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Overview: Scaling and marginal problems

Interesting class of problems — with applications in q. information,
algebra, analysis, computer science — that surprisingly can be
phrased as optimization problems over noncommutative groups.

Null cone & moment polytopes ←→ Norm minimization

(Geometric invariant theory) (Optimization theory)

Result: General framework and effective algorithms.

Plan: Overview and illustration via tensor scaling problem.
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Example: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

Y=

a1 . . .
an

X
b1 . . .

bn

 (a1, . . . ,bn > 0).

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, ∃ (approximately) d.s. scalings?

Permanent (Invariant Theory): …iff per(X)> 0!
Ï can be decided in polynomial time
Ï find scalings by alternatingly fixing rows & columns , [Sinkhorn]

Ï convergence controlled by permanent [Linial et al]

Connections to complexity, combinatorics, geometry, numerics, …
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Further examples

Ï Horn problem ∃ Hermitian matrices A+B=C with spectrum α, β, γ? [Franks]

Ï Positivity of Littlewood-Richardson coefficients [Knutson-Tao]

Ï Operator scaling [Gurvits, Garg et al, Ivanyos et al]

Ï Non-commutative polynomial identity testing

Ï Validity of Brascamp-Lieb inequalities [Bennett et al, Garg et al]

Ï Solution of Paulsen problem [Kwok et al]

All these are special cases of a general class of problems. Let us
focus on ‘representative’ example involving tensors…
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Quantum states and marginals

Global quantum state of d particles is described by unit-norm tensor

X ∈ V= (Cn)⊗d =Cn⊗·· ·⊗Cn

State of individual particles described by quantum marginals ρ1,…,ρd:

ρk =XkX∗
k , where Xk is k-th principal flattening of X

Quantum marginal problem: Which ρ1, . . . ,ρd are
consistent with a global state X?

Answer only depends on eigenvalues λi of ρi!
(e.g., for d= 2: consistent iff same eigenvalues)
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Tensor scaling and moment polytopes

Scaling of X: Tensor of the form Y= (A1⊗ . . .⊗Ad)X.

Tensor scaling problem: Given X, which λ1, . . . ,λd
are consistent with its scalings (and limits)?

Ï {(λ1, . . . ,λd)} convex moment polytopes [Kirwan, Mumford]

Ï encode local info about entanglement [W-Christandl-Doran-Gross, Sawicki et al]

Ï exp. large V/H-representations [Berenstein-Sjamaar, Klyachko, Ressayre, Vergne-W]

We provide algorithmic solution!
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An Algorithm

Given X, want to find scaling Y with desired marginals – whenever
possible. For simplicity, uniform marginals (ρi ∝ I, λi ∝ 1) and d= 3.

Algorithm: Start with Y=X. For t= 1, . . . ,T:
Compute marginals ρ1, ρ2, ρ3 of Y. If ε-close to uniform, stop.
Otherwise, replace Y by (e−δρo

1 ⊗e−δρo
2 ⊗e−δρo

3)Y. Xo = traceless part

Result
Algorithm finds Y= (A1⊗A2⊗A3)X with marginals ε-close to uniform
within T= poly( 1ε , input size) steps.

Ï generalizes to arbitrary λi, d>3, (anti)symmetric tensors, MPS, …
Ï solve quantum marginal problem by using random X

cf. algorithm by Verstraete et al which we analyzed in prior work
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Why does it work?

“Otherwise, replace Y by (e−δρo
1 ⊗e−δρo

2 ⊗e−δρo
3)Y.”

This step implements gradient descent for logarithm of

N(A1,A2,A3)= ‖(A1⊗A2⊗A3)X‖

where A1,A2,A3 have det=1. Indeed:

Ï geodesic gradient can be identified with (ρo1 ,ρo2,ρo3)!
Ï vanishes iff marginals uniform ,
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Non-commutative duality e.g. G=SL(n)d

For N(g)= ‖g ·X‖, the following optimization problems are equivalent:

infg∈G N(g)> 0 ⇐⇒ infg∈G ‖∇logN(g)‖ = 0 [Kempf-Ness]

moment map

Ï primal: norm minimization, dual: scaling problem
Ï non-commutative version of LP duality
Ï equivalent to semistability of X

We develop quantitative duality theory and 1st & 2nd order methods.

All examples from introduction fall into this framework.
Numerical algorithms that solve algebraic problems!

Everything works for general actions of reductive G. Norm is log-convex along geodesics.
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Analysis of Algorithm

“Unless ε-close to uniform, replace Y by (e−δρo
1 ⊗e−δρo

2 ⊗e−δρo
3)Y.”

To obtain rigorous algorithm, show:
Ï progress in each step: ‖Ynew‖ ≤ (1−c1ε)‖Y‖
Ï a priori lower bound: infdet=1‖(A1⊗A2⊗A3)X‖ ≥ c2

Then, (1−c1ε)T ≥ c2 bounds the number of steps T.

The first point follows from geodesic convexity estimates.

For the second, construct ‘explicit’ invariants with ‘small’ coefficients
so that P(X) 6= 0 implies bound in terms of bitsize of X.
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Summary and outlook

Marginal & scaling problems

l duality
Norm minimization

Effective algorithms for null cone and moment polytope problems,
with applications incl. quantum marginal and tensor scaling problems.
Based on geometric invariant theory and g-convex optimization.

Many exciting directions:
Ï Numerical studies in q. many-body systems or chemistry
Ï Quantum algorithms?
Ï Algorithms for other problems with natural symmetries?
Ï What are the ‘tractable’ problems in invariant theory? C; F?

Thank you for your attention!
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A general equivalence V ⊆P(V)

All points in ∆(V ) can be described via invariant theory:

Vλ ⊆C[V ](k) ⇒ λ

k ∈∆(V )

(λ highest weight, k degree)

Ï Can also study multiplicities g(λ,k) :=#Vλ ⊆C[V ](k).
Ï This leads to interesting computational problems:

g=? g> 0? ∃s> 0 : g(sλ,sk)> 0?

(#-hard) (NP-hard) (our problem!)

Completely unlike Horn’s problem: Knutson-Tao saturation property
does not hold, and hence we can hope for efficient algorithms!

1 / 1


	Appendix

