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Prelude: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix( a1
...

an

)
X
(

b1
...

bn

)
(a1, . . . , bn > 0).

A matrix is called doubly stochastic if row & column sums are 1.

Matrix scaling problem: Given X , find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:(
1 2
4 0

)
rows−→

(
1/3 2/3
1 0

)
cols−→

(
1/4 1
3/4 0

)
−→ . . . −→

(
ε 1

1−ε 0

)
▶ This converges whenever possible, and in polynomial time! [LSW]

▶ Possible iff per(X ) > 0 iff bipartite perfect matching in support of X .

Applications to statistics, machine learning, complexity, combinatorics, numerics, . . .

▶ Why does such a simple “greedy” algorithm work?
▶ What is the connection between scaling and the permanent?
▶ Is there a general perspective?
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Overview

A series of recent works discovered clues that hidden symmetries and
optimization connect a wide range of problems:

program testing

P vs NP

derandomization

theoretical

tensor isomorphism

algebraic curves

algebraic

optimal transport maximum likelihood

appliedcontinuousclassical

quantum entanglement

quantum materials. . .

quantum

This discovery was already key to fast algorithms and structural insight.

Plan for today: Introduction to these connections, some applications, and
a glance of how optimization in curved spaces can lead to progress.
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.

Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

▶ no polynomial-time algorithm known for graph isomorphism
▶ matrices equivalent iff equal rank, but how about tensors?
▶ derandomizing polynomial identity testing implies circuit lower bounds
▶ computing normal forms, describing moduli spaces and invariants. . .
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Orbit problems

Group G ⊆ GLn(C) “nice”, such as GLn, SLn, or Tn =
(. . .)

Action on V = Cm by linear transformations
Orbits Gv = {g · v : g ∈ G} and their closures Gv

Example: G = C∗, V = C2

g ·
( x

y
)
=
( gx

g−1y
)

Orbit problems:
▶ Given v and w , are they in the same orbit? That is, is Gv = Gw?
▶ Robust versions: w ∈ Gv? Gv ∩ Gw ̸= ∅?
▶ Null cone problem: 0 ∈ Gv?
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Big picture: Null cone, optimization, and scaling

For concreteness, focus on null cone problem:

Is P(v) = P(0) for every invariant polynomial P? Algebra

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Optimization

Find g ∈ G s.th. ∇g∥g · v∥ ≈ 0.

Scaling Problem

Polytopes
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Big picture: Null cone, optimization, and scaling

Is P(v) = P(0) for every invariant polynomial P? Algebra

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Optimization

Why care? Intriguing applications,
plausibly poly time, offers path to other
orbit problems. . . let’s get started!

Find g ∈ G s.th. ∇g∥g · v∥ ≈ 0.

Scaling Problem

Polytopes
6 / 19

geodesic

convexity



Example: Matrix scaling revisited

Let X be matrix with nonnegative entries. A scaling of X is a matrix( a1
...

an

)
X
(

b1
...

bn

)
(a1, . . . , bn > 0).

A matrix is called doubly stochastic if row & column sums are 1.

Matrix scaling problem: Given X , find approx. doubly stochastic scalings.

Indeed a “scaling problem” in the general sense!
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Indeed a “scaling problem” in the general sense!

V = Matn×n, G = Tn×Tn, (g1, g2)v = g1vg2.

Then, ∇∥g · v∥2 = (row sums, column sums) of Xij = |vij |
2.
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Example: Operator and tensor scaling

What might a quantum version of the matrix scaling problem look like?
For an operator ρ ∈ PSD(Cn ⊗ Cn), say a scaling is of the form

σ = (g ⊗ h)ρ(g∗ ⊗ h∗) (g , h ∈ GLn).

Operator scaling problem: Given ρ, find scaling such that σ1, σ2 ≈ I.

Tensor scaling problem: Given ρ, which
(σ1, . . . , σd) can be obtained by scaling?

▶ eigenvalues form convex polytopes
▶ applications in quantum information, algebraic complexity, algebra. . .
▶ exp. many vertices and facets, but succinctly encoded by group action

Which other interesting polytopes captured in this way?
Solve more combinatorial problems by optimization?
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Example: Operator scaling and polynomial identity testing

We can identify ρ, σ with completely positive maps

Φ(A) =
∑

k
XkAXk

∗, Ψ(A) =
∑

k
YkAYk

∗.

Scaling translates into left-right action on Kraus operators: Yk = gXkhT .

Operator scaling problem: Given Φ, find unital & trace-preserving scaling.

Possible iff det
∑

kαk ⊗ Xk ̸= 0 for matrices αk .
▶ means symbolic matrix in NC variables αk has maximal NC-rank
▶ when αk restricted to scalars: major open problem in TCS!

Operator scaling can be solved in deterministic poly-time [Garg-. . . -W, Ivanyos et al]

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, MLE, . . . ).
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Many other connections and applications

Invariant theory: Null cone & orbit closure intersection, moment polytopes

Analysis: Brascamp-Lieb inequalities, solution of Paulsen’s problem

Symplectic geometry: Horn’s problem ∃ A + B = C with spectrum α, β, γ?
Combinatorics: Positivity of Littlewood-Richardson coefficients

Statistics: MLE in Gaussian models, Tyler M-estimator
Machine Learning: Optimal transport
Optimization: Efficient algorithms for class of quadratic equations

Computational complexity: Polynomial identity testing, tensor ranks
Quantum information: Marginal problems, entanglement transformations
Quantum physics: Tensor network algorithms

10 / 19



Symmetry and Optimization
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Norm minimization and gradient

We want to minimize the function:

F : G → R, F (g) := log ∥g · v∥

Consider G = GLn. By the polar decomposition, can restrict to:

PDn = {p = eX : X ∈ Hermn}

This is a Hadamard manifold, a particularly nice Riemannian manifold of
nonpositive curvature.

The gradient ∇F (I) = ∇X=0F (eX ) is known as moment map in geometry
& physics. It turns out ∇F = 0 captures natural scaling problems!
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Geodesic convexity

While not convex in the usual sense, the objective

F (g) = log ∥g · v∥

is convex along the geodesics eXt of PDn, i.e., ∂2
t F (eXt) ⩾ 0. [Kempf-Ness]
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Just like in the Euclidean case, this means critical points are global minima.

How convex for given action? Necessary for algorithms!

13 / 19



Geodesic convexity

While not convex in the usual sense, the objective

F (g) = log ∥g · v∥

is convex along the geodesics eXt of PDn, i.e., ∂2
t F (eXt) ⩾ 0. [Kempf-Ness]










































Ws

DCPbye I we

Ito ex

Just like in the Euclidean case, this means critical points are global minima.

How convex for given action? Necessary for algorithms!

13 / 19



Geodesic convexity made quantitative

The objective F (g) = log ∥g · v∥ is smooth, meaning

∂2
t F (eXt) ⩽ L∥X∥2F .

Moreover, noncommutative duality estimates: For F∗ = infg F (g),

1 −
∥∇F∥

γ ⩽ eF∗−F ⩽ 1 −
∥∇F∥2

2L

, relates norm minimization ⇔ scaling in a quantitative way
, implies either can solve null cone problem!

Parameters L, γ depend on combinatorial data of action.
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Framework: Noncommutative group optimization [BFGOWW]

Action of “nice” G ⊆ GLn on V ∼= Cm.

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Norm Minimization

Find g ∈ G s.th. ∇∥g · v∥ ≈ 0.

Scaling Problem

▶ All examples mentioned earlier fall into this framework.
▶ Geodesic convexity explains why simple greedy algorithms can work.
▶ Made quantitative by NC generalization of convex programming duality.
▶ We provide two general algorithms for geodesic convex optimization

(which solve problems in poly time for many interesting actions).
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Algorithms
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First order algorithm for scaling (“gradient descent”)

Idea: Repeatedly perform geodesic gradient steps

g ← e−
1
L∇F(g)g .

Theorem
Let v ∈ V be not in the null cone. Then the algorithm outputs g ∈ G
such that ∥∇F (g)∥ ⩽ ε within T = poly( 1

ε , input size) steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori
lower bound obtained using constructive invariant theory.

Corollary
Same algorithm solves null cone problem in time poly( 1

γ , input size).
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Second order algorithm for norm minimization

Rough idea: Minimize local quadratic approximation (after regularization)

Q(H) = F (g) +∇F (g)[H] +
1
2∇

2F (g)[H,H] ≈ F (eHg)

on small neighborhoods, where it can be trusted. Need F “robust”.

Theorem
Let v ∈ V be not in the null cone. Then the algorithm outputs g ∈ G such
that F (g) ⩽ infg∈G F (g) + ε within T = poly(log 1

ε , input size, 1
γ) steps.

Analysis: Complexity depends on neighborhood size and diameter bound. Former
is controlled by smoothness L, latter by 1

γ
.

State of the art: Two general algorithms for geodesic convex
optimization, which can solve norm minimization, scaling, null cone.
Polynomial time for many interesting actions – but not always!
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Summary and outlook

Symmetries lie behind many natural computational problems
from algebra and analysis to classical and quantum CS.

Polytopes encode answers to many of these problems.
Often exp. many facets, yet can admit efficient algorithms.

Symmetries are key to tackling problems by optimization.
Enabled by geodesic convexity and invariant theory.

Many exciting open questions: Poly-time algorithms for general actions?
Better tools for geodesic convex optimization? Structured or typical data?
Other problems with natural symmetries? Thank you for your attention!
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