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Outline and philosophy

Marginal & scaling problems| «— |[Null cone problems
g gp P

(Geometry) (Invariant theory)

Interesting class of problems — with applications in g. information,
computer science, algebra, analysis — that surprisingly can be
phrased as optfimization problems over noncommutative groups.

Result: General framework and algorithms for this class.

Plan: Introduction & illustration via quantum marginal problem. ]

Philosophy: An old duality in geometric invariant theory leads to new optimization algorithms.
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Example: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

a b,
v=| . x| - (ai,..., by >0).
dn b,

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, 3 (approximately) d.s. scalings? )

3/16



Example: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

a b,
v=| . x| - (ai,..., by >0).
dn b,

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, 3 (approximately) d.s. scalings? ]

Permanent (Invariant Theory): ..iff per(X)>0!
> can be decided in polynomial time
> find scalings by alternatingly fixing rows & columns © [sinkhor]

Connections to complexity, combinatorics, geometry, numerics, ...
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Example: Sinkhorn algorithm
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after t steps. Why does it work?

[\
~| |~
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Example: Sinkhorn algorithm
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after t steps. Why does it work? Permanent of X/¥;;X;; increases
monotonically - can be used to control convergence:
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permanent distance to doubly stochastic
State-of-the-art algorithms directly optimize (a,b) — per(aXb).
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Example: Operator scaling and non-commutative PIT

Let T(p)=X;X;pX be a CP map. A scaling of T is of the form
$=AT(B-B")A'.

A map is unital (U) if T(I)=1I and trace-preserving (TP) if T'(I)=1I.

Operator scaling (Geometry): Given T, 3 (approx.) U & TP scalings? )
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Example: Operator scaling and non-commutative PIT

Let T(p)=X;X;pX be a CP map. A scaling of T is of the form
$=AT(B-B")A'.

A map is unital (U) if T(I)=1I and trace-preserving (TP) if T'(I)=1I.

Operator scaling (Geometry): Given T, 3 (approx.) U & TP scalings? )

Non-commutative PIT (Invariant Theory): ..iff symbolic matrix Y ;y;X;
in non-commutative variables y; is invertible.

> can be deCided in pOlynomial 'l'|me [Garg et al, Ivanyos et al]
> find scalings by alternatingly making the map U or TP ©  (curvits]

Many further characterizations (3Y;:detY ;Y;® X;# 0) & connections (Brascamp-Lieb
inequalities, Paulsen problem, ...).
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Example: Horn problem
Let a1=2...2a,20, f12...26,20, y1=...2y,20 be integers.

Horn problem (Geometry): When 3 Hermitian nx n matrices A, B, C
with spectrum a, B, y such that A+ B=C? J

> Horn conjectured linear inequalities on «, B, y.
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Example: Horn problem
Let a1=2...2a,20, f12...26,20, y1=...2y,20 be integers.

Horn problem (Geometry): When 3 Hermitian nx n matrices A, B, C
with spectrum a, B, y such that A+ B=C? J

> Horn conjectured linear inequalities on «, B, y.

Saturation property (Invariant theory): ..iff Littlewood-Richardson
coefficient c! 5>0 [knutson-Tac]
> Horn inequalities sufficient

> lead to only known poly-time algorithm [Mulmuley)

> can find A, B, C by natural iterative algorithm [Franks)

All these examples are special cases of a general class of problems.
We now focus on 'representative’ example involving quantum states!
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Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

XeV=(C"®=C"®--0C" )(2@@ @\

~ [X] = 1X)(X| e P(V)

State of individual particles described by density matrices pJf,...,0%:

trlofH] =(HheI®...e )X X) VH
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Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

XeV=(C"®=C"®--0C" XIG)@ @\
~ [X] = 1X) (X| eP(V)

State of individual particles described by density matrices p[%,...,0%:

trlofH] =(HheI®...e )X X) VH

an Eternal Golden Braid

Quantum marginal problem: Which py,...,pq4 are
consistent with a global state X? }

<

Douglas R.Hofstadter
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Examples

Two particles: pa and pg compatible with global pure state iff same
nonzero eigenvalues (Schmidt decomposition)

Three particles:

Aamax + ABmax < Agmax +1
A
Aamax t Acmax < Agmax +1

ABmax + Acmax < Aamax +1

05
Mid

1

> necessary and sufficient for qubits [Higuchi, Sudbery, Szulc]

> follows from variational principle: Aamax =Maxe, (Palpaldpa) etc.
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Tensor scaling and SLOCC Xe V=(Ccmed

G=5L(n)9 acts on V=(C"® by X— (A®...0 A)X U’:'W‘Vf"ru‘ g

Group orbit = fensor scalings = states that can be obtained by
SLOCC (postselected local operations & classical communication).
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Tensor scaling and SLOCC Xe V=(Ccmed

G=5L(n)? acts on V=(C")® by X (A1 ®...® Ag) X

Group orbit = fensor scalings = states that can be obtained by
SLOCC (postselected local operations & classical communication).

Tensor scaling problem: Which py,...,p4 arise from scaling of given X?J

» X fixes the enfanglement class
> e.g., for pjx I, each system maximally entangled with rest

(quantum version of stochastic tensor)

> in general, answer only depends on eigenvalues A; of p;
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Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem for X is encoded by:

A(X) = {(Al,- Ag) for scalings of X (and llml’rs) c{Rd"

e.g., for three qubits, GHZ = |000) + |111) and
W =100 +|010) + |001):
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Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem for X is encoded by:

A(X) = {(Al,.. .,Aq) for scalings of X (and llml’rs) Rd”
e.g., for three qubits, GHZ = |000) + |111) and
W =100) + |010) +|001):
In general:
> convex POly‘rOPes [Kirwan, Mumford, W-Christand|-Doran-Gross, Sawicki-Oszmaniec-Kus]
» encode all local info about entanglement class (‘entanglement
polytopes’)

> descriptions by vertices or inequalities intractable (when known)

[Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.]

We provide algorithmic solution!
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The Algorithm

Given Ap, Ag, A¢ and reference state X, want Y= (A® B® C)X with
these marginals. For simplicity, uniform marginals (Aa o< 14 etc).

Algorithm: Start with Y=X. For t=1,...,T:
Compute marginals pa, ps, pc of Y. If e-close to uniform, stop.
Otherwise, replace Y by e (Pa*Pa+Pc)y, X° = traceless part

Algorithm finds Y= (A® B® C) X with marginals e-close to uniform
within T=poly(Z,input size) steps.

> also works for bosons, fermions, d> 3 subsystems, MPS, ...
> can run on quantum computer (but how well? ©)
> solve quantum marginal problem by using random X

cf. algorithm by Verstraete et al (w/o rigorous analysis)
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Why does it work?

“Otherwise, replace X by e‘C(Pfﬁpgwg)X{'J

This step implements gradient descent for the function
N(A,B,C) = | (A® Bo C) X||?

where A,B,C have det=l.
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Why does it work?

“Otherwise, replace X by e‘C(PZ+P§+P3)X.”J

This step implements gradient descent for the function
N(A,B,C) = | (A® Bo C) X||?

where A,B,C have det=1l. Indeed, for traceless Ha,...,Hc:
1
Eaf:oN(efHA, e, ™M) = tr[p Ha] + tr(pHg] + tr[p2Hc],

so gradient can be identified with p%, 0%, 2.
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Why does it work?

“Otherwise, replace X by e‘C(PZ+P§+P3)X.”J

This step implements gradient descent for the function
N(A,B,C) = | (A® Bo C) X||?
where A,B,C have det=1l. Indeed, for traceless Ha,...,Hc:
1
Eaf:oN(efHA, e, ™M) = tr[p Ha] + tr(pHg] + tr[p2Hc],

so gradient can be identified with p4, 0%, 0% Moreover:

> gradient vanishes iff marginals uniform ©
> log-convexity: 82>0, so critical points are global minima ©®

Hold on...
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Non-commutative duality

The following optimization problems are equivalent:

infgeglig- Xl >0

—

infgegds(g-X) =0

ds(¥):=XZ, o] - 71

> primal: norm minimization, dual: marginal problem

» non-commutative version of LP duality

G=SL(n)?

[Kempf-Ness]

CX.

o

We develop general duality theory and Ist & 2nd order me’rhods.J

All examples from introduction fall into this framework!

Everything works for general actions of reductive G. Primal is log-convex along geodesics.
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Invariant theory

G=5L(n)? acts on V=(C")®9, so also on ring of polynomials.

G
Primal problem (norm minimization) is equivalent to
classical problem in invariant theory:

o

Null cone problem: Given X, 3 G-invariant poly P s.th. P(X) # P(0)? ]
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Invariant theory

G=5L(n)? acts on V=(C")®9, so also on ring of polynomials.

G
Primal problem (norm minimization) is equivalent to
classical problem in invariant theory:

o

Null cone problem: Given X, 3 G-invariant poly P s.th. P(X) # P(0)? ]

> even inferesting for generic X: existence of invariants
(in general, NP-hard for fixed degree)

> using standard algorithms infeasible already for small d, n

Numerical algorithm solves an algebraic problem! Conversely, we use
invariant theory in analysis of algorithm...
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Analysis of Algorithm

“Unless e-close to uniform, replace Y by e ¢(Pa*Ps*rc) Y|

To obtain rigorous algorithm, show:

> progress in each step: |e “PatPstPOY| < (1 cie)|| Y|
> a priori lower bound: infyei—1l(A®B® C)X|| = ¢

Then, (1-cie)"= ¢, bounds the number of steps T.
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Analysis of Algorithm

. _ 0, 0, 0
“Unless e-close to uniform, replace Y by e ¢(Pa*Ps*rc) Y|

To obtain rigorous algorithm, show:

> progress in each step: |e “PatPstPOY| < (1 cie)|| Y|
> a priori lower bound: infyei—1l(A®B® C)X|| = ¢

Then, (1-cie)"= ¢, bounds the number of steps T.

The first point follows from convexity estimates.

For the second, construct ‘explicit’ invariants with ‘nice’ coefficients
and P(X) #0 to obtain bound in terms of bitsize of X.
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Summary and outlook arXiv:1804.04739, 1905.xxxxx

‘Marginal & scaling problems‘
! duality

\ Norm minimization \

Effective algorithms for large class of problems, incl. quantum
marginal problem (also fermions) and tensor scaling. Based on
geodesically convex optimization and invariant theory.

Many exciting directions:
> Numerical studies in q. many-body systems or chemistry
> Quantum algorithms?
> Algorithms for other problems with natural symmetries?
> What are the ‘tractable’ problems in invariant theory? C~-[F?

Thank you for your attention!
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https://arxiv.org/abs/1804.04739

The tensor scaling algorithm

Input: Xe V rational, e>0
> If any pX is singular: Null cone 4
» Set Y0 .= X
» For t=0,1,...,T:
» If ds(T(") <&: Success ©

> Choose i such that ||p’?’“) - ,—‘;ll > \Lfd and apply tensor scaling step:

y(tl) (npl}’(f))—l/Z' (1)

» Null cone %

Other target spectra: Adjust tensor scaling step (in particular, use
Cholesky square root) and randomize initial point.



A general equivalence V<P(V)

All points in A(7) can be described via invariant theory:
V,lgq:p/](k) = —EA(V)
(A highest weight, k degree)

> Can also study multiplicities g(A, k) :=#Vy < C[¥] k).
> This leads to interesting computational problems:

‘g>0?‘ 3s>0:g(sA,sk)>07

(#-hard) (NP-hard) (our problem!)

Completely unlike Horns problem: Knutson-Tao saturation property
does not hold, and hence we can hope for efficient algorithms!
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