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Overview

There are algebraic and geometric problems in invariant theory that are
amenable to numerical optimization algorithms over noncommut. groups.

Null cone & moment polytopes ←→ Norm minimization

These capture a wide range of surprising applications – from algebra and
analysis to computer science and even quantum information.

Plan for today:
1 Introduction to framework
2 Panorama of applications
3 Geodesic first-order algorithms

Computational invariant theory without computing invariants?
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.

Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:
I computing normal forms, describing moduli spaces and invariants. . .
I no polynomial-time algorithms are known for graph isomorphism.
I matrices equivalent under row and column operations iff equal rank;

but tensor rank is NP-hard.
I derandomizing PIT implies circuit lower bounds [Kabanets-Impagliazzo]

We will see many more examples in a moment. . .
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Setup and orbit problems

group G ⊆ GLn(C) reductive, such as GLn, SLn, or Tn = (C∗)n

action on V = Cm by linear transformations
orbits Gv = {g · v : g ∈ G} and their closures Gv

Example: G = GL1 = C∗, V = C2

g ·
( x
y
)
=
( gx
g−1y

)

Orbit equality problem: Given v1 and v2, is Gv1 = Gv2? Robust version:

Orbit closure intersection problem: Given v1 and v2, is Gv1 ∩ Gv2 6= ∅?

Null cone problem: Given v , is 0 ∈ Gv?

The last two can be solved via invariants, but are there more efficient ways?
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Example: Conjugation

G = GLn, V = Matn, g · X = gXg−1


λ1 1

λ1 1
λ1

. . .


I X , Y are in same orbit iff same Jordan normal form
I X , Y have intersecting orbit closures iff same eigenvalues
I X is in null cone iff nilpotent

NB: The last two problems have a meaningful approximate version!
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Null cone and norm minimization

We can translate the null cone problem into an optimization problem.
Define capacity of v :

cap(v) := minu∈Gv ‖u‖ = infg∈G ‖g · v‖

I clearly, 0 ∈ Gv iff cap(v) = 0
 

o

w min Hull we g

Norm minimization problem: Given v , find g ∈ G s. th. ‖g · v‖ ≈ cap(v).
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Groups and derivatives

Thus we want to minimize the function:

Fv : G → R, Fv (g) := log ‖g · v‖

First-order condition? How to define gradient?

Directional derivatives at g = I are given by ∂t=0Fv (eAt) for A ∈ Lie(G).

We may assume that maximal compact K = G ∩ Un acts by isometries.
Then we really optimize over K\G , and it suffices to consider A ∈ i Lie(K ).

For G = GLn: Un\GLn ∼= PDn and i Lie(K) = Hermn.
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Norm minimization and its dual

Thus we want to minimize the Kempf-Ness function:

Fv : K\G → R, Fv (g) = log ‖g · v‖

The so-called moment map captures its gradient at g = I:

µ : V \ {0}→ i Lie(K ), tr(µ(v)H) = ∂t=0Fv (eHt) ∀H ∈ i Lie(K )

I Clearly, µ(g · v) = 0 if g is minimizer.
I Remarkably, this is also sufficient! [Kempf-Ness]

Scaling problem: Given v , find g ∈ G such that µ(g · v) ≈ 0.

8 / 26



Norm minimization and its dual

Thus we want to minimize the Kempf-Ness function:

Fv : K\G → R, Fv (g) = log ‖g · v‖

The so-called moment map captures its gradient at g = I:

µ : V \ {0}→ i Lie(K ), tr(µ(v)H) = ∂t=0Fv (eHt) ∀H ∈ i Lie(K )

I Clearly, µ(g · v) = 0 if g is minimizer.
I Remarkably, this is also sufficient! [Kempf-Ness]

Scaling problem: Given v , find g ∈ G such that µ(g · v) ≈ 0.

8 / 26



Summary so far

G ⊆ GLn complex reductive connected, V = Cm regular representation
K = G ∩ Un maximally compact, µ : V \ {0}→ i Lie(K ) moment map

Null cone problem: Given v , is 0 ∈ Gv?

 

o

w min Hull we g

. . . and its relaxations:

Norm minimization problem: Given v , find g ∈ G s. th. ‖g · v‖ ≈ cap(v).

Scaling problem: Given v ∈ V , find g ∈ G s. th. µ(g · v) ≈ 0.

I The last two problems are dual, and either can solve null cone!
I But they also provide path to orbit closure intersection.

Useful model problems. Plausibly solvable in polynomial time, but rich
enough to have interesting applications. Let us look at some. . .
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A panorama of applications
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Example: Matrix scaling (raking, IPFP, . . . )

Let X be matrix with nonnegative entries. A scaling of X is a matrix

Y =

a1
. . .

an

X

b1
. . .

bn

 (a1, . . . , bn > 0).

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling: Given X , ∃ (approximately) d.s. scalings?

Permanent: . . . iff per(X ) > 0!
I . . . iff ∃ bipartite perfect matching in support of X
I can be decided in polynomial time
I find scalings by alternatingly fixing rows & columns , [Sinkhorn]

I convergence controlled by permanent [Linial et al]

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .
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µ : V \ {0}→ Rn ⊕ Rn

µ(v) = (row sums, column sums) of Xi,j =
|vi,j |2

‖v‖2
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Example: Schur-Horn theorem

Let λ1 > · · · > λn and δ1, . . . , δn be integers.

Given λ and δ, ∃ Hermitian matrix with spectrum λ and diagonal δ?

U

λ1 . . .
λn

U∗ =

δ1 ? ?

?
. . . ?

? ? δn



Schur-Horn theorem: . . . iff δ in permutahedron
generated by λ, i.e., in conv(Sn · λ)!

Kostka numbers: . . . iff branching multiplicity
for Tn ⊂ GLn is nonzero. [Nonenmacher, 2008]

Starting point for celebrated convexity results in symplectic geometry [Kostant, Atiyah,
Guillemin-Sternberg, Duistermaat-Heckman, Mumford, Kirwan, . . . ] 12 / 26
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Torus actions

Let Tn = (C∗)n act on V =
⊕
ω∈Ω Vω with weights Ω ⊆ Zn.

That is, if v =
∑
ω vω then z · v =

∑
ω zωvω.

Capacity:

cap(v)2 = infz∈Tn

∑
ω

|zω|2 ‖vω‖2 = infx∈Rn
∑
ω

ex ·ω ‖vω‖2

I norm minimization is geometric programming (log-convexity in x)
I cap(v) = 0 iff 0 6∈ ∆(v) := conv {ω : vω 6= 0}; linear programming

Moment map:

µ : V \ {0}→ Rn, µ(v) =
∑
ωω‖vω‖2∑
ω‖vω‖2

 

I any point in ∆(v) can be approximately obtained [Atiyah]
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Moment polytopes

I For G = Tn, we saw on the previous slide that

∆(v) = µ(Gv) ⊂ Rn

is a convex polytope.

 

I For noncommutative G , get magically convex polytope. [Mumford, Kirwan, . . . ]

E.g., for G = GLn:

∆(v) = spec(µ(Gv)) ⊂ Rn

These are moment polytopes of G-orbit closures in P(V ).

Moment polytope problem: Given v and λ, is λ ∈ ∆(v)?

Even interesting when not restricting to orbits.
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Example: Horn problem

Let α1 > . . . > αn, β1 > . . . > βn, γ1 > . . . > γn be integers.

Horn problem: When ∃ Hermitian n × n matrices A, B, C
with spectrum α, β, γ such that A+ B = C?

I e.g., α1 + β1 > γ1
I exponentially many linear inequalities on α, β, γ [Horn]

Knutson-Tao: . . . iff Littlewood-Richardson coefficient cγα,β > 0
I count multiplicities in representation theory,

combinatorial gadgets, integer points in polytopes, . . .
I poly-time algorithm [Mulmuley]

I can find A, B, C by natural algorithm [Franks]

Motivation for Mulmuley’s positivity hypotheses in geometric complexity theory.
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Example: Left-right action and noncommutative PIT

Let X = (X1, . . . ,Xd) be a tuple of matrices. A scaling of X is a tuple

Y = (gX1h−1, . . . , gXdh−1) (g , h ∈ GLn)

Say X is quantum doubly stochastic if
∑

k XkX∗k =
∑

k X∗k Xk = I.

Operator scaling: Given X , ∃ (approx.) quantum d.s. scalings?

Polynomial identity testing: . . . iff ∃ matrices Yk s.th. det
∑

kYk ⊗Xk 6= 0.
I can solve in deterministic poly-time [Garg et al, cf. Ivanyos et al]

I when Yk restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, . . . ).
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Example: Quivers

Quiver: Directed graph with vertex set Q0 and edge set Q1.

Given dimension vector (nx )x∈Q0 , consider natural action of

G =
∏

x∈Q0

GL(nx ) on V =
⊕

x→y∈Q1

Matny×nx

I generalizes Horn and left-right action:

Many structural results known:
I semi-invariants characterized by [King, Derksen-Weyman, Schofield-Van den Bergh, . . . ]

I moment polytopes characterized by Horn-like inequalities [Baldoni-Vergne-W]
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Example: Tensors and quantum marginals

Let X ∈ Cn1 ⊗ · · · ⊗Cnd be a tensor. A scaling of X is a tensor of the form

Y = (g1 ⊗ . . .⊗ gd)X (gk ∈ GLnk )

Consider ρk = XkX∗k , where Xk is k-th flattening of X .
(In quantum mechanics, X describes joint state of d particles and ρk marginal of k-th particle.)

Tensor scaling problem: Given X , which
(ρ1, . . . , ρd) can be obtained by scaling?

I eigenvalues form convex polytopes
I exponentially many vertices and faces
I characterized by asymptotic support of Kronecker coefficients

NP-hard to determine if nonzero [Ikenmeyer-Mulmuley-W]

Key challenge: Can we find efficient algorithmic description?
18 / 26
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Geodesic first-order algorithms
for norm minimization and scaling

 

o

w min Hull we g
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Non-commutative optimization duality

Recall Fv (g) = log ‖g · v‖ and µ(v) is its gradient at g = I.

We discussed that the following optimization problems are equivalent:

log cap(v) = infg∈G Fv (g) ⇐⇒ infg∈G ‖µ(g · v)‖ [Kempf-Ness]

I primal: norm minimization, dual: scaling problem
I non-commutative version of linear programming duality

 

o

w min Hull we g

We developed quantitative duality theory and 1st & 2nd order methods.

Why does the duality hold at all? Fv is convex along geodesics of K\G! !
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Geodesic convexity and smoothness

Homogeneous space K\G has geodesics γ(t) = etHg for H ∈ i Lie(K ).

Proposition: Fv satisfies the following properties along these geodesics:
1 convexity: ∂2t=0Fv (γ(t)) > 0
2 smoothness: ∂2t=0Fv (γ(t)) 6 2N2‖H‖2

N is typically small, upper-bounded by degree of action.

Smoothness implies that

Fv (eHg) 6 Fv (g) + tr(µ(v)H) + N2‖H‖2.

Thus, gradient descent makes progress if steps not too large!
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First-order algorithm: geodesic gradient descent

Given v , want to find w = g · v with ‖µ(w)‖ 6 ε.

Algorithm: Start with g = I. For t = 1, . . . ,T :
Compute moment map µ(w) of w = g · v . If norm ε-small, stop.
Otherwise, replace g by e−ηµ(w)g . η > 0 suitable step size

Theorem
Let v ∈ V be a vector with cap(v) > 0. Then the algorithm outputs
g ∈ G such that ‖µ(g · v)‖ 6 ε within T = 4N2

ε2 log ‖v‖
cap(v) iterations.

I Algorithm runs in time poly( 1ε , input size).
We use constructive invariant theory to give a priori lower bound on capacity.

I Algorithm solves null cone problem for suitable ε!
Moment polytopes are rigid. We provide bound in terms of weight system.
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Analysis of algorithm

“Unless moment map ε-small, replace g by e−ηµ(w)g .”

To obtain rigorous algorithm, need to show progress in each step:
Fv (gnew) 6 Fv (g) − c

Then, log ‖v‖− Tc > log cap(v) bounds the number of steps T .

Progress follows from smoothness:
Fv (eHg) 6 Fv (g) + tr(µ(v)H) + N2‖H‖2

If we plug in H = −ηµ(w) then
Fv (gnew) 6 Fv (g) − η‖µ(w)‖2 + N2η2‖µ(w)‖2.

Thus, if we choose η = 1/2N2 then we obtain

Fv (gnew) 6 Fv (g) −
1

4N2 ‖µ(w)‖2 6 Fv (g) −
ε2

4N2 .
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Analysis of algorithm

“Unless moment map ε-small, replace g by e−ηµ(w)g .”
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How to solve the null cone problem?

Theorem
Let v ∈ V = Cm be a vector with cap(v) > 0. Then the algorithm outputs
g ∈ G such that ‖µ(g · v)‖ 6 ε within T = 4N2

ε2 log ‖v‖
cap(v) iterations.

To solve null cone problem, need two a priori lower bounds:

I Capacity bound: If cap(v) > 0, then cap(v) > e− poly(input size).
I Gradient bound: If cap(v) = 0, then infg∈G‖µ(g · v)‖ > ε0.
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g ∈ G such that ‖µ(g · v)‖ 6 ε within T = 4N2

ε2 log ‖v‖
cap(v) iterations.

To solve null cone problem, need two a priori lower bounds:

I Capacity bound: If cap(v) > 0, then cap(v) > e− poly(input size).

Idea: Assume v ∈ Zm. Let p be G-invariant polynomial such that
p(v) 6= 0. If p has degree D and integer coefficients bounded by L:

1 6 |p(v)| = |p(g · v)| 6 mDL‖g · v‖D ⇒ ‖g · v‖ > 1
mL1/D .

We can bound D and L using tools from invariant theory.

I Gradient bound: If cap(v) = 0, then infg∈G‖µ(g · v)‖ > ε0.
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How to solve the null cone problem?

Theorem
Let v ∈ V = Cm be a vector with cap(v) > 0. Then the algorithm outputs
g ∈ G such that ‖µ(g · v)‖ 6 ε within T = 4N2

ε2 log ‖v‖
cap(v) iterations.

To solve null cone problem, need two a priori lower bounds:

I Capacity bound: If cap(v) > 0, then cap(v) > e− poly(input size).
I Gradient bound: If cap(v) = 0, then infg∈G‖µ(g · v)‖ > ε0.

Idea: There are finitely many possible moment polytopes ∆(v).
Their facets are spannend by weights of the representation.

24 / 26



How about moment polytopes?

Recall:

Moment polytope problem: Given v and λ, is λ ∈ ∆(v)?

I v in null cone ⇔ 0 6∈ ∆(v)
I how to reduce to λ = 0?

Shifting trick:
I If G = Tn torus: simply shift weights ω 7→ ω− λ

I If G noncommutative, more involved, need randomization [Mumford, Brion]

Result: Randomized first-order algorithm for moment polytopes.
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Summary and outlook

Null cone & moment polytopes
l duality

Norm minimization

Effective numerical algorithms for null cone and moment polytope
problems, based on geometric invariant theory and geodesic optimization,
with a wide range of applications. Many exciting directions:

I Polynomial-time algorithms in all cases?
I Better tools for geodesic optimization?
I Tensors in applications are often structured. Implications?
I What exponentially complex polytopes can be efficiently captured?
I What are the tractable problems in invariant theory? C ; F?

Thank you for your attention!
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A general equivalence V ⊆ P(V )

All points in ∆(V) can be described via invariant theory:

Vλ ⊆ C[V](k) ⇒ λ

k ∈ ∆(V)

(λ highest weight, k degree)

I Can also study multiplicities g(λ, k) := #Vλ ⊆ C[V](k).
I This leads to interesting computational problems:

g =? g > 0? ∃s > 0 : g(sλ, sk) > 0?

(#-hard) (NP-hard) (our problem!)

Completely unlike Horn’s problem: Knutson-Tao saturation property does
not hold, and hence we can hope for efficient algorithms!

1 / 1


	Appendix

