Invariants, Algorithms, and Optimization

Michael Walter

CMI Webinar Series on Recent Progress in GCT June 2020

based on joint works with Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Avi Wigderson (ITCS'18, FOCS'19)

Overview

There are algebraic and geometric problems in invariant theory that are amenable to numerical optimization algorithms over noncommut. groups.

 ${\sf Null\ cone\ \&\ moment\ polytopes} \quad \longleftrightarrow \quad {\sf [Norm\ minimization]}$

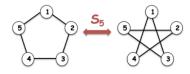
These capture a wide range of surprising applications – from algebra and analysis to computer science and even quantum information.

Plan for today:

- Introduction to framework
- Panorama of applications
- Geodesic first-order algorithms

Computational invariant theory without computing invariants?

Group actions mathematically model symmetries and equivalence.



Problem: How can we algorithmically and efficiently check equivalence?

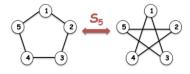
Interesting (and often difficult) problems with many applications

- ▶ computing *normal forms*, describing *moduli spaces* and *invariants*...
- ▶ no polynomial-time algorithms are known for graph isomorphism.
- matrices equivalent under row and column operations iff equal rank; but tensor rank is NP-hard.
- derandomizing PIT implies circuit lower bounds

(abanets-Impagliazzo

We will see many more examples in a moment...

Group actions mathematically model symmetries and equivalence.



Problem: How can we algorithmically and efficiently check equivalence?

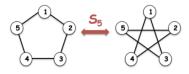
Interesting (and often difficult) problems with many applications:

- ► computing *normal forms*, describing *moduli spaces* and *invariants*. . .
- no polynomial-time algorithms are known for graph isomorphism.
- matrices equivalent under row and column operations iff equal rank; but tensor rank is NP-hard.
- derandomizing PIT implies circuit lower bounds

(abanets-Impagliazzo

We will see many more examples in a moment...

Group actions mathematically model symmetries and equivalence.



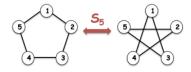
Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

- ► computing *normal forms*, describing *moduli spaces* and *invariants*. . .
- ▶ no polynomial-time algorithms are known for graph isomorphism.
- matrices equivalent under row and column operations iff equal rank; but tensor rank is NP-hard.
- derandomizing PIT implies circuit lower bounds

(abanets-Impagliazzo)

Group actions mathematically model symmetries and equivalence.



Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

- ► computing *normal forms*, describing *moduli spaces* and *invariants*. . .
- ▶ no polynomial-time algorithms are known for graph isomorphism.
- matrices equivalent under row and column operations iff equal rank; but tensor rank is NP-hard.
- ► derandomizing PIT implies circuit lower bounds

[Kabanets-Impagliazzo]

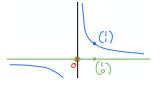
We will see many more examples in a moment...

Setup and orbit problems

group $G \subseteq \operatorname{GL}_n(\mathbb{C})$ reductive, such as GL_n , SL_n , or $\operatorname{T}_n = (\mathbb{C}^*)^n$ action on $V = \mathbb{C}^m$ by linear transformations orbits $Gv = \{g \cdot v : g \in G\}$ and their closures \overline{Gv}

Example:
$$G=\mathsf{GL}_1=\mathbb{C}^*,\ V=\mathbb{C}^2$$

$$g\cdot \left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)=\left(\begin{smallmatrix}gx\\g^{-1}y\end{smallmatrix}\right)$$



Orbit equality problem: Given v_1 and v_2 , is $Gv_1 = Gv_2$? Robust version:

Orbit closure intersection problem: Given v_1 and v_2 , is $\overline{Gv_1} \cap \overline{Gv_2} \neq \emptyset$?

Null cone problem: Given v, is $0 \in \overline{Gv}$?

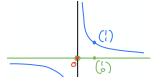
The last two can be solved via invariants, but are there more efficient ways?

Setup and orbit problems

group $G \subseteq \operatorname{GL}_n(\mathbb{C})$ reductive, such as GL_n , SL_n , or $\operatorname{T}_n = (\mathbb{C}^*)^n$ action on $V = \mathbb{C}^m$ by linear transformations orbits $Gv = \{g \cdot v : g \in G\}$ and their closures \overline{Gv}

Example:
$$G=\mathsf{GL}_1=\mathbb{C}^*,\ V=\mathbb{C}^2$$

$$g\cdot \left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)=\left(\begin{smallmatrix}gx\\g^{-1}y\end{smallmatrix}\right)$$



Orbit equality problem: Given v_1 and v_2 , is $Gv_1 = Gv_2$? Robust version:

Orbit closure intersection problem: Given v_1 and v_2 , is $\overline{Gv_1} \cap \overline{Gv_2} \neq \emptyset$?

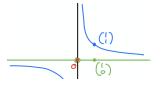
Null cone problem: Given v, is $0 \in \overline{Gv}$?

The last two can be solved via invariants, but are there more efficient ways?

Setup and orbit problems

group $G \subseteq \operatorname{GL}_n(\mathbb{C})$ reductive, such as GL_n , SL_n , or $\operatorname{T}_n = (\mathbb{C}^*)^n$ action on $V = \mathbb{C}^m$ by linear transformations orbits $Gv = \{g \cdot v : g \in G\}$ and their closures \overline{Gv}

Example:
$$G = GL_1 = \mathbb{C}^*$$
, $V = \mathbb{C}^2$
$$g \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} gx \\ g^{-1}y \end{pmatrix}$$



Orbit equality problem: Given v_1 and v_2 , is $Gv_1 = Gv_2$? Robust version:

Orbit closure intersection problem: Given v_1 and v_2 , is $\overline{Gv_1} \cap \overline{Gv_2} \neq \emptyset$?

Null cone problem: Given v, is $0 \in \overline{Gv}$?

The last two can be solved via invariants, but are there more efficient ways?

Example: Conjugation

$$G = GL_n$$
, $V = Mat_n$, $g \cdot X = gXg^{-1}$

$$\begin{pmatrix} \lambda_1 & 1 & & \\ & \lambda_1 & 1 & \\ & & \lambda_1 & \\ & & & \ddots \end{pmatrix}$$

- ► X, Y are in same orbit iff same Jordan normal form
- ► X, Y have intersecting orbit closures iff same eigenvalues
- ► *X* is in *null cone* iff nilpotent

Null cone and norm minimization

We can translate the null cone problem into an optimization problem. Define capacity of ν :

$$\operatorname{cap}(v) := \min_{u \in \overline{Gv}} \|u\| = \inf_{g \in G} \|g \cdot v\|$$

• clearly, $0 \in \overline{Gv}$ iff cap(v) = 0

Norm minimization problem: Given v, find $g \in G$ s. th. $||g \cdot v|| \approx \text{cap}(v)$.

Groups and derivatives

Thus we want to minimize the function:

$$F_{\nu} \colon G \to \mathbb{R}, \quad F_{\nu}(g) := \log \|g \cdot v\|$$

First-order condition? How to define gradient?

Directional derivatives at g=I are given by $\partial_{t=0}F_{v}(e^{At})$ for $A\in \mathsf{Lie}(G)$.

We may assume that maximal compact $K = G \cap U_n$ acts by isometries. Then we really optimize over $K \setminus G$, and it suffices to consider $A \in i \operatorname{Lie}(K)$.

For $G = GL_n$: $U_n \backslash GL_n \cong PD_n$ and $i \operatorname{Lie}(K) = \operatorname{Herm}_n$.

Groups and derivatives

Thus we want to minimize the function:

$$F_{\nu} \colon G \to \mathbb{R}, \quad F_{\nu}(g) := \log \|g \cdot v\|$$

First-order condition? How to define gradient?

Directional derivatives at g = I are given by $\partial_{t=0}F_{\nu}(e^{At})$ for $A \in \text{Lie}(G)$.

We may assume that maximal compact $K = G \cap U_n$ acts by isometries. Then we really optimize over $K \setminus G$, and it suffices to consider $A \in i \operatorname{Lie}(K)$.

For $G = GL_n$: $U_n \backslash GL_n \cong PD_n$ and $i \operatorname{Lie}(K) = \operatorname{Herm}_n$.

Groups and derivatives

Thus we want to minimize the function:

$$F_{\nu} \colon G \to \mathbb{R}, \quad F_{\nu}(g) := \log \|g \cdot v\|$$

First-order condition? How to define gradient?

Directional derivatives at g = I are given by $\partial_{t=0}F_{\nu}(e^{At})$ for $A \in \text{Lie}(G)$.

We may assume that maximal compact $K = G \cap U_n$ acts by isometries. Then we really optimize over $K \setminus G$, and it suffices to consider $A \in i \operatorname{Lie}(K)$.

For $G = GL_n$: $U_n \backslash GL_n \cong PD_n$ and $i \operatorname{Lie}(K) = \operatorname{Herm}_n$.

Norm minimization and its dual

Thus we want to minimize the Kempf-Ness function:

$$F_{\nu} \colon K \backslash G \to \mathbb{R}, \quad F_{\nu}(g) = \log \|g \cdot \nu\|$$

The so-called moment map captures its gradient at g = I:

$$\mu \colon V \setminus \{0\} \to i \operatorname{Lie}(K), \quad \operatorname{tr}(\mu(v)H) = \mathfrak{d}_{t=0}F_v(e^{Ht}) \quad \forall H \in i \operatorname{Lie}(K)$$

- Clearly, $\mu(g \cdot v) = 0$ if g is minimizer.
- ► Remarkably, this is also sufficient!

[Kempf-Ness

Scaling problem: Given v, find $g \in G$ such that $\mu(g \cdot v) \approx 0$.

Norm minimization and its dual

Thus we want to minimize the Kempf-Ness function:

$$F_{\nu} \colon K \backslash G \to \mathbb{R}, \quad F_{\nu}(g) = \log \|g \cdot \nu\|$$

The so-called moment map captures its gradient at g = I:

$$\mu \colon V \setminus \{0\} \to i \operatorname{Lie}(K), \quad \operatorname{tr}(\mu(v)H) = \eth_{t=0} F_v(e^{Ht}) \quad \forall H \in i \operatorname{Lie}(K)$$

- Clearly, $\mu(g \cdot v) = 0$ if g is minimizer.
- ► Remarkably, this is also sufficient!

[Kempf-Ness]

Scaling problem: Given v, find $g \in G$ such that $\mu(g \cdot v) \approx 0$.

Summary so far

 $G \subseteq \operatorname{GL}_n$ complex reductive connected, $V = \mathbb{C}^m$ regular representation $K = G \cap \operatorname{U}_n$ maximally compact, $\mu \colon V \setminus \{0\} \to i \operatorname{Lie}(K)$ moment map

Null cone problem: Given v, is $0 \in \overline{Gv}$?

...and its relaxations:

Norm minimization problem: Given v, find $g \in G$ s. th. $||g \cdot v|| \approx \text{cap}(v)$.

Scaling problem: Given $v \in V$, find $g \in G$ s. th. $\mu(g \cdot v) \approx 0$.

- ▶ The last two problems are dual, and either can solve null cone!
- ▶ But they also provide path to orbit closure intersection.

Useful *model problems*. Plausibly solvable in polynomial time, but rich enough to have interesting applications. Let us look at some. . .

Summary so far

 $G \subseteq \operatorname{GL}_n$ complex reductive connected, $V = \mathbb{C}^m$ regular representation $K = G \cap \operatorname{U}_n$ maximally compact, $\mu \colon V \setminus \{0\} \to i \operatorname{Lie}(K)$ moment map

Null cone problem: Given v, is $0 \in \overline{Gv}$?

...and its relaxations:

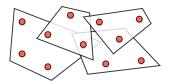
Norm minimization problem: Given v, find $g \in G$ s. th. $||g \cdot v|| \approx \text{cap}(v)$.

Scaling problem: Given $v \in V$, find $g \in G$ s. th. $\mu(g \cdot v) \approx 0$.

- ▶ The last two problems are dual, and either can solve null cone!
- ▶ But they also provide path to orbit closure intersection.

Useful *model problems*. Plausibly solvable in polynomial time, but rich enough to have interesting applications. Let us look at some. . .

A panorama of applications



Example: Matrix scaling (raking, IPFP, . . .)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$Y = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} X \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & b_n \end{pmatrix} \qquad (a_1, \dots, b_n > 0).$$

A matrix is called *doubly stochastic* (d.s.) if row & column sums are 1.

Matrix scaling: Given X, \exists (approximately) d.s. scalings?

Permanent: ... iff per(X) > 0

- ightharpoonup ... iff \exists bipartite perfect matching in support of X
- can be decided in polynomial time
- ▶ find scalings by alternatingly fixing rows & columns ②
- convergence controlled by permanent

[Sinkhorn

Linial et al

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .

Example: Matrix scaling (raking, IPFP, ...)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$Y = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} X \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & b_n \end{pmatrix} \qquad (a_1, \dots, b_n > 0).$$

A matrix is called *doubly stochastic* (d.s.) if row & column sums are 1.

Matrix scaling: Given X, \exists (approximately) d.s. scalings?

Permanent: ... iff per(X) > 0!

- ightharpoonup ... iff \exists bipartite perfect matching in support of X
- can be decided in polynomial time
- ► find scalings by alternatingly fixing rows & columns ©

[Sinkhorn]

convergence controlled by permanent

[Linial et al]

Connections to statistics, complexity, combinatorics, geometry, numerics, . . .

Example: Matrix scaling (raking, IPFP, . . .)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$Y = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} X \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & b_n \end{pmatrix} \qquad (a_1, \dots, b_n > 0).$$

A matrix is called *doubly stochastic* (d.s.) if row & column sums are 1.

Matrix scaling: Given X, \exists (approximately) d.s. scalings?

$$\begin{array}{c} \mathsf{Pe} \\ \hline V = \mathsf{Mat}_n, \quad G = \mathsf{T}_n \times \mathsf{T}_n, \quad (g_1,g_2)v = g_1vg_2. \\ \\ \mu \colon V \setminus \{0\} \to \mathbb{R}^n \oplus \mathbb{R}^n \\ \\ \mu(v) = (\mathsf{row} \; \mathsf{sums}, \mathsf{column} \; \mathsf{sums}) \; \mathsf{of} \; X_{i,j} = \frac{|v_{i,j}|^2}{\|v\|^2} \\ \hline \end{array}$$

Connections to statistics, complexity, combinatorics, geometry, numerics, ...

Example: Schur-Horn theorem

Let $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ and $\delta_1, \ldots, \delta_n$ be integers.

Given λ and δ , \exists Hermitian matrix with spectrum λ and diagonal δ ?

$$U\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^* = \begin{pmatrix} \delta_1 & \star & \star \\ \star & \ddots & \star \\ \star & \star & \delta_n \end{pmatrix}$$

Schur-Horn theorem: ... iff δ in permutahedron generated by λ , i.e., in $conv(S_n \cdot \lambda)!$

Kostka numbers: ... iff branching multiplicity for $T_n \subset GL_n$ is nonzero.

Nonenmacher, 2008

Example: Schur-Horn theorem

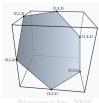
Let $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ and $\delta_1, \ldots, \delta_n$ be integers.

Given λ and δ , \exists Hermitian matrix with spectrum λ and diagonal δ ?

$$U\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^* = \begin{pmatrix} \delta_1 & \star & \star \\ \star & \ddots & \star \\ \star & \star & \delta_n \end{pmatrix}$$

Schur-Horn theorem: ... iff δ in permutahedron generated by λ , i.e., in $conv(S_n \cdot \lambda)!$

Kostka numbers: ... iff branching multiplicity for $T_n \subset GL_n$ is nonzero.



[Nonenmacher, 2008]

Example: Schur-Horn theorem

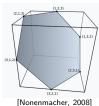
Let $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ and $\delta_1, \ldots, \delta_n$ be integers.

Given λ and δ , \exists Hermitian matrix with spectrum λ and diagonal δ ?

$$U\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^* = \begin{pmatrix} \delta_1 & \star & \star \\ \star & \ddots & \star \\ \star & \star & \delta_n \end{pmatrix}$$

Schur-Horn theorem: ... iff δ in permutahedron generated by λ , i.e., in conv $(S_n \cdot \lambda)$!

Kostka numbers: ... iff branching multiplicity for $T_n \subset GL_n$ is nonzero.



Starting point for celebrated convexity results in symplectic geometry [Kostant, Atiyah, Guillemin-Sternberg, Duistermaat-Heckman, Mumford, Kirwan, ...]

Torus actions

Let $T_n = (\mathbb{C}^*)^n$ act on $V = \bigoplus_{\omega \in \Omega} V_\omega$ with weights $\Omega \subseteq \mathbb{Z}^n$. That is, if $v = \sum_{\omega} v_\omega$ then $z \cdot v = \sum_{\omega} z^\omega v_\omega$.

Capacity:

$$\operatorname{cap}(v)^2 = \inf_{z \in \mathsf{T}_n} \sum_{\omega} |z^{\omega}|^2 \|v_{\omega}\|^2 = \inf_{x \in \mathbb{R}^n} \sum_{\omega} e^{x \cdot \omega} \|v_{\omega}\|^2$$

- norm minimization is geometric programming
- (log-convexity in x)
- ▶ cap(v) = 0 iff $0 \notin \Delta(v) := conv \{\omega : v_{\omega} \neq 0\}$; linear programming

Moment map

$$\mu \colon V \setminus \{0\} \to \mathbb{R}^n, \quad \mu(v) = \frac{\sum_{\omega} \omega \|v_{\omega}\|^2}{\sum_{\omega} \|v_{\omega}\|^2}$$

lacktriangle any point in $\Delta(v)$ can be approximately obtained

[Atiyah]

Torus actions

Let $\mathsf{T}_n = (\mathbb{C}^*)^n$ act on $V = \bigoplus_{\omega \in \Omega} V_\omega$ with weights $\Omega \subseteq \mathbb{Z}^n$. That is, if $v = \sum_{\omega} v_\omega$ then $z \cdot v = \sum_{\omega} \mathbf{z}^\omega v_\omega$.

Capacity:

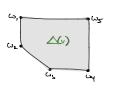
$$\mathsf{cap}(v)^2 = \mathsf{inf}_{z \in \mathsf{T}_n} \sum_{\omega} \lvert z^{\omega} \rvert^2 \, \lVert v_{\omega} \rVert^2 = \mathsf{inf}_{x \in \mathbb{R}^n} \sum_{\omega} \, \mathsf{e}^{x \cdot \omega} \, \lVert v_{\omega} \rVert^2$$

- ► norm minimization is geometric programming (log-convexity in x)
- ► cap(v) = 0 iff $0 \notin \Delta(v) := conv \{\omega : v_{\omega} \neq 0\}$; linear programming

Moment map

$$\mu \colon V \setminus \{0\} \to \mathbb{R}^n, \quad \mu(v) = \frac{\sum_{\omega} \omega \|v_{\omega}\|^2}{\sum_{\omega} \|v_{\omega}\|^2}$$

 \blacktriangleright any point in $\Delta(v)$ can be approximately obtained



Atiyah]

Torus actions

Let $T_n = (\mathbb{C}^*)^n$ act on $V = \bigoplus_{\omega \in \Omega} V_{\omega}$ with weights $\Omega \subseteq \mathbb{Z}^n$. That is, if $v = \sum_{\omega} v_{\omega}$ then $z \cdot v = \sum_{\omega} z^{\omega} v_{\omega}$.

Capacity:

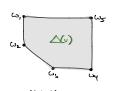
$$\operatorname{\mathsf{cap}}(v)^2 = \operatorname{\mathsf{inf}}_{z \in \mathsf{T}_n} \sum_{\omega} |z^{\omega}|^2 \|v_{\omega}\|^2 = \operatorname{\mathsf{inf}}_{x \in \mathbb{R}^n} \sum_{\omega} e^{x \cdot \omega} \|v_{\omega}\|^2$$

- ► norm minimization is geometric programming (log-convexity in x)
- ► cap(v) = 0 iff $0 \notin \Delta(v) := conv \{\omega : v_{\omega} \neq 0\}$; linear programming

Moment map:

$$\mu \colon V \setminus \{0\} \to \mathbb{R}^n, \quad \mu(v) = \frac{\sum_{\omega} \omega \|v_{\omega}\|^2}{\sum_{\omega} \|v_{\omega}\|^2}$$

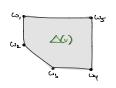
lacktriangle any point in $\Delta(v)$ can be approximately obtained



Moment polytopes

▶ For $G = T_n$, we saw on the previous slide that

$$\Delta(v) = \overline{\mu(Gv)} \subset \mathbb{R}^n$$



is a convex polytope.

For noncommutative G, get *magically* convex polytope. [Mumford, Kirwan, ...] E.g., for $G = GL_n$:

$$\Delta(v) = \overline{\operatorname{spec}(\mu(Gv))} \subset \mathbb{R}^n$$

These are moment polytopes of G-orbit closures in $\mathbb{P}(V)$.

Moment polytope problem: Given v and λ , is $\lambda \in \Delta(v)$?

Even interesting when not restricting to orbits.

Moment polytopes

▶ For $G = T_n$, we saw on the previous slide that

$$\Delta(v) = \overline{\mu(Gv)} \subset \mathbb{R}^n$$

Cos Coy

is a convex polytope.

► For noncommutative G, get magically convex polytope. [Mumford, Kirwan, ...] E.g., for $G = GL_n$:

$$\Delta(v) = \overline{\operatorname{spec}(\mu(\mathit{Gv}))} \subset \mathbb{R}^n$$

These are moment polytopes of G-orbit closures in $\mathbb{P}(V)$.

Moment polytope problem: Given v and λ , is $\lambda \in \Delta(v)$?

Even interesting when *not* restricting to orbits.

Example: Horn problem

Let
$$\alpha_1 \geqslant \ldots \geqslant \alpha_n$$
, $\beta_1 \geqslant \ldots \geqslant \beta_n$, $\gamma_1 \geqslant \ldots \geqslant \gamma_n$ be integers.

Horn problem: When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

- e.g., $\alpha_1 + \beta_1 \geqslant \gamma_1$
- exponentially many linear inequalities on α , β , γ

[Horn]

Knutson-Tao: ... iff Littlewood-Richardson coefficient $c_{\alpha,\beta}^{\gamma} > 0$

- count multiplicities in representation theory,
 combinatorial gadgets, integer points in polytope
- ▶ poly-time algorithm

► can find *A*, *B*, *C* by natural algorithm

[Mulmuley

[Franks]

Motivation for Mulmuley's positivity hypotheses in geometric complexity theory.

Example: Horn problem

Let
$$\alpha_1 \geqslant \ldots \geqslant \alpha_n$$
, $\beta_1 \geqslant \ldots \geqslant \beta_n$, $\gamma_1 \geqslant \ldots \geqslant \gamma_n$ be integers.

Horn problem: When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

- e.g., $\alpha_1 + \beta_1 \geqslant \gamma_1$
- exponentially many linear inequalities on α , β , γ

[Horn]

Knutson-Tao: ... iff Littlewood-Richardson coefficient $c_{\alpha,\beta}^{\gamma} > 0$

- ► count multiplicities in representation theory, combinatorial gadgets, integer points in polytopes, ...
- ► poly-time algorithm
- ► can find A, B, C by natural algorithm

[Mulmuley]

[Franks]

Motivation for Mulmuley's positivity hypotheses in geometric complexity theory.

Example: Left-right action and noncommutative PIT

Let $X = (X_1, \dots, X_d)$ be a tuple of matrices. A *scaling* of X is a tuple

$$Y = (gX_1h^{-1}, \dots, gX_dh^{-1}) \qquad (g, h \in \mathsf{GL}_n)$$

Say X is quantum doubly stochastic if $\sum_k X_k X_k^* = \sum_k X_k^* X_k = I$.

Operator scaling: Given X, \exists (approx.) quantum d.s. scalings?

Polynomial identity testing: . . . iff \exists matrices Y_k s.th. det $\sum_k Y_k \otimes X_k \neq 0$.

can solve in deterministic poly-time

- [Garg et al, cf. Ivanyos et al
- \blacktriangleright when Y_k restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, ...).

Example: Left-right action and noncommutative PIT

Let $X = (X_1, \dots, X_d)$ be a tuple of matrices. A *scaling* of X is a tuple

$$Y = (gX_1h^{-1}, \dots, gX_dh^{-1}) \qquad (g, h \in GL_n)$$

Say X is quantum doubly stochastic if $\sum_k X_k X_k^* = \sum_k X_k^* X_k = I$.

Operator scaling: Given X, \exists (approx.) quantum d.s. scalings?

Polynomial identity testing: . . . iff \exists matrices Y_k s.th. det $\sum_k Y_k \otimes X_k \neq 0$.

► can solve in deterministic poly-time

- [Garg et al, cf. Ivanyos et al]
- \blacktriangleright when Y_k restricted to scalars: major open problem in TCS!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, ...).

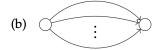
Example: Quivers

Quiver: Directed graph with vertex set Q_0 and edge set Q_1 .

Given dimension vector $(n_x)_{x \in Q_0}$, consider natural action of

$$G = \prod_{x \in Q_0} \mathsf{GL}(n_x)$$
 on $V = \bigoplus_{x \to y \in Q_1} \mathsf{Mat}_{n_y \times n_y}$

generalizes Horn and left-right action:



Many structural results known:

- ► semi-invariants characterized by [King, Derksen-Weyman, Schofield-Van den Bergh, ...]
- ▶ moment polytopes characterized by Horn-like inequalities [Baldoni-Vergne-W]

Example: Tensors and quantum marginals

Let $X\in\mathbb{C}^{n_1}\otimes\cdots\otimes\mathbb{C}^{n_d}$ be a tensor. A *scaling* of X is a tensor of the form

$$Y = (g_1 \otimes \ldots \otimes g_d)X \qquad (g_k \in \mathsf{GL}_{n_k})$$

Consider $\rho_k = X_k X_k^*$, where X_k is k-th flattening of X. (In quantum mechanics, X describes joint state of d particles and ρ_k marginal of k-th particle.)

Tensor scaling problem: Given X, which (ρ_1, \ldots, ρ_d) can be obtained by scaling?

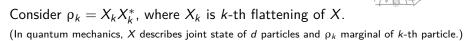
- eigenvalues form convex polytopes
- exponentially many vertices and faces
- characterized by asymptotic support of Kronecker coefficients
 NP-hard to determine if nonzero

Key challenge: Can we find efficient algorithmic description?

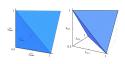
Example: Tensors and quantum marginals

Let $X\in\mathbb{C}^{n_1}\otimes\cdots\otimes\mathbb{C}^{n_d}$ be a tensor. A *scaling* of X is a tensor of the form

$$Y = (g_1 \otimes \ldots \otimes g_d)X \qquad (g_k \in \mathsf{GL}_{n_k})$$



Tensor scaling problem: Given X, which (ρ_1, \ldots, ρ_d) can be obtained by scaling?



- ► eigenvalues form convex polytopes
- exponentially many vertices and faces
- characterized by asymptotic support of Kronecker coefficients
 NP-hard to determine if nonzero

 [Ikenmeyer-Mulmuley-W]

Key challenge: Can we find efficient algorithmic description?

Geodesic first-order algorithms for norm minimization and scaling

Non-commutative optimization duality

Recall $F_{\nu}(g) = \log \|g \cdot \nu\|$ and $\mu(\nu)$ is its gradient at g = I.

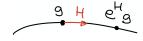
We discussed that the following optimization problems are equivalent:

We developed quantitative duality theory and 1st & 2nd order methods.

Why does the duality hold at all? F_v is convex along geodesics of $K \setminus G!$!

Geodesic convexity and smoothness

Homogeneous space $K \setminus G$ has geodesics $\gamma(t) = e^{tH}g$ for $H \in i \operatorname{Lie}(K)$.



Proposition: F_{ν} satisfies the following properties along these geodesics:

- **1** convexity: $\partial_{t=0}^2 F_{\nu}(\gamma(t)) \geqslant 0$
- 2 smoothness: $\partial_{t=0}^2 F_{\nu}(\gamma(t)) \leqslant 2N^2 ||H||^2$

N is typically small, upper-bounded by degree of action.

Smoothness implies that

$$F_{\nu}(e^Hg)\leqslant F_{\nu}(g)+tr(\mu(\nu)H)+N^2\|H\|^2.$$

Thus, gradient descent makes progress if steps not too large!

First-order algorithm: geodesic gradient descent

Given v, want to find $w = g \cdot v$ with $\|\mu(w)\| \leqslant \varepsilon$.

Algorithm: Start with g=I. For $t=1,\ldots,T$: Compute moment map $\mu(w)$ of $w=g\cdot v$. If norm ε-small, **stop**. Otherwise, replace g by $e^{-\eta \mu(w)}g$. $\eta>0$ suitable step size

Theorem

Let $v \in V$ be a vector with $\operatorname{cap}(v) > 0$. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \varepsilon$ within $T = \frac{4N^2}{\varepsilon^2} \log \frac{\|v\|}{\operatorname{cap}(v)}$ iterations.

- Algorithm runs in time $poly(\frac{1}{\varepsilon}, input size)$. We use constructive invariant theory to give a priori lower bound on capacity
- Algorithm solves null cone problem for suitable ε!
 Moment polytopes are rigid. We provide bound in terms of weight system.

First-order algorithm: geodesic gradient descent

Given v, want to find $w = g \cdot v$ with $\|\mu(w)\| \leqslant \varepsilon$.

Algorithm: Start with g=I. For $t=1,\ldots,T$: Compute moment map $\mu(w)$ of $w=g\cdot v$. If norm ε-small, **stop**. Otherwise, replace g by $e^{-\eta \mu(w)}g$. $\eta>0$ suitable step size

Theorem

Let $v \in V$ be a vector with cap(v) > 0. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \varepsilon$ within $T = \frac{4N^2}{\varepsilon^2} \log \frac{\|v\|}{cap(v)}$ iterations.

- Algorithm runs in time $poly(\frac{1}{\varepsilon}, input size)$. We use constructive invariant theory to give a priori lower bound on capacity.
- Algorithm solves null cone problem for suitable ε!
 Moment polytopes are rigid. We provide bound in terms of weight system.

Analysis of algorithm

"Unless moment map ε -small, replace g by $e^{-\eta \mu(w)}g$."

To obtain rigorous algorithm, need to show progress in each step:

$$F_{\nu}(g_{\text{new}}) \leqslant F_{\nu}(g) - c$$

Then, $\log ||v|| - Tc \geqslant \log \operatorname{cap}(v)$ bounds the number of steps T.

Progress follows from smoothness:

$$F_{\nu}(e^{H}g) \leqslant F_{\nu}(g) + \text{tr}(\mu(\nu)H) + N^{2}||H||^{2}$$

If we plug in $H = -\eta \mu(w)$ then

$$F_{\nu}(g_{\text{new}}) \leq F_{\nu}(g) - \eta \|\mu(w)\|^2 + N^2 \eta^2 \|\mu(w)\|^2.$$

Thus, if we choose $\eta = 1/2N^2$ then we obtain

$$F_{\nu}(g_{\text{new}}) \leqslant F_{\nu}(g) - \frac{1}{4N^2} \|\mu(w)\|^2 \leqslant F_{\nu}(g) - \frac{\varepsilon^2}{4N^2}$$

Analysis of algorithm

"Unless moment map ε -small, replace g by $e^{-\eta \mu(w)}g$."

To obtain rigorous algorithm, need to show progress in each step:

$$F_{\nu}(g_{\text{new}}) \leqslant F_{\nu}(g) - c$$

Then, $\log ||v|| - Tc \geqslant \log \operatorname{cap}(v)$ bounds the number of steps T.

Progress follows from smoothness:

$$F_{\nu}(e^Hg) \leqslant F_{\nu}(g) + tr(\mu(\nu)H) + N^2 ||H||^2$$

If we plug in $H = -\eta \mu(w)$ then

$$F_{\nu}(g_{\text{new}}) \leqslant F_{\nu}(g) - \frac{\eta}{\eta} \|\mu(w)\|^2 + N^2 \eta^2 \|\mu(w)\|^2.$$

Thus, if we choose $\eta = 1/2N^2$ then we obtain

$$F_{\nu}(g_{\text{new}}) \leqslant F_{\nu}(g) - \frac{1}{4N^2} \|\mu(w)\|^2 \leqslant F_{\nu}(g) - \frac{\varepsilon^2}{4N^2}.$$

How to solve the null cone problem?

Theorem

Let $v \in V = \mathbb{C}^m$ be a vector with $\operatorname{cap}(v) > 0$. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \epsilon$ within $T = \frac{4N^2}{\epsilon^2} \log \frac{\|v\|}{\operatorname{cap}(v)}$ iterations.

To solve null cone problem, need two a priori lower bounds:

- ▶ Capacity bound: If cap(v) > 0, then $cap(v) \ge e^{-poly(input size)}$.
- ▶ Gradient bound: If cap(v) = 0, then $\inf_{g \in G} ||\mu(g \cdot v)|| \ge \varepsilon_0$.

How to solve the null cone problem?

Theorem

Let $v \in V = \mathbb{C}^m$ be a vector with $\operatorname{cap}(v) > 0$. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \epsilon$ within $T = \frac{4N^2}{\epsilon^2} \log \frac{\|v\|}{\operatorname{cap}(v)}$ iterations.

To solve null cone problem, need two a priori lower bounds:

▶ Capacity bound: If cap(v) > 0, then cap(v) $\geqslant e^{-\operatorname{poly}(\operatorname{input\ size})}$.

Idea: Assume $v \in \mathbb{Z}^m$. Let p be G-invariant polynomial such that $p(v) \neq 0$. If p has degree D and integer coefficients bounded by L:

$$1 \leqslant |p(v)| = |p(g \cdot v)| \leqslant m^D L \|g \cdot v\|^D \quad \Rightarrow \quad \|g \cdot v\| \geqslant \frac{1}{mL^{1/D}}.$$

We can bound D and L using tools from invariant theory.

▶ Gradient bound: If cap(v) = 0, then $\inf_{g \in G} \|\mu(g \cdot v)\| \ge \varepsilon_0$.

How to solve the null cone problem?

Theorem

Let $v \in V = \mathbb{C}^m$ be a vector with $\operatorname{cap}(v) > 0$. Then the algorithm outputs $g \in G$ such that $\|\mu(g \cdot v)\| \leqslant \epsilon$ within $T = \frac{4N^2}{\epsilon^2} \log \frac{\|v\|}{\operatorname{cap}(v)}$ iterations.

To solve null cone problem, need two a priori lower bounds:

- ▶ Capacity bound: If cap(v) > 0, then $cap(v) \ge e^{-poly(input size)}$.
- ▶ Gradient bound: If cap(v) = 0, then $\inf_{g \in G} \|\mu(g \cdot v)\| \geqslant \epsilon_0$.

Idea: There are finitely many possible moment polytopes $\Delta(v)$. Their facets are spannend by weights of the representation.

How about moment polytopes?

Recall:

Moment polytope problem: Given ν and λ , is $\lambda \in \Delta(\nu)$?

- v in null cone $\Leftrightarrow 0 \notin \Delta(v)$
- ▶ how to reduce to $\lambda = 0$?

Shifting trick

- ▶ If $G = T_n$ torus: simply shift weights $\omega \mapsto \omega \lambda$
- ▶ If G noncommutative, more involved, need randomization [Mumford, Brion]

Result: Randomized first-order algorithm for moment polytopes.

How about moment polytopes?

Recall:

Moment polytope problem: Given ν and λ , is $\lambda \in \Delta(\nu)$?

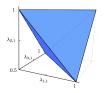
- ightharpoonup v in null cone $\Leftrightarrow 0 \not\in \Delta(v)$
- ▶ how to reduce to $\lambda = 0$?

Shifting trick:

- ▶ If $G = T_n$ torus: simply shift weights $\omega \mapsto \omega \lambda$
- ightharpoonup If G noncommutative, more involved, need randomization [Mumford, Brion]

Result: Randomized first-order algorithm for moment polytopes.

Summary and outlook



Effective numerical algorithms for null cone and moment polytope problems, based on geometric invariant theory and geodesic optimization, with a wide range of applications. *Many exciting directions:*

- ▶ Polynomial-time algorithms in all cases?
- ► Better tools for geodesic optimization?
- ► Tensors in applications are often structured. Implications?
- What exponentially complex polytopes can be efficiently captured?
- ▶ What are the tractable problems in invariant theory? $\mathbb{C} \sim \mathbb{F}$?

Thank you for your attention!

A general equivalence

$$\mathcal{V} \subseteq \mathbb{P}(V)$$

All points in $\Delta(\mathcal{V})$ can be described via invariant theory:

$$V_{\lambda} \subseteq \mathbb{C}[\mathcal{V}]_{(k)} \quad \Rightarrow \quad \frac{\lambda}{k} \in \Delta(\mathcal{V})$$

(λ highest weight, k degree)

- ▶ Can also study multiplicities $g(\lambda, k) := \#V_{\lambda} \subseteq \mathbb{C}[\mathcal{V}]_{(k)}$.
- ► This leads to interesting computational problems:

Completely unlike Horn's problem: *Knutson-Tao saturation property does not hold, and hence we can hope for efficient algorithms!*