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Outline and philosophy

Marginal & scaling problems ←→ Null cone problems

(Geometry) (Invariant theory)

Interesting class of problems — with applications in q. information,
computer science, algebra, analysis — that surprisingly can be
phrased as optimization problems over noncommutative groups.

Result: General framework and algorithms for this class.

Plan: Introduction & illustration via quantum marginal problem.

Philosophy: An old duality in geometric invariant theory leads to new optimization algorithms.
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Example: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

Y=

a1 . . .
an

X
b1 . . .

bn

 (a1, . . . ,bn > 0).

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, ∃ (approximately) d.s. scalings?

Permanent (Invariant Theory): …iff per(X)> 0!
Ï can be decided in polynomial time
Ï find scalings by alternatingly fixing rows & columns , [Sinkhorn]

Connections to complexity, combinatorics, geometry, numerics, …
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Example: Sinkhorn algorithm

(
1 2
4 0

)
fix rows−→

( 1
3

2
3

1 0

)
fix cols−→

( 1
4 1
3
4 0

)
−→ . . . −→

( 1
2t 1
2t−1
2t 0

)
after t steps. Why does it work? Permanent of X/∑

i,jXij increases
monotonically – can be used to control convergence:

50 100 150 200

0.236

0.238

0.240

0.242

0.244

0.246

0.248

permanent

50 100 150 200

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

distance to doubly stochastic

State-of-the-art algorithms directly optimize (a,b) 7→ per(aXb).
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Example: Operator scaling and non-commutative PIT

Let T(ρ)=∑
iXiρX†

i be a CP map. A scaling of T is of the form

S=AT(B ·B†)A†.

A map is unital (U) if T(I)= I and trace-preserving (TP) if T†(I)= I.

Operator scaling (Geometry): Given T, ∃ (approx.) U & TP scalings?

Non-commutative PIT (Invariant Theory): …iff symbolic matrix ∑
iyiXi

in non-commutative variables yi is invertible.
Ï can be decided in polynomial time [Garg et al, Ivanyos et al]

Ï find scalings by alternatingly making the map U or TP , [Gurvits]

Many further characterizations (∃Yi : det
∑
iYi⊗Xi 6= 0) & connections (Brascamp-Lieb

inequalities, Paulsen problem, …).
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Example: Horn problem

Let α1 ≥ . . . ≥αn ≥ 0, β1 ≥ . . . ≥βn ≥ 0, γ1 ≥ . . . ≥ γn ≥ 0 be integers.

Horn problem (Geometry): When ∃ Hermitian n×n matrices A, B, C
with spectrum α, β, γ such that A+B=C?

Ï Horn conjectured linear inequalities on α, β, γ.

Saturation property (Invariant theory): …iff Littlewood-Richardson
coefficient cγ

α,β > 0 [Knutson-Tao]

Ï Horn inequalities sufficient
Ï lead to only known poly-time algorithm [Mulmuley]

Ï can find A, B, C by natural iterative algorithm [Franks]

All these examples are special cases of a general class of problems.
We now focus on ‘representative’ example involving quantum states!
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Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

X ∈V= (Cn)⊗d =Cn⊗·· ·⊗Cn

; [X ]= |X〉〈X | ∈P(V)

State of individual particles described by density matrices ρX1 ,…,ρ
X
d :

tr[ρX1 H1]= 〈(H1⊗I⊗ . . .⊗I)X,X〉 ∀H1

Quantum marginal problem: Which ρ1, . . . ,ρd are
consistent with a global state X?
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Examples

Two particles: ρA and ρB compatible with global pure state iff same
nonzero eigenvalues (Schmidt decomposition)

Three particles:

λA,max+λB,max ≤λC,max+ 1
λA,max+λC,max ≤λB,max+ 1
λB,max+λC,max ≤λA,max+ 1

Ï necessary and sufficient for qubits [Higuchi, Sudbery, Szulc]

Ï follows from variational principle: λA,max =maxϕA 〈ϕA|ρA|ϕA〉 etc.
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Tensor scaling and SLOCC X ∈V= (Cn)⊗d

G=SL(n)d acts on V= (Cn)⊗d by X 7→ (A1⊗ . . .⊗Ad)X

Group orbit = tensor scalings = states that can be obtained by
SLOCC (postselected local operations & classical communication).

Tensor scaling problem: Which ρ1, . . . ,ρd arise from scaling of given X?

Ï X fixes the entanglement class
Ï e.g., for ρi ∝ I, each system maximally entangled with rest

(quantum version of stochastic tensor)

Ï in general, answer only depends on eigenvalues λi of ρi
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Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem for X is encoded by:

∆(X)=
{
(λ1, . . . ,λd) for scalings of X (and limits)

}
⊆Rdn

e.g., for three qubits, GHZ= |000〉+ |111〉 and
W= |100〉+ |010〉+ |001〉:

In general:
Ï convex polytopes [Kirwan, Mumford, W-Christandl-Doran-Gross, Sawicki–Oszmaniec–Kus]

Ï encode all local info about entanglement class (‘entanglement
polytopes’)

Ï descriptions by vertices or inequalities intractable (when known)
[Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.]

We provide algorithmic solution!
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The Algorithm

Given λA, λB, λC and reference state X, want Y= (A⊗B⊗C)X with
these marginals. For simplicity, uniform marginals (λA ∝ 1A etc).

Algorithm: Start with Y=X. For t= 1, . . . ,T:
Compute marginals ρA, ρB, ρC of Y. If ε-close to uniform, stop.
Otherwise, replace Y by e−c(ρo

A+ρo
B+ρo

C)Y. Xo = traceless part

Result
Algorithm finds Y= (A⊗B⊗C)X with marginals ε-close to uniform
within T= poly( 1ε , input size) steps.

Ï also works for bosons, fermions, d> 3 subsystems, MPS, …
Ï can run on quantum computer (but how well? ,)
Ï solve quantum marginal problem by using random X

cf. algorithm by Verstraete et al (w/o rigorous analysis)
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Why does it work?

“Otherwise, replace X by e−c(ρo
A+ρo

B+ρo
C)X.”

This step implements gradient descent for the function

N(A,B,C)= ‖(A⊗B⊗C)X‖2

where A,B,C have det=1. Indeed, for traceless HA,…,HC:

1
2∂t=0N(e

tHA ,etHB ,etHC)= tr[ρoAHA]+tr[ρoBHB]+tr[ρoCHC],

so gradient can be identified with ρoA,ρoB,ρoC. Moreover:
Ï gradient vanishes iff marginals uniform ,
Ï log-convexity: ∂2t ≥ 0, so critical points are global minima ,

Hold on…
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Non-commutative duality G=SL(n)d

The following optimization problems are equivalent: [Kempf-Ness]

infg∈G ‖g ·X‖ > 0 ⇐⇒ infg∈G ds(g ·X)= 0

ds(Y) :=∑d
i=1‖ρYi − I

n‖2

Ï primal: norm minimization, dual: marginal problem
Ï non-commutative version of LP duality

We develop general duality theory and 1st & 2nd order methods.

All examples from introduction fall into this framework!

Everything works for general actions of reductive G. Primal is log-convex along geodesics.
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Invariant theory

G=SL(n)d acts on V= (Cn)⊗d, so also on ring of polynomials.

Primal problem (norm minimization) is equivalent to
classical problem in invariant theory:

Null cone problem: Given X, ∃ G-invariant poly P s.th. P(X) 6=P(0)?

Ï even interesting for generic X: existence of invariants
(in general, NP-hard for fixed degree)

Ï using standard algorithms infeasible already for small d, n

Numerical algorithm solves an algebraic problem! Conversely, we use
invariant theory in analysis of algorithm…
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Analysis of Algorithm

“Unless ε-close to uniform, replace Y by e−c(ρo
A+ρo

B+ρo
C)Y.”

To obtain rigorous algorithm, show:
Ï progress in each step: ‖e−c(ρo

A+ρo
B+ρo

C)Y‖ ≤ (1−c1ε)‖Y‖
Ï a priori lower bound: infdet=1‖(A⊗B⊗C)X‖ ≥ c2

Then, (1−c1ε)T ≥ c2 bounds the number of steps T.

The first point follows from convexity estimates.

For the second, construct ‘explicit’ invariants with ‘nice’ coefficients
and P(X) 6= 0 to obtain bound in terms of bitsize of X.
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Summary and outlook arXiv:1804.04739, 1905.xxxxx

Marginal & scaling problems

l duality
Norm minimization

Effective algorithms for large class of problems, incl. quantum
marginal problem (also fermions) and tensor scaling. Based on
geodesically convex optimization and invariant theory.

Many exciting directions:
Ï Numerical studies in q. many-body systems or chemistry
Ï Quantum algorithms?
Ï Algorithms for other problems with natural symmetries?
Ï What are the ‘tractable’ problems in invariant theory? C; F?

Thank you for your attention!
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The tensor scaling algorithm

Input: X ∈V rational, ε> 0
Ï If any ρXi is singular: Null cone �
Ï Set Y(0) :=X.
Ï For t= 0,1, . . . ,T:

Ï If ds(T(t))< ε: Success ,
Ï Choose i such that ‖ρY(t)i − I

n‖ > εp
d and apply tensor scaling step:

Y(t+1) ← (nρY(t)i )−1/2 ·Y(t)

Ï Null cone �

Other target spectra: Adjust tensor scaling step (in particular, use
Cholesky square root) and randomize initial point.
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A general equivalence V ⊆P(V)

All points in ∆(V ) can be described via invariant theory:

Vλ ⊆C[V ](k) ⇒ λ

k ∈∆(V )

(λ highest weight, k degree)

Ï Can also study multiplicities g(λ,k) :=#Vλ ⊆C[V ](k).
Ï This leads to interesting computational problems:

g=? g> 0? ∃s> 0 : g(sλ,sk)> 0?

(#-hard) (NP-hard) (our problem!)

Completely unlike Horn’s problem: Knutson-Tao saturation property
does not hold, and hence we can hope for efficient algorithms!
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