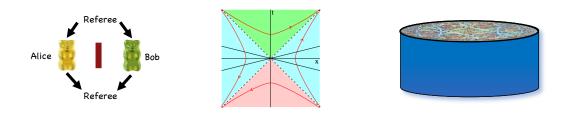
Trading Space for Time in Nonlocal Games

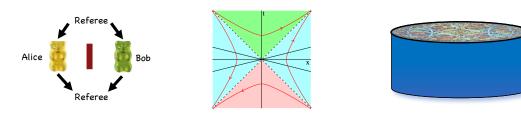
Michael Walter



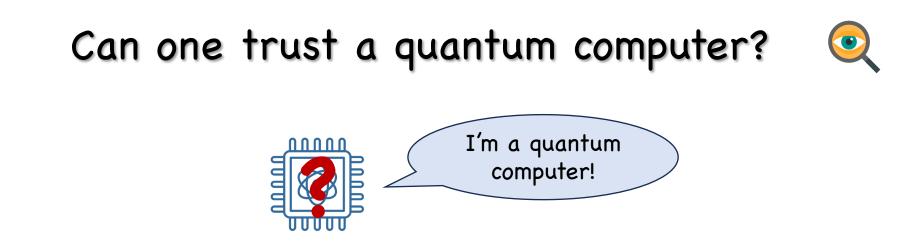
Quantum Extreme Universe Workshop, Okinawa, Oct 2024

Trading Space for Time in Nonlocal Games or: Playing Games with Locality

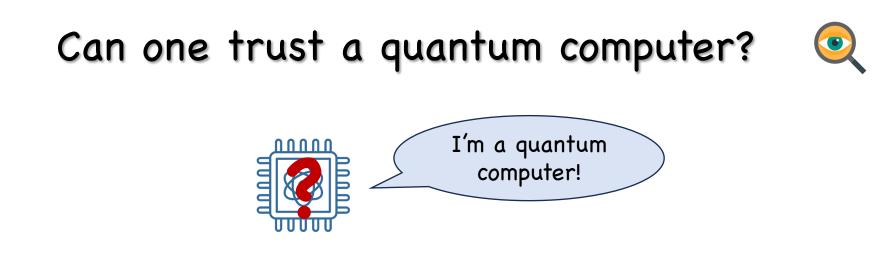
Michael Walter



Quantum Extreme Universe Workshop, Okinawa, Oct 2024



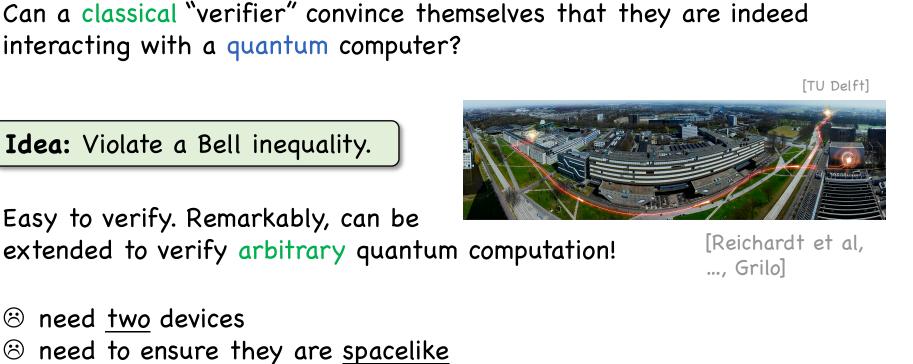
Can a classical "verifier" convince themselves that they are indeed interacting with a quantum computer?



Can a classical "verifier" convince themselves that they are indeed interacting with a quantum computer?

[TU Delft]

Idea: Violate a Bell inequality.



I'm a quantum

computer!

Can a classical "verifier" convince themselves that they are indeed

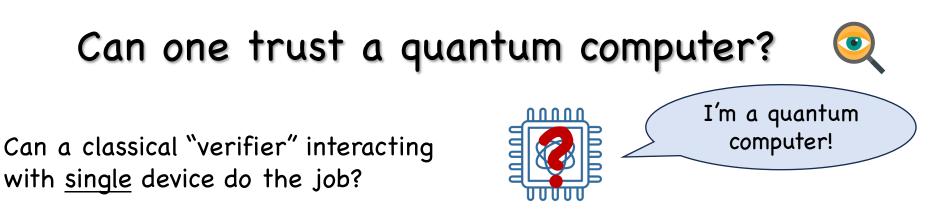
interacting with a quantum computer?

Idea: Violate a Bell inequality.

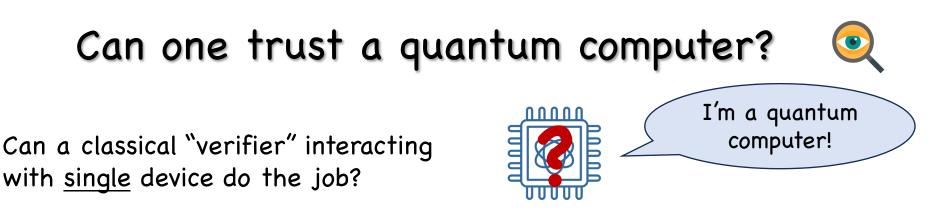
Easy to verify. Remarkably, can be extended to verify arbitrary quantum computation!

2/17

Can one trust a quantum computer?



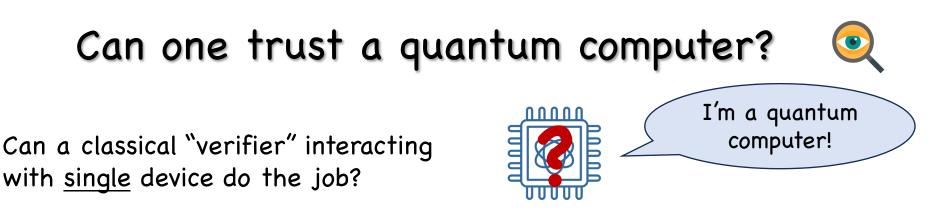
Possibly! Any quantum computation can be simulated classically, but in general only *inefficiently (or so we believe)...*



Possibly! Any quantum computation can be simulated classically, but in general only *inefficiently (or so we believe)...*

Idea: Ask it to factor a number.

- © easy to verify
- not universal only certifies that we can factor



Possibly! Any quantum computation can be simulated classically, but in general only *inefficiently (or so we believe)...*

Idea: Ask it to factor a number.

- © easy to verify
- not universal only certifies that we can factor

Better idea: Ask it to solve universal (BQP-complete) problem.

Can be made to work. Breakthrough gave first classical verification protocol for single device *under computational assumptions*. [Mahadev]

namely that device is efficient & some computational problem is hard ^{3/17}

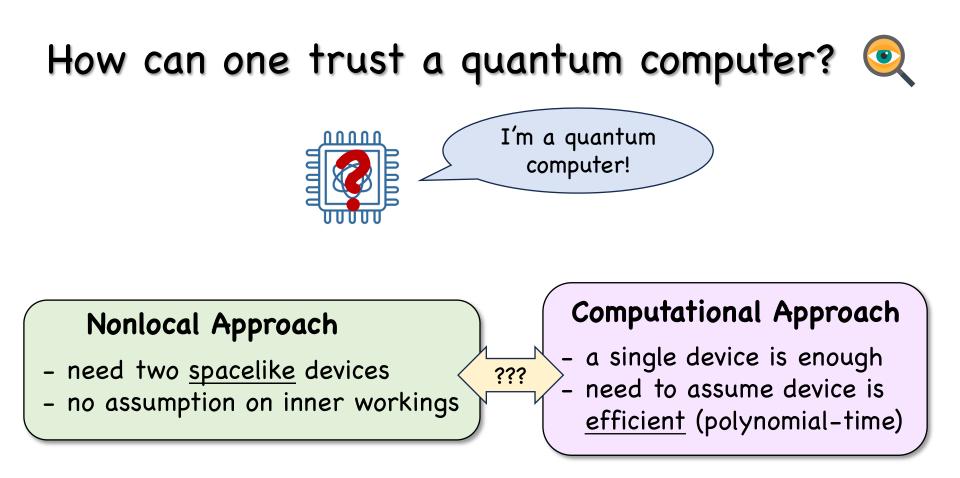
How can one trust a quantum computer? 🧕

Nonlocal Approach

- need two spacelike devices
- no assumption on inner workings

Computational Approach

- a single device is enough
- need to assume device is <u>efficient</u> (polynomial-time)



Question: Is there a systematic link between these two worlds?

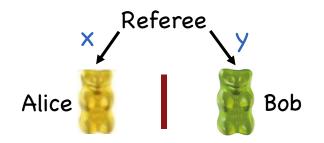
[Bell, Clauser-Horne -Shimony-Holt, ...]

Two non-communicating players play against a referee:

Referee

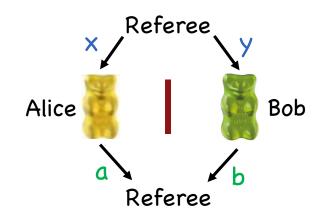
[Bell, Clauser-Horne -Shimony-Holt, ...]

Two non-communicating players play against a referee:



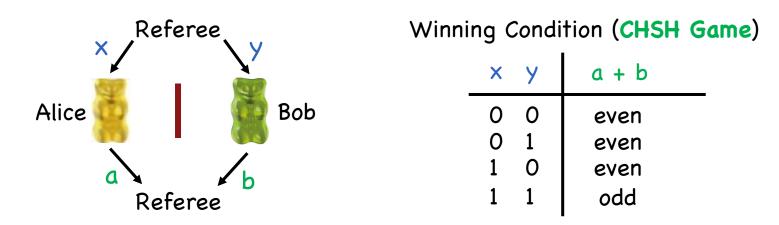
[Bell, Clauser-Horne -Shimony-Holt, ...]

Two non-communicating players play against a referee:



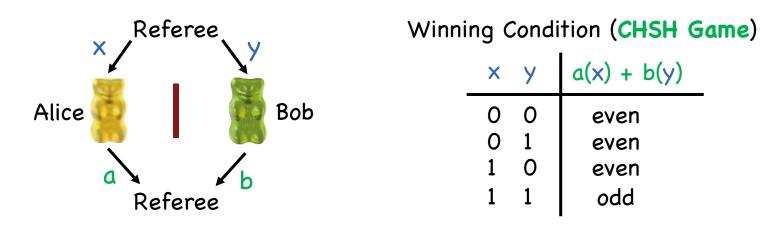
[Bell, Clauser-Horne -Shimony-Holt, ...]

Two non-communicating players play against a referee:



Question: Can classical players win this game?

Two non-communicating players play against a referee:

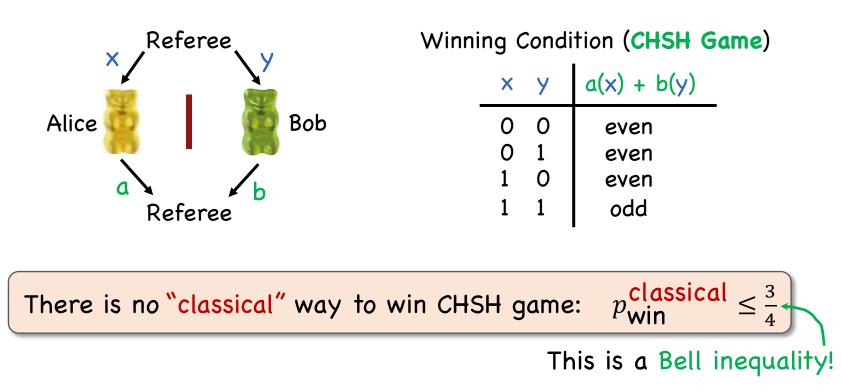


Are there suitable "answer functions" a(x), b(y)? If so, then...

$$(a(0) + b(0)) + (a(0) + b(1)) + (a(1) + b(0)) + (a(1) + b(1))$$

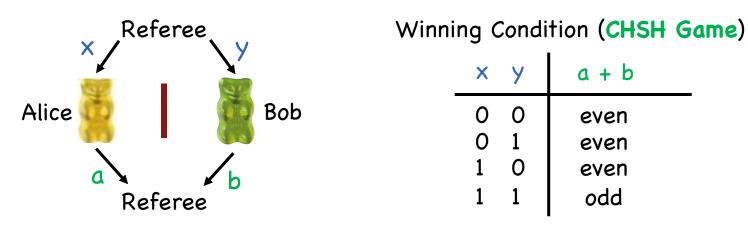
...would be odd. But each answer appears twice. Contradiction!

Two non-communicating players play against a referee:



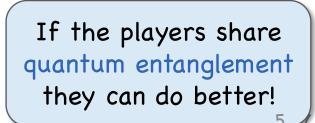
[Bell, Clauser-Horne

Two non-communicating players play against a referee:

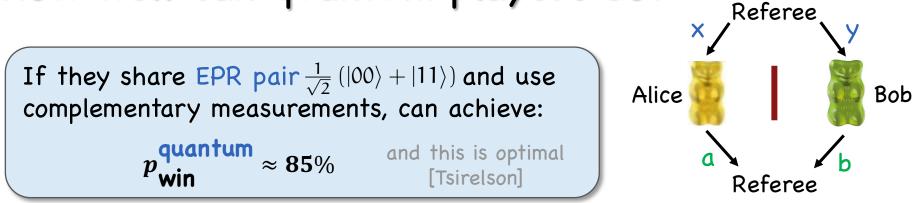


There is no "classical" way to win CHSH game: $p_{win}^{classical} \leq \frac{3}{4}$

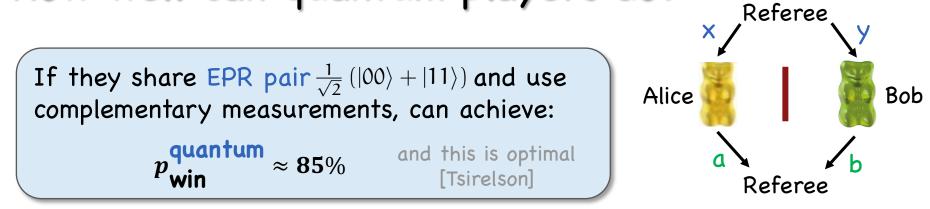
This is a Bell inequality!



How well can quantum players do?



How well can quantum players do?



Amazingly, optimal quantum strategy is "unique" and "rigid"!

"Operational" characterization of entanglement!

How well can quantum players do? Referee X If they share EPR pair $\frac{1}{\sqrt{2}}$ ($|00\rangle + |11\rangle$) and use Alice Bob complementary measurements, can achieve: quantum p_{win} and this is optimal **≈ 85**% [Tsirelson] Referee Amazingly, optimal quantum strategy is "unique" and "rigid"! "Operational" characterization Classical verifier can verify & control of entanglement! untrusted pair of quantum devices [Reichard-Unger-Vazirani, ...]

→ device-independent cryptography

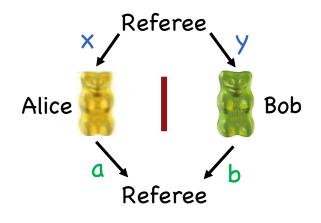
Reason: Hidden symmetry! Roughly, ϵ -optimal strategy $\Leftrightarrow \epsilon$ -representation of G = <X,Z>, and there is a nearby exact representation [Gowers-Hatami] \odot _{6/17}

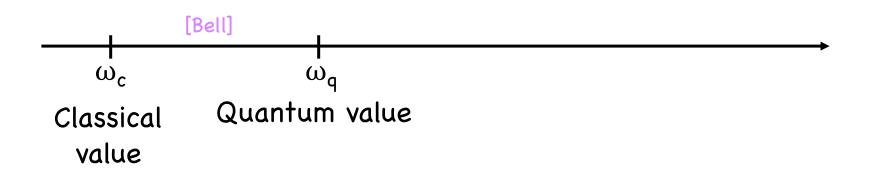
How well can quantum players do? Referee X If they share EPR pair $\frac{1}{\sqrt{2}}$ ($|00\rangle + |11\rangle$) and use Alice Bob complementary measurements, can achieve: ^{quantum} win and this is optimal **≈ 85**% [Tsirelson] Referee Amazingly, optimal quantum strategy is "unique" and "rigid"! "Operational" characterization Classical verifier can verify & control of entanglement! untrusted pair of quantum devices So long they can't communicate (are spacelike)!

Reason: Hidden symmetry! Roughly, ϵ -optimal strategy $\Leftrightarrow \epsilon$ -representation of G = <X,Z>, and there is a nearby exact representation [Gowers-Hatami] \odot _{6/17}

The players' strategy determines their winning probability.

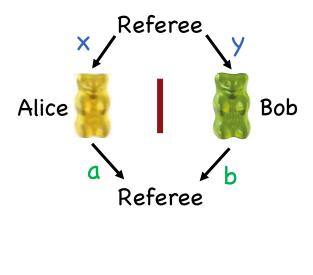
The optimal winning probability for some class of strategies is called a "value":





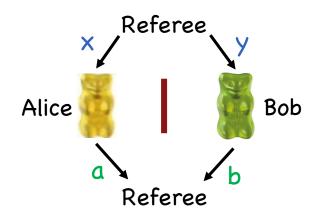
The players' strategy determines their winning probability.

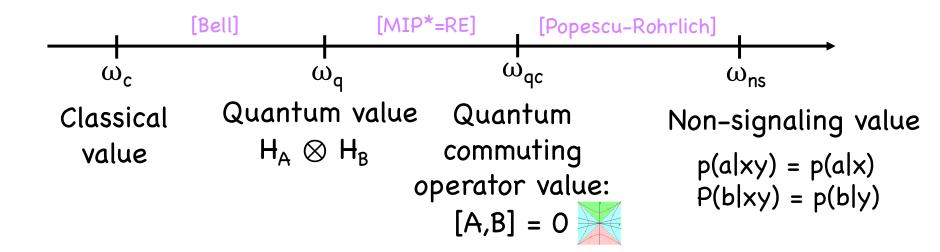
The optimal winning probability for some class of strategies is called a "value":



The players' strategy determines their winning probability.

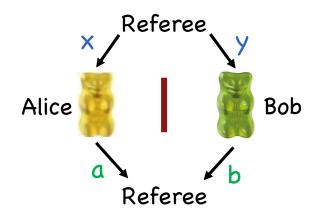
The optimal winning probability for some class of strategies is called a "value":

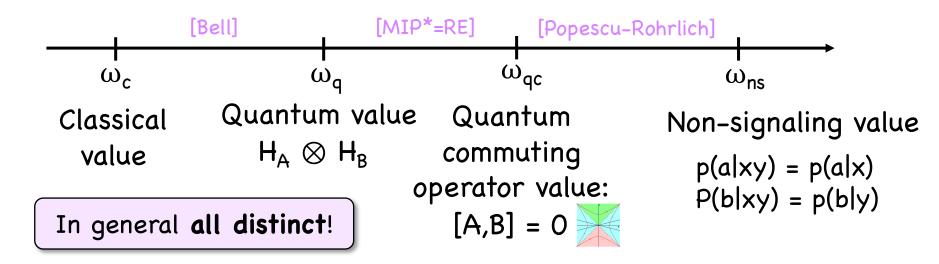




The players' strategy determines their winning probability.

The optimal winning probability for some class of strategies is called a "value":





Crucially, <u>no</u> assumption about the player's efficiency!

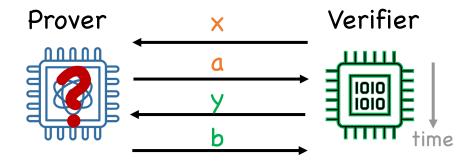
Trading space for (polynomial) time

Question: Can we get rid of spacelike separation and play a nonlocal game with a <u>single</u> efficient player ("prover")?

Trading space for (polynomial) time

Question: Can we get rid of spacelike separation and play a nonlocal game with a <u>single</u> efficient player ("prover")?

Naïve attempt: Just play sequentially.

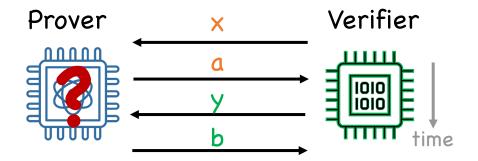


This cannot work because it even allows forward signaling!

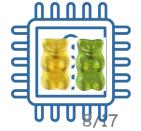
Trading space for (polynomial) time

Question: Can we get rid of spacelike separation and play a nonlocal game with a <u>single</u> efficient player ("prover")?

Naïve attempt: Just play sequentially.



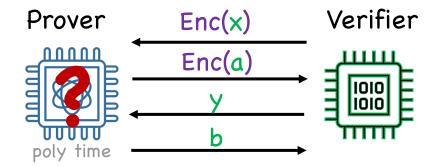
This cannot work because it even allows forward signaling!



long history in crypto

Kalai-Lombardi-Vaikuntanathan-Yang:

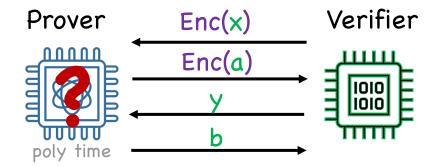
Encrypt Alice's question x, while sending Bob's question y in plain.



Intuition: Since prover does not know secret key, encrypted messages cannot usefully be "combined" with plain ones (as if they were spacelike)?

Kalai-Lombardi-Vaikuntanathan-Yang:

Encrypt Alice's question x, while sending Bob's question y in plain.

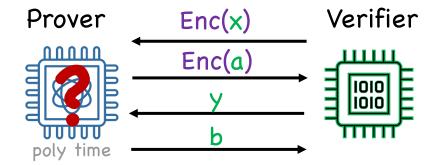


Intuition: Since prover does not know secret key, encrypted messages cannot usefully be "combined" with plain ones (as if they were spacelike)?

Problem: Since prover does not know key, how can they do *anything?*

Kalai-Lombardi-Vaikuntanathan-Yang:

Encrypt Alice's question x, while sending Bob's question y in plain.

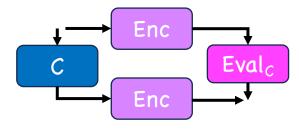


Intuition: Since prover does not know secret key, encrypted messages cannot usefully be "combined" with plain ones (as if they were spacelike)?

Problem: Since prover does not know key, how can they do *anything?*

Solution: Use "homomorphic" encryption scheme!

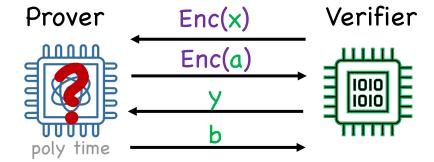
= allows computing on encrypted data



for circuit C

Kalai-Lombardi-Vaikuntanathan-Yang:

Encrypt Alice's question x, while sending Bob's question y in plain.



Intuition: Since prover does not know secret key, encrypted messages cannot usefully be "combined" with plain ones (as if they were spacelike)?

Problem: Since prover does not know key, how can they do *anything?*

Solution: Use "homomorphic" encryption scheme!

= allows computing on encrypted data

These exist under computational assumptions. [Mahadev, Brakerski]

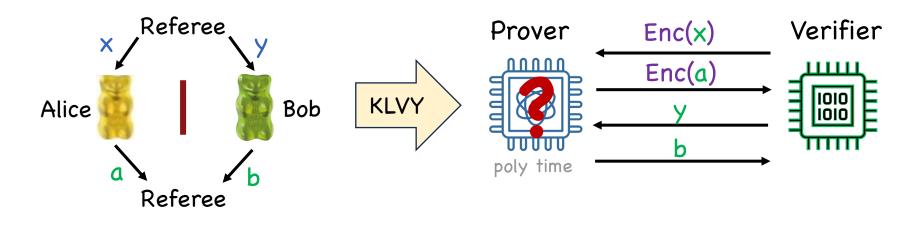
for circuit C

Enc

→ General "compiler" that applies to any nonlocal game ③

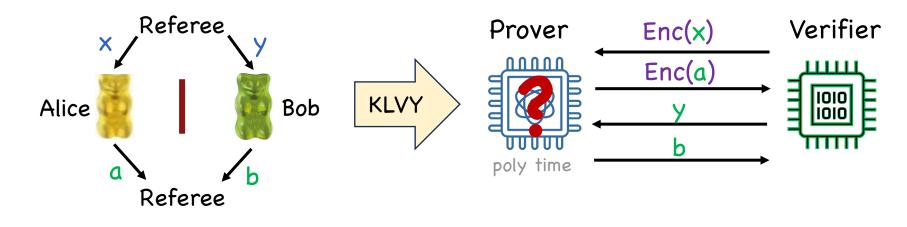
Evalc

Given any nonlocal game, can "compile" into a single-prover protocol:



Key question: What properties of the nonlocal game are preserved?

Given any nonlocal game, can "compile" into a single-prover protocol:



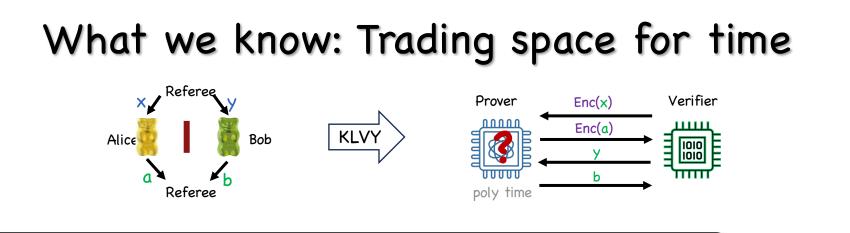
Key question: What properties of the nonlocal game are preserved?

As discussed, provers can do at least as well as in nonlocal game. $\omega_{\text{compiled}} \ge \omega$

But why can't they do better? Not obvious!

- At first glance, cryptography only ensures "non-signaling".
- But this is **not** enough!
- Natural variations do **not** work ("spooky" encryption)!

10/17



Classical Soundness (KLVY): Efficient classical provers cannot cheat, i.e. exceed classical value of nonlocal game.

 $\omega_{c,compiled}$ $\leq \omega_{c}$

Thus, if observe $p_{win} > \omega_c$ this constitutes proof of non-classicality! \bigcirc

All results hold for large security parameter ("key length").

Classical Soundness (KLVY): Efficient classical provers cannot cheat, i.e. exceed classical value of nonlocal game.

 $\omega_{c,compiled}$ $\leq \omega_{c}$

Thus, if observe $p_{win} > \omega_c$ this constitutes proof of non-classicality! \bigcirc

Computational Tsirelson Theorem (Natarajan-Zhang, Cui-...-W):

- For "XOR games", quantum provers cannot exceed q. value.
- Near optimal strategies yield "logical qubits" inside prover!

$$B_0 B_1 \approx -B_1 B_0$$

This is good enough to verify q. computations. \bigcirc

All results hold for large security parameter ("key length").

11/17

[Kulpe-Malavolta-Paddock-Schmidt-W]

XOR games are *special* – they don't probe full power & complexity of spacelike quantum correlations. What can we say about *general* games?

[Kulpe-Malavolta-Paddock-Schmidt-W]

XOR games are *special* – they don't probe full power & complexity of spacelike quantum correlations. What can we say about *general* games?

Quantum Soundness Theorem: Quantum provers cannot exceed quantum *commuting* operator value of nonlocal game.

 $\omega_{q,compiled} \leq \omega_{qc}$

This generalizes prior works for CHSH and XOR games, where $\omega_{qc} = \omega_q$.

[Kulpe-Malavolta-Paddock-Schmidt-W]

XOR games are *special* – they don't probe full power & complexity of spacelike quantum correlations. What can we say about *general* games?

Quantum Soundness Theorem: Quantum provers cannot exceed quantum *commuting* operator value of nonlocal game.

This generalizes prior works for CHSH and XOR games, where $\omega_{qc} = \omega_q$.

Rigidity Theorem: For optimal quantum provers, "Bob" observables satisfy same relations as in nonlocal game.

W_{q,compiled}

 $\leq \omega_{qc}$

[Kulpe-Malavolta-Paddock-Schmidt-W]

XOR games are *special* – they don't probe full power & complexity of spacelike quantum correlations. What can we say about *general* games?

Quantum Soundness Theorem: Quantum provers cannot exceed quantum *commuting* operator value of nonlocal game.

This generalizes prior works for CHSH and XOR games, where $\omega_{qc} = \omega_q$.

Rigidity Theorem: For optimal quantum provers, "Bob" observables satisfy same relations as in nonlocal game.

 $\omega_{q,compiled}$

 $\leq \omega_{qc}$

To prove these, we connect notions that are usually treated separately:

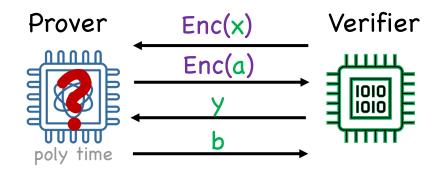
(1) *Timelike* characterization of *spacelike* correlations.

(2) *Computational* security \rightarrow *info-theoretic* security.

Of independent interest?

Task: Given a quantum prover for the compiled game, wish to construct quantum strategy for the two-player game.

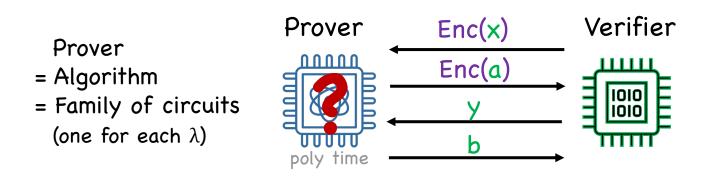
Let's analyze the situation:



 λ = security parameter (key length)

Task: Given a quantum prover for the compiled game, wish to construct quantum strategy for the two-player game.

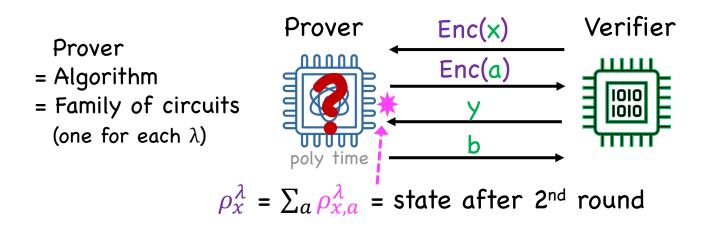
Let's analyze the situation:



 λ = security parameter (key length)

Task: Given a quantum prover for the compiled game, wish to construct quantum strategy for the two-player game.

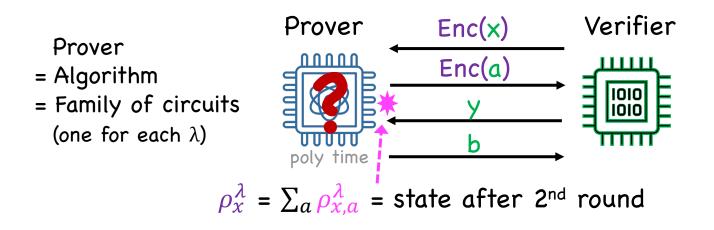
Let's analyze the situation:



 λ = security parameter (key length)

Task: Given a quantum prover for the compiled game, wish to construct quantum strategy for the two-player game.

Let's analyze the situation:



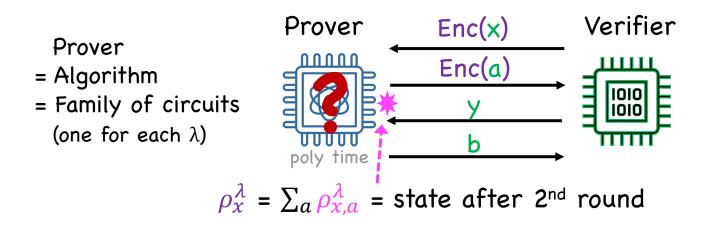
Observation: $\rho_x^{\lambda} \approx \rho_{x'}^{\lambda}$ are computationally indistinguishable!

no poly-time algo can tell the difference (otherwise could break crypto)

 λ = security parameter (key length)

Task: Given a quantum prover for the compiled game, wish to construct quantum strategy for the two-player game.

Let's analyze the situation:

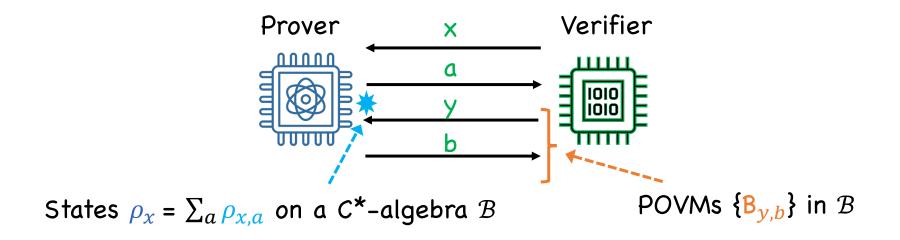


Observation: $\rho_x^{\lambda} \approx \rho_{x'}^{\lambda}$ are computationally indistinguishable!

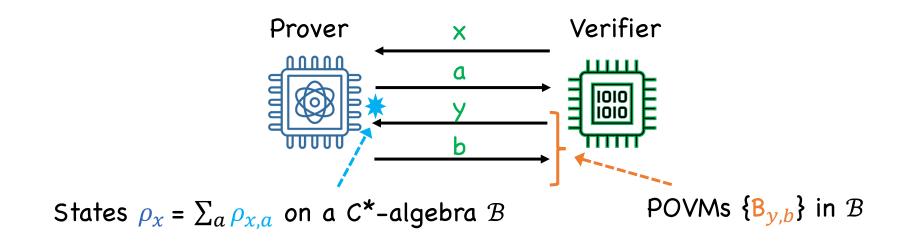
no poly-time algo can tell the difference (otherwise could break crypto)

What if they were <u>truly</u> indistinguishable?

An information-theoretic toy model

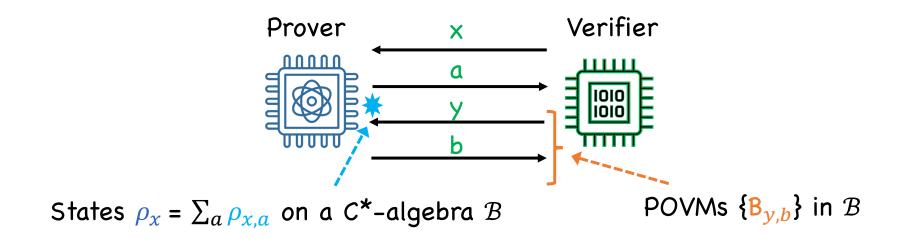


An information-theoretic toy model



Assume $\rho_x = \rho_{x'}$ are all the same. We call this "strong non-signaling" because it is equivalent to non-signaling for *any* POVM.

1st Ingredient: Timelike characterization of spacelike correlations



Assume $\rho_x = \rho_{x'}$ are all the same. We call this "strong non-signaling" because it is equivalent to non-signaling for *any* POVM.

Theorem: $p(a,b|x,y) = \rho_{x,a}(B_{y,b})$ is quantum commuting op. correlation.

In type I, an older result by [Navascues et al] shows that condition implies quantum \otimes correlations. For us this unfortunately does not apply... 14/17

Connecting computational and information-theoretic security

$$\lim_{\lambda \to \infty}$$

Challenge: Intuitively, in compiled game have "strong non-signaling" for poly-time observables – but these don't form an algebra.

Moreover, $\rho_{x,a}^{\lambda} \& B_{y,b}^{\lambda}$ live on different (larger and larger) Hilbert spaces...

Connecting computational and information-theoretic security

$$\lim_{\lambda \to \infty}$$

Challenge: Intuitively, in compiled game have "strong non-signaling" for poly-time observables – but these don't form an algebra.

Moreover, $\rho_{x,a}^{\lambda} \& B_{y,b}^{\lambda}$ live on different (larger and larger) Hilbert spaces...

Solution: Work with \mathcal{B} = universal POVM algebra. This is an infinite dimensional C^{*}-algebra, but independent of security parameter!

Then we can define a sequence of states on the same algebra:

$$\varphi_{x,a}^{\lambda} \left(B_{y_1b_1} B_{y_2b_2} \dots \right) \coloneqq tr(\rho_{x,a}^{\lambda} \mathbf{B}_{y_1b_1}^{\lambda} \mathbf{B}_{y_1b_1}^{\lambda} \dots)$$

2nd Ingredient: Computational cryptography at infinite key length

Challenge: Intuitively, in compiled game have "strong non-signaling" for poly-time observables – but these don't form an algebra.

Moreover, $\rho_{x,a}^{\lambda} \& B_{y,b}^{\lambda}$ live on different (larger and larger) Hilbert spaces...

Solution: Work with \mathcal{B} = universal POVM algebra. This is an infinite dimensional C^{*}-algebra, but independent of security parameter!

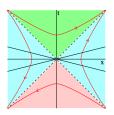
Then we can define a sequence of states on the same algebra:

$$\varphi_{x,a}^{\lambda} \left(B_{y_1b_1} B_{y_2b_2} \dots \right) \coloneqq tr(\rho_{x,a}^{\lambda} \mathbf{B}_{y_1b_1}^{\lambda} \mathbf{B}_{y_1b_1}^{\lambda} \dots)$$

Theorem: For any quantum prover for the compiled game, limiting strategies at $\lambda = \infty$ exist and are strongly non-signaling! \bigcirc

Proof uses quantum algorithmic techniques such as block encodings. 15/17

Open problems and speculations

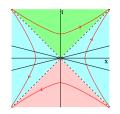


 $\omega_q \leq \omega_{q,compiled} \leq \omega_{qc}$. What is the right answer?

Both plausible! Surprisingly, *not* absurd to approximate commuting operator correlations by finite-dim. objects...

cf. [Ozawa, Coudron-Vidick]

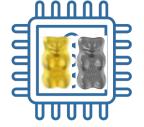
Open problems and speculations



 $\omega_q \leq \omega_{q,compiled} \leq \omega_{qc}$. What is the right answer?

Both plausible! Surprisingly, *not* absurd to approximate commuting operator correlations by finite-dim. objects...

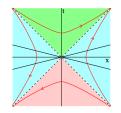
cf. [Ozawa, Coudron-Vidick]



Rigidity inside the encrypted ("Alice") part of prover?

Other situations in which one can connect computational and information-theoretic security?

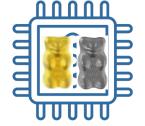
Open problems and speculations



 $\omega_q \leq \omega_{q,compiled} \leq \omega_{qc}$. What is the right answer?

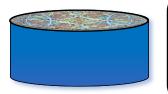
Both plausible! Surprisingly, *not* absurd to approximate commuting operator correlations by finite-dim. objects...

cf. [Ozawa, Coudron-Vidick]



Rigidity inside the encrypted ("Alice") part of prover?

Other situations in which one can connect computational and information-theoretic security?



These results show rigorously how spacelike correlations can emerge from perspective of poly-time "observers". Anything to learn for quantum gravity?

Cf. works connecting complexity, pseudo-randomness, holography [Susskind-Maldacena, May, Bouland et al, ...] ^{16/17}

Summary

Nonlocal games are a foundational tool in quantum information and complexity.

Recent results establish links between the traditional space-like (information theoretic) and a time-like (computational) setting.

This gives new protocols to verify quantum advantage, computations, etc. It may also offer new insights into how locality can emerge in low-complexity effective theories.

Thank you for your attention!