principal flattening of X .
(In quantum mechanics, X describes joint state of d particles and ρk marginal of k-th particle.)

Tensor scaling problem: Given X , which
(ρ1, . . . , ρd) can be obtained by scaling?

I eigenvalues form convex polytopes (moment polytopes)
I exponentially many vertices, faces [Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W]

I related to asymptotic support of Kronecker coefficients
I can we find efficient algorithmic description?
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I related to asymptotic support of Kronecker coefficients
I can we find efficient algorithmic description?

V = Cn1 ⊗ . . .⊗ Cnd , G = GLn1 × · · · × GLnd , π as above.

µ : V \ {0}→ Hermn1 ⊕ . . .⊕ Hermnd

µ(v) = (ρ1, . . . , ρd)

∆(v) = {(spec ρ1, . . . , spec ρd)}
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Geodesic first-order algorithms
for norm minimization and scaling

 

o

w min Hull we g
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Non-commutative optimization duality

Recall Fv (g) = log‖π(g)v‖ and µ(v) is its gradient at g = I. By
Kempf-Ness, the following optimization problems are equivalent:

infg∈G Fv (g) ⇐⇒ infg∈G ‖µ(π(g)v)‖ [Kempf-Ness]

I primal: norm minimization, dual: scaling problem
I non-commutative version of linear programming duality

 

o

w min Hull we g

We developed quantitative duality theory and 1st & 2nd order methods.

Why does the duality hold at all? Fv is convex along geodesics of K\G!
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Geodesic convexity and smoothness

Homogeneous space K\G has geodesics γ(t) = etHg for H ∈ i Lie(K ).

Proposition: Fv satisfies the following properties along these geodesics:
1 convexity: ∂2t=0Fv (γ(t)) > 0
2 smoothness: ∂2t=0Fv (γ(t)) 6 2N(π)2‖H‖2

N(π) is the weight norm, defined as the maximal norm of all weights in π.
I typically small (e.g., upper-bounded by degree for G = GLn)

Smoothness implies that

Fv (eHg) 6 Fv (g) + tr(µ(v)H) + N(π)2‖H‖2.

Thus, gradient descent with sufficiently small step size makes progress!
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First-order algorithm: geodesic gradient descent

Given v , want to find w = π(g)v with ‖µ(w)‖ 6 ε.

Algorithm: Start with g = I. For t = 1, . . . ,T :
Compute moment map µ(w) of w = π(g)v . If norm ε-small, stop.
Otherwise, replace g by e−ηµ(w)g . η > 0 suitable step size

Theorem
Let v ∈ V be a vector with cap(v) > 0. Then the algorithm outputs
g ∈ G such that ‖µ(w)‖ 6 ε within T =

4N(π)2

ε2 log ‖v‖
cap(v) iterations.

I Algorithm runs in time poly( 1ε , input size).
Can use constructive invariant theory to lower-bound capacity.

I Algorithm solves null cone membership problem if ε sufficiently small!
Moment polytopes are rigid thanks to geometric invariant theory.

Peter Bürgisser will explain this in more detail tomorrow.
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Analysis of algorithm

“Unless moment map ε-small, replace g by e−ηµ(w)g .”

To obtain rigorous algorithm, need to show progress in each step:
Fv (gnew) 6 Fv (g) − c

Then, log‖v‖− Tc > log cap(v) bounds the number of steps T .

Progress follows from smoothness:
Fv (eHg) 6 Fv (g) + tr(µ(v)H) + N(π)2‖H‖2

If we plug in H = −ηµ(w) then
Fv (gnew) 6 Fv (g) − η‖µ(w)‖2 + N(π)2η2‖µ(w)‖2.

Thus, if we choose η = 1/2N(π)2 then we obtain

Fv (gnew) 6 Fv (g) −
1

4N(π)2
‖µ(w)‖2 6 Fv (g) −

ε2

4N(π)2
.
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To obtain rigorous algorithm, need to show progress in each step:
Fv (gnew) 6 Fv (g) − c

Then, log‖v‖− Tc > log cap(v) bounds the number of steps T .

Progress follows from smoothness:
Fv (eHg) 6 Fv (g) + tr(µ(v)H) + N(π)2‖H‖2

If we plug in H = −ηµ(w) then
Fv (gnew) 6 Fv (g) − η‖µ(w)‖2 + N(π)2η2‖µ(w)‖2.
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How about moment polytopes?

Recall:

Moment polytope membership problem: Given v and λ, is λ ∈ ∆(v)?

I v in null cone ⇔ 0 6∈ ∆(v)
I can we reduce to λ = 0?

Shifting trick:
I for simplicity, assume λ integral
I replace V by W = V ⊗ Vλ∗ if G commutative, shifts all weights by −λ

I λ ∈ ∆(v) iff 0 ∈ ∆(w) for generic w ∈ v ⊗ π(G)vλ∗ , [Mumford, Brion, . . . ]

Result: Randomized first-order algorithm for moment polytopes.
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Summary and outlook

Null cone & moment polytopes
l duality

Norm minimization

Effective numerical algorithms for null cone and moment polytope
problems, based on geometric invariant theory and geodesic convex
optimization, with a wide range of applications.

On Tuesday, Peter Bürgisser will discuss the noncommutative duality
theory in more detail and explain how to design second-order algorithms.
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Summary and outlook

Null cone & moment polytopes
l duality

Norm minimization

Effective numerical algorithms for null cone and moment polytope
problems, based on geometric invariant theory and geodesic convex
optimization, with a wide range of applications. Many exciting directions:

I Polynomial-time algorithms in all cases?
I In commutative case, poly-time algorithms known and can beat our

geodesic algorithms! Can we design geodesic interior point methods?
I Tensors in applications are often structured. Implications?
I What are the tractable problems in invariant theory? C ; F?

Thank you for your attention!
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A general equivalence V ⊆ P(V )

All points in ∆(V) can be described via invariant theory:

Vλ ⊆ C[V](k) ⇒ λ

k ∈ ∆(V)

(λ highest weight, k degree)

I Can also study multiplicities g(λ, k) := #Vλ ⊆ C[V](k).
I This leads to interesting computational problems:

g =? g > 0? ∃s > 0 : g(sλ, sk) > 0?

(#-hard) (NP-hard) (our problem!)

Completely unlike Horn’s problem: Knutson-Tao saturation property does
not hold, and hence we can hope for efficient algorithms!
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