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Summary of Results

.....

Variations:
> bosons and fermions (e.g., Pauli principle: (n; <1)
» restrict to entanglement class (e.g., demand |¥) of GHZ type)

Result (informal)

Efficient algorithms to solve all these problems.

> prior fo our work, only feasible for very small d, N
Rest of the talk: Motivation, algorithm, sketch of analysis.
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The Quantum Marginal Problem

o?o o

Fix subsets of particles Sx<{l,...,N}. For each subset, given a
density matrix ps,. Are they compatible with a global state p; N? J

.....
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Quantum Marginals and Energy Minimization

— —

o oo oo oo ®

Spin chain with nearest-neighbor interactions, H=3  hi k+1:

= min > trihkk1Okke]
compatible {pg K1} K

Reduced minimization from exp. large Hilbert space to polynomially
many variables...if we can solve quantum marginal problem!
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Quantum Marginals and Quantum Chemistry
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1. INTRODUCTION

AN the wave function be eliminated from quan-
tum mechanics and its role be taken over, in the
discussion of physical systems, by reduced density
matrices? The author has believed in the affirmative
answer to this question for over ten years. In the
present paper, he attempts to muster the main cur-
rent evidence in support of this belief. Prior to the
Hylleraas Symposium, the available evidence, prob-
ably, would not have convinced the average physi-

terest in the density matrix approach to the N-body
problem stated, “It has frequently been pointed out
that a conventional many-electron wave function
tells us more than we need to know. . . . There is an
instinetive feeling that matters such as electron cor-
relation should show up in the two-particle density
matrix . . . but we still do not know the conditions
that must be satisfied by the density matrix. Until
these conditions have been elucidated, it is going to
be very difficult to make much progress along these

lines.”

In quantum chemistry, known as the N-representability problem:
When does a fermionic density matrix arise from N-fermion state?
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The Quantum Marginal Problem

® Computational complexity: QMA-complete, thus NP-hard [Liu]

© Partial understanding proved fo be immensely useful:
> Entropy inequalities:
S(plz) + S(p23) = 5(p123) + S(pg) [Lieb-Ruskai]

> De Finetti and Monogamy:

N>1
PAB, =..-=PABy = PAB = unenfangled [Doherty-Parrilo-Spedialeri]

> Pauli principle:
(nj) = (abay <1 5 B¢

A constraint on the one-body reduced density matrix!
What is the general picture? J

Constraints are purely kinematic, arising from structure of q. state space.
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Towards the One-Body Quantum Marginal Problem

Given density matrices py, .., py for each particle. Are they
compatible with a global state p; n? J

Of course: p; N=p1®...® py! Also easy for bosons and fermions...

.....
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The One-Body Quantum Marginal Problem

Given density matrices py, .., py for each particle. Are they
compatible with a global pure state |W¥); n? J

Answer only depends on eigenvalues A= (g1 =...= Agq) of pk.
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The One-Body Quantum Marginal Problem

Given density matrices py, .., pn, are they Y,J,
compatible with a global pure state |¥); n? J \

.....

Why relevant? Ground states are pure!

Do they ever ‘feel’ these constraints? In some cases, yes!

> Pauli principle: O0<(n)<1 & O0=<{jlpilHh=<1/N

» assuming (n;) = 0,1 leads to the aufbau principle!
AT
1s v

[Wikipedia]
> general picture unclear

cf. recent investigations by Klyachko, Schilling-Christandl-Gross, Benavides-Riveros, ....

But what are the actual constraints?

9/18



Examples

Two particles: pa and pg compatible iff same nonzero eigenvalues
> follows from Schmidt decomposition: [W)ag=3 ;sjle)) ®|f)
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Examples

Two particles: pa and pg compatible iff same nonzero eigenvalues
> follows from Schmidt decomposition: [W)ag=3 ;sjle)) ®|f)

Three particles:

Aamax + ABmax < Agmax +1
A2

Aamax + Acmax < ABmax +1
ABmax + Acmax < Aamax +1

0.5

Moke 1

> necessary and sufficient for qubits [Higuchi, Sudbery, Szulc]

> follows from variational principle: Aamax =Maxe, (Palpaldpa) etc.
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Solution of the One-Body Quantum Marginal Problem

Aasc={(Aa Ag, A¢) compatible} J .

> always convex polytope (Mumford, Kirwan]
4 linear inequa“ﬂes knOWn [Klyachko, Daftuar-Hayden, Berenstein-Sjamaar, Vergne-W]
> representation-theoretic description [Christand|~Mitchison, Mumford, Brior]

Known descriptions intractable beyond very small N, d. Main obstacle
for applications fo realistic systems. We provide algorithmic solution:

Result (informal)
Efficient algorithm for deciding if Aa, Ag, Ac compatible (i.e., in Aagc).
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Multi-Particle Entanglement
Bob

Alice O O Charlie

W) asc is entangled iff |W)agc# W) a® 1Y) p® Y) .

Operational approach:
|¥) and |®) have same type of entanglement

< can be interconverted by some set of operations that do not
create entanglement

difficult to handle directly (exp. many continuous parameters)
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Multi-Particle Entanglement
Bob

Alice O O Charlie

W) asc is entangled iff |W)agc# W) a® 1Y) p® Y) .

Operational approach:
|¥) and |®) have same type of entanglement
< can be interconverted by stochastic local operations and
classical communication (SLOCC)
< |¥)=(A®B®C)|®) for invertible A, B, C [Diir-Vidal~Cirac]

difficult to handle directly (exp. many continuous parameters)
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Qantum Marginals and Enfanglement

Given density matrices pi, .., pn, are they compatible with state in
given entanglement class €7

B |

A(€) ={(Aa Ag, Ac) compatible with state in class €} J

> finite hierarChy of enfﬂnglemen"' POIY"'OPeS [W-Christand|-Doran-Gross]
> contain all local information of global entanglement

e.g., for three qubits, |GHZ) = |000) + |111) - “
and |W) = [100) + |010) + |001): L
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Inequalities for Multi-Particle Entanglement

D =

" (g}

(A A Ac) A(F)
> YI€

5
om

» efficient, robust against small noise

> realized in two quantum optics experiments [Aguilar et al, Zhao et al]

Known descriptions of A(%¢) intractable beyond very small N, d.

Result (informal)

Efficient algorithm for deciding if A, Ag, Ac compatible with class.
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The Algorithm

Given Ap, Ag, A¢ and reference state |®), want |¥) = (A® B® C)|D)
with these marginals. For simplicity, uniform marginals (A o 14 etc).

Algorithm: Start with |¥) =|®). For t=1,..., T
Compute marginals pa, ps, pc of |¥). If e-close to uniform, stop.
Otherwise, replace |¥) by e €(Pa*Pa+Pc) |py, X° = traceless part

Algorithm finds |¥) = (A® B® C)|®) with marginals e-close to uniform
within T=poly(1,input size) steps.

> also works for bosons, fermions, N> 3 subsystems, MPS, ...
> can run on quantum computer
> solve quantum marginal problem by using random |®)

cf. algorithm by Verstraete et al (w/o rigorous analysis)
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Why does it work?

“Otherwise, replace |W) by e “(Pa*Ps*re) |y J

This step implements gradient descent for the function
F(A,B,C) = %H(A@ B®C)|¥)|?
where A,B,C have det=1. Indeed, for traceless Ha,...,Hc:
d1-oF(e™, e, &™) = tr[pG Hal + tr{pGHs] + tr[p2Hc]

> gradient vanishes iff marginals uniform
> convexity: 02=0, so critical points are global minima
> |®) can be transformed to uniform iff infy.1_; F(A,B,C) >0

Physics’ in the normalization of the wave function! ©

General fact: G— [0,00),g— %llg-vll2 is geodesically (log-)convex. [Kempf-Ness]
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Analysis of Algorithm
To turn this into a rigorous algorithm, show:

> progress in each step: || “PatPatPd) |y | < (1 ce)||¥|
> a priori lower bound: infyet-1(A®B®C)|D)|=Z

Then, (1-ce)" = Z bounds the number of steps T.
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Analysis of Algorithm

To turn this into a rigorous algorithm, show:

> progress in each step: || “PatPatPd) |y | < (1 ce)||¥|
> a priori lower bound: infyet-1(A®B®C)|D)|=Z

Then, (1-ce)" = Z bounds the number of steps T.
The first point follows from local convexity bounds.

For the second, use invariant theory: inf >0 iff exists invariant
polynomial P such that P(®) #O0.

We construct ‘explicit’ polynomials with ‘nice’ coefficients to obtain
quantitative bound in terms of bitsize of |®).
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Summary and Outlook
®<§ *

Bob

O
i—; Alice O O Charlie

» efficient algorithms for one-body quantum marginal problem
(incl. fermions) and entanglement polytopes

> based on convex optimization and geometric invariant theory

> opens up possibility for numerically studying quantum marginals
in many-body systems and larger atoms or molecules

IR
2>
|->

-~
2]

Thank you for your attention!
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