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Overview

There are algebraic and geometric problems in invariant theory that are
amenable to numerical optimization algorithms over noncommut. groups.

Null cone & moment polytopes‘ +— | Norm minimization

These capture a wide range of surprising applications — from algebra and
analysis to computer science and even quantum information.

Plan for today:
@ Introduction to framework
@ Panorama of applications

© Geodesic first-order algorithms

Computational invariant theory without computing invariants?
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.
N S e
. V.V
O—0 0 0

Problem: How can we algorithmically and efficiently check equivalence? J
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Symmetries and group actions
Group actions mathematically model symmetries and equivalence.
N
O—0 0 0

Problem: How can we algorithmically and efficiently check equivalence? J

Interesting (and often difficult) problems with many applications:

» computing normal forms, describing moduli spaces and invariants. . .
» no polynomial-time algorithms are known for graph isomorphism.

> matrices equivalent under row and column operations iff equal rank;
but tensor rank is NP-hard.
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Symmetries and group actions
Group actions mathematically model symmetries and equivalence.
N
O—0 0 0

Problem: How can we algorithmically and efficiently check equivalence? J

Interesting (and often difficult) problems with many applications:

» computing normal forms, describing moduli spaces and invariants. . .
» no polynomial-time algorithms are known for graph isomorphism.

> matrices equivalent under row and column operations iff equal rank;
but tensor rank is NP-hard.

» derandomizing PIT implies circuit lower bounds

[Kabanets-Impagliazzo]
We will see many more examples in a moment. . .
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Setup and orbit problems

group G C GL,(C) reductive, such as GL,, SL,, or T, = (C*)"

action on V = C™ by linear transformations

orbits Gv ={g - v : g € G} and their closures Gv

Example: G =GL; =C*, V = C?

e (5)=(5)

— ¢

Orbit equality problem: Given vi and vy, is Gv; = Gvy?
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Orbit closure intersection problem: Given v; and vy, is Gvy N Gvy # (7

4/26



Setup and orbit problems

group G C GL,(C) reductive, such as GL,, SL,, or T, = (C*)"
action on V = C™ by linear transformations

orbits Gv ={g - v : g € G} and their closures Gv
Example: G =GL; =C*, V = C? o
(XN _ [ & '
£ <y>_(g*1y> —_°

Orbit equality problem: Given vy and v», is Gv; = Gw,? Robust version:
Orbit closure intersection problem: Given v; and vy, is Gvy N Gvy # (7

Null cone problem: Given v, is 0 € Gv? J

The last two can be solved via invariants, but are there more efficient ways?
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Example: Conjugation

G=GL, V=Mat, g-X=gXg!

A1
A1
A1

» X, Y are in same orbit iff same Jordan normal form
» X, Y have intersecting orbit closures iff same eigenvalues

» X is in null cone iff nilpotent

NB: The last two problems have a meaningful approximate version!
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Null cone and norm minimization

We can translate the null cone problem into an optimization problem.
Define capacity of v:

cap(v) :=min, ¢ [lul| = infgecllg - V||

» clearly, 0 € Gv iff cap(v) =0

e ue@&

Norm minimization problem: Given v, find g € G s. th. ||g - v|| = cap(v). J
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Groups and derivatives

Thus we want to minimize the function:
F,: G—=R, F,(g):=logl|g-v|

First-order condition? How to define gradient?
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Groups and derivatives

Thus we want to minimize the function:

F,: G—=R, F,(g):=loglg-v|

First-order condition? How to define gradient?

Directional derivatives at g = / are given by 9;—qF,(e*t) for A € Lie(G).

TR
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Groups and derivatives

Thus we want to minimize the function:

F,: G—=R, F,(g):=loglg-v|

First-order condition? How to define gradient?

Directional derivatives at g = / are given by 9;—qF,(e*t) for A € Lie(G).

/—?\'\
We may assume that maximal compact K = G N U, acts by isometries.

Then we really optimize over K\ G, and it suffices to consider A € i Lie(K).

For G = GL,: U,\GL, = PD, and iLie(K) = Herm,,.
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Norm minimization and its dual

Thus we want to minimize the Kempf-Ness function:

FV:K\G%R) FV(g):IOg”gVH
The so-called moment map captures its gradient at g = I

w: VA{0} — iLie(K), tr(pn(v)H) = d,—oF, (") VH € iLie(K)
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Norm minimization and its dual

Thus we want to minimize the Kempf-Ness function:

FV:K\G%R) Fv(g):logHgvH
The so-called moment map captures its gradient at g = I

w: VA{0} — iLie(K), tr(pn(v)H) = d,—oF, (") VH € iLie(K)

» Clearly, u(g - v) =0 if g is minimizer.
» Remarkably, this is also sufficient! [Kempf-Ness]

Scaling problem: Given v, find g € G such that u(g - v) = 0. J
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Summary so far

G C GL,, complex reductive connected, V = C™ regular representation
K = G N U, maximally compact, u: V\ {0} — iLie(K) moment map

Null cone problem: Given v, is 0 € Gv? J

...and its relaxations:

Norm minimization problem: Given v, find g € G s. th. ||g - v|| = cap(v). ]

Scaling problem: Given v € V, find g € G s. th. u(g-v) = 0. J

» The last two problems are dual, and either can solve null cone!

9/26



Summary so far

G C GL,, complex reductive connected, V = C™ regular representation
K = G N U, maximally compact, u: V\ {0} — iLie(K) moment map

Gv
Null cone problem: Given v, is 0 € Gv? J

...and its relaxations: &

Norm minimization problem: Given v, find g € G s. th. ||g - v|| = cap(v). J

Scaling problem: Given v € V, find g € G s. th. u(g-v) = 0. J

» The last two problems are dual, and either can solve null cone!
» But they also provide path to orbit closure intersection.

Useful model problems. Plausibly solvable in polynomial time, but rich

enough to have interesting applications. Let us look at some. ..
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A panorama of applications

iy
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Example: Matrix scaling (raking, IPFP, ...)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

dai bl
Y = X (a1y..., by > 0).
dn bn

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling: Given X, 3 (approximately) d.s. scalings? )
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Example: Matrix scaling (raking, IPFP, ...)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

di bl
Y = X (a1y...,bp > 0).
dn bn

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling: Given X, 3 (approximately) d.s. scalings? J

Permanent: .. .iff per(X) > 0!
» . ..iff 3 bipartite perfect matching in support of X

» can be decided in polynomial time
» find scalings by alternatingly fixing rows & columns ® [Sinkhorn]
» convergence controlled by permanent [Linial et al]

Connections to statistics, complexity, combinatorics, geometry, numerics, ...
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Example: Matrix scaling (raking, IPFP, ...)

Let X be matrix with nonnegative entries. A scaling of X is a matrix
dal bl
Y = X (a1y...,bn > 0).
an b,

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling: Given X, 3 (approximately) d.s. scalings? J

PelV =Mat,, G=T,xT,, (g,8)v=gve.

p: VA{0} = R"®R”
u(v) = (row sums, column sums) of X; ; =

orn]

Connections to statistics, complexity, combinatorics, geometry, numerics, ...
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Example: Schur-Horn theorem
Let Ay > --- > A, and 81,...,8, be integers.

Given A and &, 3 Hermitian matrix with spectrum A and diagonal S?J

)\1 51 * *
U Ut = * *
An *  x  Op
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Example: Schur-Horn theorem
Let Ay > --- > A, and 81,...,8, be integers.

Given A and &, 3 Hermitian matrix with spectrum A and diagonal 6?J

A1 501 * &
U Ut = * *
An *  x  Op

Schur-Horn theorem: ...iff 6 in permutahedron
generated by A, i.e., in conv(S, - A)!
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Example: Schur-Horn theorem

Let Ay > --- > A, and 81,...,8, be integers.

Given A and &, 3 Hermitian matrix with spectrum A and diagonal 6?J

A1 01 * %
An *x *  Op
Schur-Horn theorem: .. .iff & in permutahedron

generated by A, i.e., in conv(S, - A)!

Kostka numbers: .. .iff branching multiplicity
for T, C GL, is nonzero.

Starting point for celebrated convexity results in symplectic geometry [Kostant, Atiyah,

020
[Nonenmacher, 2008]

Guillemin-Sternberg, Duistermaat-Heckman, Mumford, Kirwan, ...] 12 /26



Torus actions

Let T, = (C*)" acton V =P, co Vw with weights Q C Z".
Thatis, if v=)  vwthenz-v=3%  z%v,.

G Log
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Torus actions

Let T, = (C*)" acton V =P, co Vw with weights Q C Z".
Thatis, if v=)  vwthenz-v=3%  z%v,.

Capacity:

cap(v)? =infrer, Y 129P lvw|® = infrern D € [|ve|®
w w

» norm minimization is geometric programming (log-convexity in x)
> cap(v) =0iff 0 & A(v) := conv {w : vy, # 0}; linear programming

G Log
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Torus actions

Let T, = (C*)" acton V =P, co Vw with weights Q C Z".
Thatis, if v=)  vwthenz-v=3%  z%v,.

Capacity:
cap(v)? =infrer, ) [2°P Ve = infrern D % ||V ?
w w

» norm minimization is geometric programming (log-convexity in x)

> cap(v) =0iff 0 & A(v) := conv {w : vy, # 0}; linear programming

Moment map:

2 ' =
w: VA{0} = R, pu(v) = M o AL)
2 wlval
Oy (_x(

> any point in A(v) can be approximately obtained [Atiyah]
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Moment polytopes

» For G =T,, we saw on the previous slide that

A(v) = p(Gv) C R”

is a convex polytope.
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Moment polytopes

» For G =T, we saw on the previous slide that e, e
Alv) = p(Gv) CR" o
is a convex polytope. o o

» For noncommutative G, get magically convex polytope. [Mumford, Kirwan, ...]
E.g., for G = GL,:

A(v) = spec(u(Gv)) C R"

These are moment polytopes of G-orbit closures in P(V).

Moment polytope problem: Given v and A, is A € A(v)?J

Even interesting when not restricting to orbits.
14 / 26



Example: Horn problem
Lletoxi >...2an P12=...2 PBn Y1 = ... = Yn be integers.

Horn problem: When 3 Hermitian n x n matrices A, B, C
with spectrum «, 3, v such that A+ B = C? J

> eg,x+PB1=v1
> exponentially many linear inequalities on «, 3, v [Horn]
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Example: Horn problem

Lletoxi >...2an P12=...2 PBn Y1 = ... = Yn be integers.

Horn problem: When 3 Hermitian n x n matrices A, B, C
with spectrum «, 3, v such that A+ B = C? J

> eg, o+ B>Vt
> exponentially many linear inequalities on «, 3, ¥ [Horn]

Knutson-Tao: ... iff Littlewood-Richardson coefficient ¢}, 5 > 0
> count multiplicities in representation theory,
combinatorial gadgets, integer points in polytopes, ...
» poly-time algorithm [Mulmuley]

» can find A, B, C by natural algorithm [Franks]

Motivation for Mulmuley's positivity hypotheses in geometric complexity theory.
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Example: Left-right action and noncommutative PIT

Let X = (X1,...,Xy) be a tuple of matrices. A scaling of X is a tuple
Y = (gth_l,...,ngh_l) (g)he GLn)

Say X is quantum doubly stochastic if ), X, X" =5, X; X, = I.

Operator scaling: Given X, 3 (approx.) quantum d.s. scaIings?J
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Example: Left-right action and noncommutative PIT

Let X = (X1,...,Xy) be a tuple of matrices. A scaling of X is a tuple
Y = (gth_l,...,ngh_l) (g)he GLn)

Say X is quantum doubly stochastic if ), X, X" =5, X; X, = I.

Operator scaling: Given X, 3 (approx.) quantum d.s. scalings?J

Polynomial identity testing: ...iff 3 matrices Yj s.th. det ) , Y, @ X) # 0.
> can solve in deterministic poly-time [Garg et al, cf. Ivanyos et al]
> when Y/ restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, ...).
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Example: Quivers

Quiver: Directed graph with vertex set Qg and edge set Q.

Given dimension vector (ny)xe@,, consider natural action of

G= H GL(ny) on V = @ Mat, x n,

x€ Qo X—y€eEQ®q

> generalizes Horn and left-right action:

@ O O O (b)

Many structural results known:
> Semi—inval’iants Ch aracterized by [King, Derksen-Weyman, Schofield-Van den Bergh, ...]

» moment polytopes characterized by Horn-like inequalities [galdoni-vergne-w)
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Example: Tensors and quantum marginals
Let X eCM®---®C"™ be a tensor. A scaling of X is a tensor of the form

Y=(g1®...084)X  (gk € GLp,)

Consider py = X, X}/, where X is k-th flattening of X.

(In quantum mechanics, X describes joint state of d particles and p, marginal of k-th particle.)

Tensor scaling problem: Given X, which
(p1,-..,Pq) can be obtained by scaling? J
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Example: Tensors and quantum marginals
Let X eCM®---®C"™ be a tensor. A scaling of X is a tensor of the form

Y=(g1®...084)X  (gk € GLp,)

Consider pi = X X, where X is k-th flattening of X.

(In quantum mechanics, X describes joint state of d particles and p, marginal of k-th particle.)

Tensor scaling problem: Given X, which
(p1,-..,Pq) can be obtained by scaling? J

> eigenvalues form convex polytopes

> exponentially many vertices and faces

» characterized by asymptotic support of Kronecker coefficients

NP-hard to determine if nonzero [Ikenmeyer-Mulmuley-W]

Key challenge: Can we find efficient algorithmic description?
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Geodesic first-order algorithms
for norm minimization and scaling

G-v
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Non-commutative optimization duality

Recall F,(g) =log|lg - v|| and p(v) is its gradient at g = .

We discussed that the following optimization problems are equivalent:

logcap(v) =infzeg Fu(g)| < |infgeq |lulg-v)| [Kempf-Ness]
Gv
» primal: norm minimization, dual: scaling problem
> non-commutative version of linear programming duality W
o}

We developed quantitative duality theory and 1st & 2nd order methods. J

Why does the duality hold at all? F, is convex along geodesics of K\G! !
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Geodesic convexity and smoothness

Homogeneous space K\ G has geodesics y(t) = etfg for H € i Lie(K).

3 H ey

Proposition: F, satisfies the following properties along these geodesics:
@ convexity: a%ZOFV(y(t)) >0
@ smoothness: 32_oF, (y(t)) < 2N?||H|?

N is typically small, upper-bounded by degree of action.
Smoothness implies that
Fo(eg) < Fu(g) + tr(u(v)H) + N?||H].

Thus, gradient descent makes progress if steps not too large!
21/ 26



First-order algorithm: geodesic gradient descent
Given v, want to find w = g - v with ||u(w)|| < e.

Algorithm: Start with g =/. Fort=1,..., T:

Compute moment map pu(w) of w =g - v. If norm e-small, stop.

Otherwise, replace g by e M*W)g. 1 > 0 suitable step size
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First-order algorithm: geodesic gradient descent
Given v, want to find w = g - v with ||u(w)|| < e.
Algorithm: Start with g =/. Fort=1,..., T:

Compute moment map pu(w) of w =g - v. If norm e-small, stop.
Otherwise, replace g by e M*W)g. 1 > 0 suitable step size

Theorem

Let v € V be a vector with cap(v) > 0. Then the algorithm outputs
g € G such that ||u(g - v)|| < € within T = 4N =5 log Ca”p ”) iterations.
» Algorithm runs in time poly(%, input size).
We use constructive invariant theory to give a priori lower bound on capacity.
» Algorithm solves null cone problem for suitable ¢!

Moment polytopes are rigid. We provide bound in terms of weight system.
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Analysis of algorithm

“Unless moment map e-small, replace g by e "#(W)g

To obtain rigorous algorithm, need to show progress in each step:

Fv(gnew) < Fv(g) —C
Then, log ||v|| — Tc > logcap(v) bounds the number of steps T.

23 /26



Analysis of algorithm

“Unless moment map e-small, replace g by e *W)g "

To obtain rigorous algorithm, need to show progress in each step:

Fv(gnew) < Fv(g) —C
Then, log ||v|| — Tc > logcap(v) bounds the number of steps T.

Progress follows from smoothness:

Fu(e"g) < Fulg) + tr(n(v)H) + N?| H|?
If we plug in H = —nu(w) then

Fu(gnew) < Fulg) = nl[(w)||? + N2n?||u(w)]%.
Thus, if we choose 11 = 1/2/N? then we obtain

g2

1
Fulgrew) < Fu(8) = o (w)I? < Fulg) — 1
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How to solve the null cone problem?

Theorem

Let v € V = C™ be a vector with cap(v) > 0. Then the algorithm outputs
g € G such that [|u(g - v)|| < € within T = %V; Iog% iterations.
To solve null cone problem, need two a priori lower bounds:

» Capacity bound: If cap(v) > 0, then cap(v) > e Polv(input size)

» Gradient bound: If cap(v) =0, then infgeq|l(g - v)|| > €o.
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How to solve the null cone problem?

Theorem

Let v € V = C™ be a vector with cap(v) > 0. Then the algorithm outputs
g € G such that [|u(g - v)|| < € within T = %V; Iog% iterations.
To solve null cone problem, need two a priori lower bounds:
» Capacity bound: If cap(v) > 0, then cap(v) > e Polv(input size)
Idea: Assume v € Z™. Let p be G-invariant polynomial such that
p(v) # 0. If p has degree D and integer coefficients bounded by L:
1
f— . D . D . ——
L<lpv=lplg - vII<m“Llg-vII® = lg-vl> 55

We can bound D and L using tools from invariant theory.
» Gradient bound: If cap(v) =0, then infzcq| (g - v)| = €o.
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How to solve the null cone problem?

Let v € V = C™ be a vector with cap(v) > 0. Then the algorithm outputs
g € G such that [|u(g - v)|| < € within T = %V; Iog% iterations.
To solve null cone problem, need two a priori lower bounds:

» Capacity bound: If cap(v) > 0, then cap(v) > e Polv(input size)

» Gradient bound: If cap(v) =0, then infgeq|l(g - v)|| > €o.

Idea: There are finitely many possible moment polytopes A(v).
Their facets are spannend by weights of the representation.
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How about moment polytopes?

Recall:

Moment polytope problem: Given v and A, is A € A(v

> vin null cone & 0¢ A(v)
» how to reduce to A =07
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How about moment polytopes?

Recall:

Moment polytope problem: Given v and A, is A € A(v

> vin null cone & 0¢ A(v)
» how to reduce to A =07

Shifting trick:

> If G =T, torus: simply shift weights w — w — A

» |f G noncommutative, more involved, need randomization  [Mumford, Brion]

Result: Randomized first-order algorithm for moment polytopes.
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Summary and outlook

‘ Null cone & moment polytopes‘
1 duality

‘ Norm minimization ‘

Effective numerical algorithms for null cone and moment polytope
problems, based on geometric invariant theory and geodesic optimization,
with a wide range of applications. Many exciting directions:

» Polynomial-time algorithms in all cases?

> Better tools for geodesic optimization?

» Tensors in applications are often structured. Implications?

» What exponentially complex polytopes can be efficiently captured?
» What are the tractable problems in invariant theory? C ~» F?

Thank you for your attention!
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A general equivalence vV CP(V)

All points in A(V) can be described via invariant theory:

A

(A highest weight, k degree)

» Can also study multiplicities g(A, k) := # Vi C C[V] (4.
» This leads to interesting computational problems:

[g>07]  [3s>0:g(sA k) > 07]
(#-hard) (NP-hard) (our problem!)

Completely unlike Horn's problem: Knutson-Tao saturation property does
not hold, and hence we can hope for efficient algorithms!
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