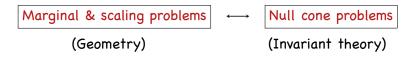
Quantum marginals, invariants, and non-commutative optimization

Michael Walter

Leiden, May 2019

based on joint work with Bürgisser, Franks, Garg, Oliveira, Wigderson (ITCS'18, FOCS'18, arXiv:1905.xxxxx)

Outline and philosophy



Interesting class of problems — with applications in q. information, computer science, algebra, analysis — that surprisingly can be phrased as optimization problems over noncommutative groups.

Result: General framework and algorithms for this class.

Plan: Introduction & illustration via quantum marginal problem.

Philosophy: An old duality in geometric invariant theory leads to new optimization algorithms.

Example: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$Y = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} X \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & b_n \end{pmatrix} \qquad (a_1, \dots, b_n > 0).$$

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, \exists (approximately) d.s. scalings?

Permanent (Invariant Theory): ...iff per(X) > 0!

- ► can be decided in polynomial time
- ▶ find scalings by alternatingly fixing rows & columns ③

Sec. Li

Example: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$Y = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} X \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & b_n \end{pmatrix} \qquad (a_1, \dots, b_n > 0).$$

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, \exists (approximately) d.s. scalings?

Permanent (Invariant Theory): ...iff per(X) > 0!

- ► can be decided in polynomial time
- ► find scalings by alternatingly fixing rows & columns ©

[Sinkhorn]

Example: Sinkhorn algorithm

$$\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix} \stackrel{\text{fix rows}}{\longrightarrow} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ 1 & 0 \end{pmatrix} \stackrel{\text{fix cols}}{\longrightarrow} \begin{pmatrix} \frac{1}{4} & 1 \\ \frac{3}{4} & 0 \end{pmatrix} \longrightarrow \cdots \longrightarrow \begin{pmatrix} \frac{1}{27} & 1 \\ \frac{27-1}{27} & 0 \end{pmatrix}$$

after t steps. Why does it work? Permanent of $X/\sum_{i,j}X_{ij}$ increases monotonically — can be used to control convergence:

permanent

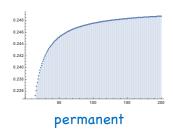
distance to doubly stochastic

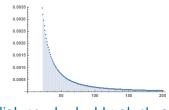
State-of-the-art algorithms directly optimize $(a, b) \mapsto per(aXb)$.

Example: Sinkhorn algorithm

$$\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix} \stackrel{\text{fix rows}}{\longrightarrow} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ 1 & 0 \end{pmatrix} \stackrel{\text{fix cols}}{\longrightarrow} \begin{pmatrix} \frac{1}{4} & 1 \\ \frac{3}{4} & 0 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} \frac{1}{2 \frac{t}{t}} & 1 \\ \frac{2 \frac{t}{t} - 1}{2 \frac{t}{t}} & 0 \end{pmatrix}$$

after t steps. Why does it work? Permanent of $X/\sum_{i,j}X_{ij}$ increases monotonically — can be used to control convergence:





distance to doubly stochastic

State-of-the-art algorithms directly optimize $(a,b) \mapsto per(aXb)$.

Example: Operator scaling and non-commutative PIT

Let $T(\rho) = \sum_i X_i \rho X_i^{\dagger}$ be a CP map. A *scaling* of T is of the form $S = AT(\mathcal{B} \cdot \mathcal{B}^{\dagger}) A^{\dagger}.$

A map is unital (U) if T(I) = I and trace-preserving (TP) if $T^{\dagger}(I) = I$.

Operator scaling (Geometry): Given T, \exists (approx.) \cup & TP scalings?

Non-commutative PIT (Invariant Theory): ...iff symbolic matrix $\sum_i y_i X_i$ in *non-commutative* variables y_i is invertible.

► can be decided in polynomial time

- [Garg et al, Ivanyos et al]
- ightharpoonup find scalings by alternatingly making the map U or TP \odot

Gurvits]

Many further characterizations $(\exists Y_i : \det \sum_i Y_i \otimes X_i \neq 0)$ & connections (Brascamp-Lieb inequalities, Paulsen problem, ...).

Example: Operator scaling and non-commutative PIT

Let $T(\rho) = \sum_i X_i \rho X_i^{\dagger}$ be a CP map. A *scaling* of T is of the form $S = AT(B \cdot B^{\dagger})A^{\dagger}.$

A map is unital (U) if T(I) = I and trace-preserving (TP) if $T^{\dagger}(I) = I$.

Operator scaling (Geometry): Given T, \exists (approx.) \cup & TP scalings?

Non-commutative PIT (Invariant Theory): ...iff symbolic matrix $\sum_i y_i X_i$ in *non-commutative* variables y_i is invertible.

► can be decided in polynomial time

- [Garg et al, Ivanyos et al]
- lacktriangleright find scalings by alternatingly making the map U or TP \odot

[Gurvits]

Many further characterizations $(\exists Y_i : \det \sum_i Y_i \otimes X_i \neq 0)$ & connections (Brascamp-Lieb inequalities, Paulsen problem, ...).

Example: Horn problem

Let $\alpha_1 \ge ... \ge \alpha_n \ge 0$, $\beta_1 \ge ... \ge \beta_n \ge 0$, $\gamma_1 \ge ... \ge \gamma_n \ge 0$ be integers.

Horn problem (Geometry): When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

▶ Horn conjectured linear inequalities on α , β , γ .

Saturation property (Invariant theory): ...iff Littlewood-Richardson coefficient $c_{\alpha,\beta}^{\gamma} > 0$ [Knutson-Tao

- ► Horn inequalities sufficient
- ▶ lead to *only known* poly-time algorithm

► can find A, B, C by natural iterative algorithm

[Mulmuley]

[Franks]

[Franks]

All these examples are special cases of a general class of problems. We now focus on 'representative' example involving quantum states!

Example: Horn problem

Let $\alpha_1 \ge ... \ge \alpha_n \ge 0$, $\beta_1 \ge ... \ge \beta_n \ge 0$, $\gamma_1 \ge ... \ge \gamma_n \ge 0$ be integers.

Horn problem (Geometry): When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

▶ Horn conjectured linear inequalities on α , β , γ .

Saturation property (Invariant theory): ...iff Littlewood-Richardson coefficient $c_{\alpha\beta}^{\gamma} > 0$ [Knutson-Tao]

- ► Horn inequalities sufficient
- ▶ lead to only known poly-time algorithm

► can find A, B, C by natural iterative algorithm

[Mulmuley]

[Franks]

All these examples are special cases of a general class of problems. We now focus on 'representative' example involving quantum states!

Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

$$X \in V = (\mathbb{C}^n)^{\otimes d} = \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n$$

 $\leadsto [X] = |X\rangle \langle X| \in \mathbb{P}(V)$

State of individual particles described by density matrices $\rho_1^X,...,\rho_d^X$:

$$\operatorname{tr}[\rho_1^X H_1] = \langle (H_1 \otimes I \otimes \ldots \otimes I) X, X \rangle \quad \forall H_1$$

Quantum marginal problem: Which $\rho_1,...,\rho_d$ are consistent with a global state X?

Geometry: Quantum states and marginals

Quantum state of d particles is described by unit vector

$$X \in V = (\mathbb{C}^n)^{\otimes d} = \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n$$

 $\leadsto [X] = |X\rangle \langle X| \in \mathbb{P}(V)$

State of individual particles described by density matrices $\rho_1^X,...,\rho_d^X$:

$$\operatorname{tr}[\rho_1^X H_1] = \langle (H_1 \otimes I \otimes \ldots \otimes I) X, X \rangle \quad \forall H_1$$

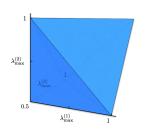
Quantum marginal problem: Which $\rho_1,...,\rho_d$ are consistent with a global state X?

Examples

Two particles: ρ_A and ρ_B compatible with global pure state iff same nonzero eigenvalues (Schmidt decomposition)

Three particles:

$$\begin{split} &\lambda_{A,\max} + \lambda_{B,\max} \leq \lambda_{C,\max} + 1 \\ &\lambda_{A,\max} + \lambda_{C,\max} \leq \lambda_{B,\max} + 1 \\ &\lambda_{B,\max} + \lambda_{C,\max} \leq \lambda_{A,\max} + 1 \end{split}$$



necessary and sufficient for qubits

- [Higuchi, Sudbery, Szulc]
- follows from variational principle: $\lambda_{A,\max} = \max_{\phi_A} \langle \phi_A | \rho_A | \phi_A \rangle$ etc.

Tensor scaling and SLOCC

$$X \in V = (\mathbb{C}^n)^{\otimes d}$$

$$G = \mathrm{SL}(n)^d$$
 acts on $V = (\mathbb{C}^n)^{\otimes d}$ by $X \mapsto (A_1 \otimes \ldots \otimes A_d) X$

Group orbit = tensor scalings = states that can be obtained by SLOCC (postselected local operations & classical communication).

Tensor scaling problem: Which ρ_1, \ldots, ρ_d arise from scaling of given X?

- X fixes the entanglement class
- ▶ e.g., for $\rho_i \propto I$, each system maximally entangled with rest (quantum version of stochastic tensor)
- ightharpoonup in general, answer only depends on eigenvalues λ_i of ho_i

Tensor scaling and SLOCC

$$X \in V = (\mathbb{C}^n)^{\otimes d}$$

$$G = \mathrm{SL}(n)^d$$
 acts on $V = (\mathbb{C}^n)^{\otimes d}$ by $X \mapsto (A_1 \otimes \ldots \otimes A_d) X$

Group orbit = tensor scalings = states that can be obtained by SLOCC (postselected local operations & classical communication).

Tensor scaling problem: Which ρ_1, \ldots, ρ_d arise from scaling of given X?

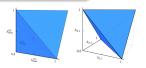
- X fixes the entanglement class
- e.g., for $\rho_i \propto I$, each system maximally entangled with rest (quantum version of stochastic tensor)
- lacktriangleright in general, answer only depends on eigenvalues $oldsymbol{\lambda}_i$ of ho_i

Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem for X is encoded by:

$$\Delta(\textit{X}) = \left\{ (\lambda_1, \dots, \lambda_d) \text{ for scalings of } \textit{X} \text{ (and limits)} \right\} \subseteq \mathbb{R}^{dn}$$

e.g., for three qubits, GHZ =
$$|000\rangle + |111\rangle$$
 and $W = |100\rangle + |010\rangle + |001\rangle$:



In general

- Convex polytopes [Kirwan, Mumford, W-Christandl-Doran-Gross, Sawicki-Oszmaniec-K
- encode all local info about entanglement class ('entanglement polytopes')
- descriptions by vertices or inequalities intractable (when known)
 [Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.]

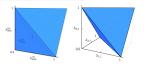
We provide algorithmic solution!

Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem for X is encoded by:

$$\Delta(\textit{X}) = \left\{ (\lambda_1, \dots, \lambda_d) \text{ for scalings of } \textit{X} \text{ (and limits)} \right\} \subseteq \mathbb{R}^{dn}$$

e.g., for three qubits, GHZ =
$$|000\rangle + |111\rangle$$
 and $W = |100\rangle + |010\rangle + |001\rangle$:



In general:

convex polytopes

- [Kirwan, Mumford, W-Christandl-Doran-Gross, Sawicki-Oszmaniec-Kus]
- encode all local info about entanglement class ('entanglement polytopes')
- descriptions by vertices or inequalities intractable (when known)
 [Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W.]

We provide algorithmic solution!

The Algorithm

Given λ_A , λ_B , λ_C and reference state X, want $Y = (A \otimes B \otimes C)X$ with these marginals. For simplicity, uniform marginals $(\lambda_A \propto 1_A \text{ etc})$.

Algorithm: Start with Y = X. For t = 1, ..., T: Compute marginals ρ_A , ρ_B , ρ_C of Y. If ε -close to uniform, stop. Otherwise, replace Y by $e^{-c(\rho_A^o + \rho_B^o + \rho_C^o)}Y$. $\mathscr{X} = traceless\ part$

Result

Algorithm finds $Y = (A \otimes B \otimes C)X$ with marginals ε -close to uniform within $T = \operatorname{poly}(\frac{1}{\varepsilon}, \operatorname{input \ size})$ steps.

- ▶ also works for bosons, fermions, d > 3 subsystems, MPS, ...
- ► can run on quantum computer (but how well? ②)
- ▶ solve quantum marginal problem by using random X

cf. algorithm by Verstraete et al (w/o rigorous analysis)

Why does it work?

"Otherwise, replace X by
$$e^{-c(
ho_A^o +
ho_B^o +
ho_C^o)} X$$
."

This step implements gradient descent for the function

$$N(A, B, C) = \|(A \otimes B \otimes C)X\|^2$$

where A,B,C have det=1. Indeed, for traceless $H_A,...,H_C$:

$$\frac{1}{2}\partial_{t=0}N(e^{tH_{A}},e^{tH_{B}},e^{tH_{C}})=\text{tr}[\rho_{A}^{o}H_{A}]+\text{tr}[\rho_{B}^{o}H_{B}]+\text{tr}[\rho_{C}^{o}H_{C}],$$

so gradient can be identified with $\rho_A^o, \rho_B^o, \rho_C^o$. Moreover:

- ▶ gradient vanishes iff marginals uniform ©
- ▶ log-convexity: $\partial_t^2 \ge 0$, so critical points are global minima \odot

Hold on...

Why does it work?

"Otherwise, replace X by
$$e^{-c(
ho_A^o +
ho_B^o +
ho_C^o)} X$$
."

This step implements gradient descent for the function

$$N(A, B, C) = ||(A \otimes B \otimes C)X||^2$$

where A,B,C have det=1. Indeed, for traceless $H_A,...,H_C$:

$$\frac{1}{2}\partial_{t=0}\textit{N}(\textit{e}^{t\textit{H}_{A}},\textit{e}^{t\textit{H}_{B}},\textit{e}^{t\textit{H}_{C}}) = tr[\rho_{\textit{A}}^{\textit{o}}\textit{H}_{\textit{A}}] + tr[\rho_{\textit{B}}^{\textit{o}}\textit{H}_{\textit{B}}] + tr[\rho_{\textit{C}}^{\textit{o}}\textit{H}_{\textit{C}}],$$

so gradient can be identified with $\rho_A^o, \rho_B^o, \rho_C^o$. Moreover:

- ▶ gradient vanishes iff marginals uniform ⊕
- ▶ log-convexity: $\partial_t^2 \ge 0$, so critical points are global minima \odot

Hold on...

Why does it work?

"Otherwise, replace X by
$$e^{-c(\rho_A^o + \rho_B^o + \rho_C^o)} X$$
."

This step implements gradient descent for the function

$$N(A, B, C) = ||(A \otimes B \otimes C)X||^2$$

where A,B,C have det=1. Indeed, for traceless $H_A,...,H_C$:

$$\frac{1}{2}\partial_{t=0}\textit{N}(\textit{e}^{\textit{tH}_{A}},\textit{e}^{\textit{tH}_{B}},\textit{e}^{\textit{tH}_{C}}) = \text{tr}[\rho_{A}^{\textit{o}}\textit{H}_{A}] + \text{tr}[\rho_{B}^{\textit{o}}\textit{H}_{B}] + \text{tr}[\rho_{C}^{\textit{o}}\textit{H}_{C}],$$

so gradient can be identified with $\rho_A^o, \rho_B^o, \rho_C^o$. Moreover:

- ► gradient vanishes iff marginals uniform ©
- ▶ log-convexity: $\partial_t^2 \ge 0$, so critical points are global minima \odot

Hold on...

Non-commutative duality

$$G = SL(n)^d$$

The following optimization problems are equivalent:

$$\begin{array}{ccc} \boxed{\inf_{g \in \mathcal{G}} \|g \cdot X\| > 0} & \Longleftrightarrow & \boxed{\inf_{g \in \mathcal{G}} \operatorname{ds}(g \cdot X) = 0} \\ \\ \operatorname{ds}(Y) := \sum_{i=1}^d \|\rho_i^Y - \frac{I}{n}\|^2 \end{array}$$

- ► primal: norm minimization, dual: marginal problem
- non-commutative version of LP duality

We develop general duality theory and 1st & 2nd order methods.

All examples from introduction fall into this framework!

Everything works for general actions of reductive G. Primal is log-convex along geodesics.

Invariant theory

 $G = SL(n)^d$ acts on $V = (\mathbb{C}^n)^{\otimes d}$, so also on ring of polynomials.

Primal problem (norm minimization) is equivalent to classical problem in invariant theory:

Null cone problem: Given X, \exists G-invariant poly P s.th. $P(X) \neq P(0)$?

- even interesting for generic X: existence of invariants (in general, NP-hard for fixed degree)
- ightharpoonup using standard algorithms infeasible already for small d, n

Numerical algorithm solves an algebraic problem! Conversely, we use invariant theory in analysis of algorithm...

Invariant theory

 $G = SL(n)^d$ acts on $V = (\mathbb{C}^n)^{\otimes d}$, so also on ring of polynomials.

Primal problem (norm minimization) is equivalent to classical problem in invariant theory:

Null cone problem: Given X, \exists G-invariant poly P s.th. $P(X) \neq P(0)$?

- even interesting for generic X: existence of invariants (in general, NP-hard for fixed degree)
- ightharpoonup using standard algorithms infeasible already for small d, n

Numerical algorithm solves an algebraic problem! Conversely, we use invariant theory in analysis of algorithm...

Analysis of Algorithm

"Unless arepsilon –close to uniform, replace Y by $e^{-c(
ho_A^o+
ho_B^o+
ho_C^o)}$ Y."

To obtain rigorous algorithm, show:

- ▶ progress in each step: $\|e^{-c(\rho_A^o + \rho_B^o + \rho_C^o)}Y\| \le (1 c_1 \varepsilon)\|Y\|$
- ▶ a priori lower bound: $\inf_{det=1} \|(A \otimes B \otimes C)X\| \ge c_2$

Then, $(1-c_1\varepsilon)^T \ge c_2$ bounds the number of steps T.

The first point follows from convexity estimates.

For the second, construct 'explicit' invariants with 'nice' coefficients and $P(X) \neq 0$ to obtain bound in terms of bitsize of X.

Analysis of Algorithm

"Unless arepsilon –close to uniform, replace Y by $e^{-c(
ho_A^o+
ho_B^o+
ho_C^o)}$ Y."

To obtain rigorous algorithm, show:

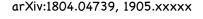
- ▶ progress in each step: $\|e^{-c(\rho_A^o + \rho_B^o + \rho_C^o)}Y\| \le (1 c_1 \varepsilon)\|Y\|$
- ▶ a priori lower bound: $\inf_{det=1} \|(A \otimes B \otimes C)X\| \ge c_2$

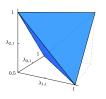
Then, $(1-c_1\varepsilon)^T \ge c_2$ bounds the number of steps T.

The first point follows from convexity estimates.

For the second, construct 'explicit' invariants with 'nice' coefficients and $P(X) \neq 0$ to obtain bound in terms of bitsize of X.

Summary and outlook





Marginal & scaling problems

† duality

Norm minimization

Effective algorithms for large class of problems, incl. quantum marginal problem (also fermions) and tensor scaling. Based on geodesically convex optimization and invariant theory.

Many exciting directions:

- ► Numerical studies in q. many-body systems or chemistry
- ► Quantum algorithms?
- Algorithms for other problems with natural symmetries?
- ▶ What are the 'tractable' problems in invariant theory? $\mathbb{C} \sim \mathbb{F}$?

Thank you for your attention!

The tensor scaling algorithm

Input: $X \in V$ rational, $\varepsilon > 0$

- ▶ If any ρ_i^X is singular: Null cone \$
- Set $Y^{(0)} := X$.
- ► For t = 0, 1, ..., T:
 - ▶ If $ds(T^{(t)}) < \varepsilon$: Success ©
 - ▶ Choose i such that $\|\rho_i^{Y^{(t)}} \frac{I}{n}\| > \frac{\varepsilon}{\sqrt{d}}$ and apply tensor scaling step:

$$\mathbf{Y}^{(t+1)} \leftarrow (\mathbf{n}\rho_{i}^{\mathbf{Y}^{(t)}})^{-1/2} \cdot \mathbf{Y}^{(t)}$$

► Null cone 4

Other target spectra: Adjust tensor scaling step (in particular, use Cholesky square root) and randomize initial point.

A general equivalence

$$\mathcal{V} \subseteq \mathbb{P}(V)$$

All points in $\Delta(V)$ can be described via invariant theory:

$$V_{\lambda} \subseteq \mathbb{C}[\mathcal{V}]_{(k)} \quad \Rightarrow \quad \frac{\lambda}{k} \in \Delta(\mathcal{V})$$

(λ highest weight, k degree)

- ► Can also study multiplicities $g(\lambda, k) := \#V_{\lambda} \subseteq \mathbb{C}[\mathcal{V}]_{(k)}$.
- ► This leads to interesting computational problems:

Completely unlike Horn's problem: Knutson-Tao saturation property does not hold, and hence we can hope for efficient algorithms!