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Summary of Results

Given density matrices ρ1, …, ρN, are they
compatible with a global pure state |Ψ〉1,...,N?

Variations:
Ï bosons and fermions (e.g., Pauli principle: 〈nj〉 ≤ 1)
Ï restrict to entanglement class (e.g., demand |Ψ〉 of GHZ type)

Result (informal)
Efficient algorithms to solve all these problems.

Ï prior to our work, only feasible for very small d, N

Rest of the talk: Motivation, algorithm, sketch of analysis.
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The Quantum Marginal Problem

Fix subsets of particles Sk ⊆ {1, . . . ,N}. For each subset, given a
density matrix ρSk . Are they compatible with a global state ρ1,...,N?

trSck [ρ1,...,N]= ρSk
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Quantum Marginals and Energy Minimization

Spin chain with nearest-neighbor interactions, H=∑
khk,k+1:

E0 =min
ρ1,...,N

tr [Hρ1,...,N]= min
ρ1,...,N

∑
k
tr [hk,k+1ρk,k+1]

= min
compatible {ρk,k+1}

∑
k
tr [hk,k+1ρk,k+1]

Reduced minimization from exp. large Hilbert space to polynomially
many variables…if we can solve quantum marginal problem!
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Quantum Marginals and Quantum Chemistry

In quantum chemistry, known as the N-representability problem:
When does a fermionic density matrix arise from N-fermion state?
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The Quantum Marginal Problem

/ Computational complexity: QMA-complete, thus NP-hard [Liu]

, Partial understanding proved to be immensely useful:
Ï Entropy inequalities:

S(ρ12)+S(ρ23)≥S(ρ123)+S(ρ2) [Lieb–Ruskai]

Ï De Finetti and Monogamy:

ρAB1 = . . . = ρABN
N≫1=⇒ ρABi ≈ unentangled [Doherty–Parrilo–Spedialeri]

Ï Pauli principle:
〈nj〉 = 〈a†

jaj〉 ≤ 1

A constraint on the one-body reduced density matrix!
What is the general picture?

Constraints are purely kinematic, arising from structure of q. state space.
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Towards the One-Body Quantum Marginal Problem

Given density matrices ρ1, …, ρN for each particle. Are they
compatible with a global state ρ1,...,N?

Of course: ρ1,...,N = ρ1⊗ . . .⊗ρN! Also easy for bosons and fermions…
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The One-Body Quantum Marginal Problem

Given density matrices ρ1, …, ρN for each particle. Are they
compatible with a global pure state |Ψ〉1,...,N?

Answer only depends on eigenvalues λk = (λk,1 ≥ . . . ≥λk,d) of ρk.

8 / 18



The One-Body Quantum Marginal Problem

Given density matrices ρ1, …, ρN, are they
compatible with a global pure state |Ψ〉1,...,N?

Why relevant? Ground states are pure!

Do they ever ‘feel’ these constraints? In some cases, yes!
Ï Pauli principle: 0≤ 〈nj〉 ≤ 1 ⇔ 0≤ 〈j|ρ1|j〉 ≤ 1/N
Ï assuming 〈nj〉 ≈ 0,1 leads to the aufbau principle !

[Wikipedia]

Ï general picture unclear
cf. recent investigations by Klyachko, Schilling–Christandl–Gross, Benavides-Riveros, ….

But what are the actual constraints?
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Examples

Two particles: ρA and ρB compatible iff same nonzero eigenvalues
Ï follows from Schmidt decomposition: |Ψ〉AB =

∑
j sj |ej〉⊗ |fj〉

Three particles:

λA,max+λB,max ≤λC,max+ 1
λA,max+λC,max ≤λB,max+ 1
λB,max+λC,max ≤λA,max+ 1

Ï necessary and sufficient for qubits [Higuchi, Sudbery, Szulc]

Ï follows from variational principle: λA,max =maxϕA 〈ϕA|ρA|ϕA〉 etc.
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Solution of the One-Body Quantum Marginal Problem

∆ABC =
{
(λA,λB,λC) compatible

}

Ï always convex polytope [Mumford, Kirwan]

Ï linear inequalities known [Klyachko, Daftuar–Hayden, Berenstein–Sjamaar, Vergne-W]

Ï representation-theoretic description [Christandl–Mitchison, Mumford, Brion]

Known descriptions intractable beyond very small N, d. Main obstacle
for applications to realistic systems. We provide algorithmic solution:

Result (informal)
Efficient algorithm for deciding if λA,λB,λC compatible (i.e., in ∆ABC).
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Multi-Particle Entanglement

|Ψ〉ABC is entangled iff |Ψ〉ABC ̸= |ψ〉A⊗|ψ〉B⊗|ψ〉C.

Operational approach:
|Ψ〉 and |Φ〉 have same type of entanglement

⇔ can be interconverted by some set of operations that do not
create entanglement

⇔ |Ψ〉 = (A⊗B⊗C) |Φ〉 for invertible A, B, C [Dür–Vidal–Cirac]

difficult to handle directly (exp. many continuous parameters)
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Qantum Marginals and Entanglement

Given density matrices ρ1, …, ρN, are they compatible with state in
given entanglement class C ?

∆(C )= {
(λA,λB,λC) compatible with state in class C

}
Ï finite hierarchy of entanglement polytopes [W–Christandl–Doran–Gross]

Ï contain all local information of global entanglement

e.g., for three qubits, |GHZ〉 = |000〉+ |111〉
and |W〉 = |100〉+ |010〉+ |001〉:
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Inequalities for Multi-Particle Entanglement

(λA,λB,λC) ̸∈∆(C )
⇒ Ψ ̸∈C

Ï efficient, robust against small noise
Ï realized in two quantum optics experiments [Aguilar et al, Zhao et al]

Known descriptions of ∆(C ) intractable beyond very small N, d.

Result (informal)
Efficient algorithm for deciding if λA,λB,λC compatible with class.
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The Algorithm

Given λA, λB, λC and reference state |Φ〉, want |Ψ〉 = (A⊗B⊗C) |Φ〉
with these marginals. For simplicity, uniform marginals (λA ∝ 1A etc).

Algorithm: Start with |Ψ〉 = |Φ〉. For t= 1, . . . ,T:
Compute marginals ρA, ρB, ρC of |Ψ〉. If ε-close to uniform, stop.
Otherwise, replace |Ψ〉 by e−c(ρo

A+ρo
B+ρo

C) |Ψ〉. Xo = traceless part

Result
Algorithm finds |Ψ〉 = (A⊗B⊗C) |Φ〉 with marginals ε-close to uniform
within T= poly( 1ε , input size) steps.

Ï also works for bosons, fermions, N> 3 subsystems, MPS, …
Ï can run on quantum computer
Ï solve quantum marginal problem by using random |Φ〉

cf. algorithm by Verstraete et al (w/o rigorous analysis)
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Why does it work?

“Otherwise, replace |Ψ〉 by e−c(ρo
A+ρo

B+ρo
C) |Ψ〉.”

This step implements gradient descent for the function

F(A,B,C)= 1
2∥(A⊗B⊗C) |Ψ〉∥2

where A,B,C have det=1. Indeed, for traceless HA,…,HC:

∂t=0F(etHA ,etHB ,etHC)= tr[ρoAHA]+tr[ρoBHB]+tr[ρoCHC]

Ï gradient vanishes iff marginals uniform
Ï convexity: ∂2t ≥ 0, so critical points are global minima
Ï |Φ〉 can be transformed to uniform iff infdet=1F(A,B,C)> 0

‘Physics’ in the normalization of the wave function! ,
General fact: G→ [0,∞),g 7→ 1

2 ∥g ·v∥2 is geodesically (log-)convex. [Kempf-Ness]
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Analysis of Algorithm

To turn this into a rigorous algorithm, show:

Ï progress in each step: ∥e−c(ρo
A+ρo

B+ρo
C) |Ψ〉∥ ≤ (1−cε)∥Ψ∥

Ï a priori lower bound: infdet=1∥(A⊗B⊗C) |Φ〉∥ ≥Z

Then, (1−cε)T ≥Z bounds the number of steps T.

The first point follows from local convexity bounds.

For the second, use invariant theory: inf> 0 iff exists invariant
polynomial P such that P(Φ) ̸= 0.
We construct ‘explicit’ polynomials with ‘nice’ coefficients to obtain
quantitative bound in terms of bitsize of |Φ〉.
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Summary and Outlook

Ï efficient algorithms for one-body quantum marginal problem
(incl. fermions) and entanglement polytopes

Ï based on convex optimization and geometric invariant theory
Ï opens up possibility for numerically studying quantum marginals
in many-body systems and larger atoms or molecules

Thank you for your attention!
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