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Can one trust a quantum computer?

?
I’m a quantum 

computer!

Can a classical “verifier” convince themselves that they are indeed 
interacting with a quantum computer?

L need two devices
L need to ensure they are spacelike

Easy to verify. Remarkably, can be
extended to verify arbitrary quantum computation! [Reichardt et al, 

…, Grilo]

Idea: Violate a Bell inequality.

[TU Delft]
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?Can a classical “verifier” interacting
with single device do the job? 

Possibly! Any quantum computation can be simulated classically, but in 
general only inefficiently (or so we believe)…
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?Can a classical “verifier” interacting
with single device do the job? 

Possibly! Any quantum computation can be simulated classically, but in 
general only inefficiently (or so we believe)…

Idea: Ask it to factor a number. J easy to verify
L not universal – only certifies 
   that we can factor

Can be made to work. Breakthrough gave first classical verification protocol 
for single device under computational assumptions.

Better idea: Ask it to solve universal (BQP-complete) problem.

[Mahadev]

I’m a quantum 
computer!

Can one trust a quantum computer?

namely that device is efficient & some computational problem is hard 3
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How can one trust a quantum computer?

?
I’m a quantum 

computer!

Nonlocal Approach
- need two spacelike devices
- no assumption on inner workings

Computational Approach
- a single device is enough
- need to assume device is 

efficient (polynomial-time)

4



/17

How can one trust a quantum computer?

?

Question: Is there a systematic link between these two worlds?

Cf. how can locality emerge for bounded complexity observers?

I’m a quantum 
computer!

Nonlocal Approach
- need two spacelike devices
- no assumption on inner workings

Computational Approach
- a single device is enough
- need to assume device is 

efficient (polynomial-time)
???
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Nonlocal games

Two non-communicating players play against a referee:

Alice Bob

Referee

[Bell, Clauser-Horne
-Shimony-Holt, …]
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Nonlocal games

Two non-communicating players play against a referee:

Alice Bob

x y

Referee
a b

Referee

a + bx y

0 0 even
0 1 even
1 0 even
1 1 odd

Winning Condition (CHSH Game)

[Bell, Clauser-Horne
-Shimony-Holt, …]

Question: Can classical players win this game?
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Nonlocal games

Two non-communicating players play against a referee:

Alice Bob

x y

Referee
a b

Referee

a(x) + b(y)x y

0 0 even
0 1 even
1 0 even
1 1 odd

Winning Condition (CHSH Game)

[Bell, Clauser-Horne
-Shimony-Holt, …]

(a(0) + b(0)) + (a(0) + b(1)) + (a(1) + b(0)) + (a(1) + b(1))

Are there suitable “answer functions” a(x), b(y)? If so, then...

…would be odd. But each answer appears twice. Contradiction!

5
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Nonlocal games

Two non-communicating players play against a referee:

Alice Bob

x y

Referee
a b

Referee

a + bx y

0 0 even
0 1 even
1 0 even
1 1 odd

Winning Condition (CHSH Game)

[Bell, Clauser-Horne
-Shimony-Holt, …]

There is no “classical” way to win CHSH game:   𝑝win
classical ≤ !

"

[TU Delft]

If the players share 
quantum entanglement 
they can do better!

This is a Bell inequality!
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How well can quantum players do?

If they share EPR pair                and use 
complementary measurements, can achieve:

and this is optimal 
[Tsirelson]𝒑win

quantum ≈ 𝟖𝟓%

<latexit sha1_base64="JIAFq+JM///VazhBfJ6xCwU/6X0="></latexit>

1p
2
(|00i+ |11i)

Alice Bob

x y

Referee
a b

Referee
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If they share EPR pair                and use 
complementary measurements, can achieve:

and this is optimal 
[Tsirelson]

Amazingly, optimal quantum strategy is “unique” and “rigid”!

𝒑win
quantum ≈ 𝟖𝟓%

<latexit sha1_base64="JIAFq+JM///VazhBfJ6xCwU/6X0="></latexit>

1p
2
(|00i+ |11i)

Reason: Hidden symmetry! Roughly, 𝜖-optimal strategy ó 𝜖-representation of 
G = <X,Z>, and there is a nearby exact representation [Gowers-Hatami] J 

“Operational” characterization 
of entanglement!

Classical verifier can verify & control 
untrusted pair of quantum devices

[Reichard-Unger-Vazirani, …]
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à device-independent cryptography
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How well can quantum players do?

If they share EPR pair                and use 
complementary measurements, can achieve:

and this is optimal 
[Tsirelson]

Amazingly, optimal quantum strategy is “unique” and “rigid”!

𝒑win
quantum ≈ 𝟖𝟓%

<latexit sha1_base64="JIAFq+JM///VazhBfJ6xCwU/6X0="></latexit>

1p
2
(|00i+ |11i)

Reason: Hidden symmetry! Roughly, 𝜖-optimal strategy ó 𝜖-representation of 
G = <X,Z>, and there is a nearby exact representation [Gowers-Hatami] J 

“Operational” characterization 
of entanglement!

Classical verifier can verify & control 
untrusted pair of quantum devices

[Reichard-Unger-Vazirani, …]

Alice Bob

x y

Referee
a b

Referee

à device-independent cryptography
So long they can’t 

communicate (are spacelike)!
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Nonlocal games and their values

Alice Bob

x y

Referee
a b

Referee
The players’ strategy determines their 
winning probability.

Classical 
value

Quantum value
ωc ωq

[Bell]

The optimal winning probability for some 
class of strategies is called a “value”:
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Quantum value
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Non-signaling value
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class of strategies is called a “value”:

[Popescu-Rohrlich]
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Nonlocal games and their values

Alice Bob

x y

Referee
a b

Referee
The players’ strategy determines their 
winning probability.

Classical 
value

Quantum value
ωc ωq

Quantum 
commuting 

operator value:

[MIP*=RE]

HA ⊗ HB

[A,B] = 0

ωqc ωns

Non-signaling value
p(a|xy) = p(a|x)
P(b|xy) = p(b|y)

[Bell]

In general all distinct!

Crucially, no assumption about the player’s efficiency!

The optimal winning probability for some 
class of strategies is called a “value”:

[Popescu-Rohrlich]
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Trading space for (polynomial) time
Question: Can we get rid of spacelike separation and play 
a nonlocal game with a single efficient player (“prover”)?
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Trading space for (polynomial) time
Question: Can we get rid of spacelike separation and play 
a nonlocal game with a single efficient player (“prover”)?

Prover Verifierx

y
a

b time
?

Naïve attempt: Just play sequentially.

This cannot work because it even allows forward signaling!

Idea: Use cryptography to force prover to ”simulate” two 
spacelike players (as long as they are unable to break the cryptography)!

long history in crypto 8
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Trading space for time – the KLVY way

Prover VerifierEnc(x)

y
Enc(a)

b
?

Kalai-Lombardi-Vaikuntanathan-Yang:

Intuition: Since prover does not know secret key, encrypted messages 
cannot usefully be “combined” with plain ones (as if they were spacelike)?

poly time

Encrypt Alice’s question x, while 
sending Bob’s question y in plain.

9
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Trading space for time – the KLVY way

Prover VerifierEnc(x)

y
Enc(a)

b
?

Kalai-Lombardi-Vaikuntanathan-Yang:

Problem: Since prover does not know key, how can they do anything?

Solution: Use “homomorphic” encryption scheme!
= allows computing on encrypted data

for circuit C

Enc
EvalC

Enc
C

Intuition: Since prover does not know secret key, encrypted messages 
cannot usefully be “combined” with plain ones (as if they were spacelike)?

è General “compiler” that applies to any nonlocal game J

poly time

Encrypt Alice’s question x, while 
sending Bob’s question y in plain.

9

[Mahadev, Brakerski]These exist under computational assumptions.
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Trading space for time – the KLVY way

Given any nonlocal game, can “compile” into a single-prover protocol:
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Enc(a)
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Key question: What properties of the nonlocal game are preserved?
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Trading space for time – the KLVY way

Given any nonlocal game, can “compile” into a single-prover protocol:

Alice Bob

x y

Referee
a b

Referee

KLVY

poly time

Prover VerifierEnc(x)

y
Enc(a)

b
?

Key question: What properties of the nonlocal game are preserved?

But why can’t they do better? Not obvious!
• At first glance, cryptography only ensures “non-signaling”.
• But this is not enough!
• Natural variations do not work (“spooky” encryption)!

As discussed, provers can do at least as well as in nonlocal game. ωcompiled ≥ ω

10
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What we know: Trading space for time

Thus, if observe pwin > ωc this constitutes proof of non-classicality! J 

Classical Soundness (KLVY): Efficient classical provers 
cannot cheat, i.e. exceed classical value of nonlocal game.

ωc,compiled 
≤ ωc

All results hold for large security parameter (“key length”).

Alice Bob

x y

Referee
a b

Referee

KLVY
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y
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b
?

poly time
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What we know: Trading space for time

Thus, if observe pwin > ωc this constitutes proof of non-classicality! J 

Classical Soundness (KLVY): Efficient classical provers 
cannot cheat, i.e. exceed classical value of nonlocal game.

ωc,compiled 
≤ ωc

All results hold for large security parameter (“key length”).

𝐵!𝐵" ≈ −𝐵"𝐵!
This is good enough to verify q. computations. J

Computational Tsirelson Theorem (Natarajan-Zhang, Cui-…-W):
• For “XOR games”, quantum provers cannot exceed q. value.
• Near optimal strategies yield “logical qubits” inside prover!

ωq,compiled 
≤ ωq

Alice Bob

x y

Referee
a b

Referee

KLVY

poly time

Prover VerifierEnc(x)

y
Enc(a)

b
?

poly time

11
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What we know: Trading space for 
time for all nonlocal games

[Kulpe-Malavolta-
Paddock-Schmidt-W]

All results hold for large security parameter (“key length”).

XOR games are special - they don’t probe full power & complexity of 
spacelike quantum correlations. What can we say about general games?
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What we know: Trading space for 
time for all nonlocal games

[Kulpe-Malavolta-
Paddock-Schmidt-W]

Quantum Soundness Theorem: Quantum provers cannot 
exceed quantum commuting operator value of nonlocal game.

ωq,compiled 
≤ ωqc

This generalizes prior works for CHSH and XOR games, where ωqc = ωq.

XOR games are special - they don’t probe full power & complexity of 
spacelike quantum correlations. What can we say about general games?

Rigidity Theorem: For optimal quantum provers, “Bob” 
observables satisfy same relations as in nonlocal game.

To prove these, we connect notions that are usually treated separately:
(1) Timelike characterization of spacelike correlations.
(2) Computational security è info-theoretic security.

Of independent interest? 12
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poly time

How does it work?

Let’s analyze the situation:

Task: Given a quantum prover for the compiled game, wish to construct 
quantum strategy for the two-player game.

Prover VerifierEnc(x)

y
Enc(a)

b
?
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How does it work?

Let’s analyze the situation:

Task: Given a quantum prover for the compiled game, wish to construct 
quantum strategy for the two-player game.

Prover VerifierEnc(x)

y
Enc(a)

b
?

λ = security parameter 
(key length)

Prover 
= Algorithm
= Family of circuits
  (one for each λ)

no poly-time algo can tell the difference (otherwise could break crypto)

Observation: 𝜌#$ ≈ 𝜌#'$  are computationally indistinguishable!

What if they were truly indistinguishable?

𝜌#$ = ∑% 𝜌#,%$  = state after 2nd round

13
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An information-theoretic toy model

Prover Verifierx

y
a

b

States 𝜌#	= ∑% 𝜌#,% on a C*-algebra ℬ POVMs {B(,)} in ℬ

14



/17

An information-theoretic toy model

Prover Verifierx

y
a

b

States 𝜌#	= ∑% 𝜌#,% on a C*-algebra ℬ POVMs {B(,)} in ℬ

Assume 𝜌# = 𝜌#' are all the same. We call this “strong non-signaling” 
because it is equivalent to non-signaling for any POVM.

14



/17

Prover Verifierx

y
a

b

States 𝜌#	= ∑% 𝜌#,% on a C*-algebra ℬ POVMs {B(,)} in ℬ

Assume 𝜌# = 𝜌#' are all the same. We call this “strong non-signaling” 
because it is equivalent to non-signaling for any POVM.

In type I, an older result by [Navascues et al] shows that condition implies 
quantum ⊗ correlations. For us this unfortunately does not apply…

Theorem: p(a,b|x,y) = 𝜌#,%(B(,)) is quantum commuting op. correlation.

1st Ingredient: Timelike characterization of 
spacelike correlations

14
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Challenge: Intuitively, in compiled game have “strong non-signaling” for 
poly-time observables – but these don’t form an algebra.

Connecting computational and 
information-theoretic security

lim
#→%

15

Moreover, 𝜌#,%$  & B(,)$  live on different (larger and larger) Hilbert spaces…
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Connecting computational and 
information-theoretic security

lim
#→%

Solution: Work with ℬ = universal POVM algebra. This is an infinite 
dimensional C*-algebra, but independent of security parameter!

Then we can define a sequence of states on the same algebra:

𝜑&,(# 𝐵)!*!𝐵)"*" … ≔ 𝑡𝑟(𝜌#,%$  B(!)!
$ B(!)!
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Challenge: Intuitively, in compiled game have “strong non-signaling” for 
poly-time observables – but these don’t form an algebra.

Proof uses quantum algorithmic techniques such as block encodings.

Theorem: For any quantum prover for the compiled game, limiting 
strategies at λ = ∞ exist and are strongly non-signaling! J

lim
#→%

Solution: Work with ℬ = universal POVM algebra. This is an infinite 
dimensional C*-algebra, but independent of security parameter!

Then we can define a sequence of states on the same algebra:

𝜑&,(# 𝐵)!*!𝐵)"*" … ≔ 𝑡𝑟(𝜌#,%$  B(!)!
$ B(!)!

$  …)

2nd Ingredient: Computational 
cryptography at infinite key length

15

Moreover, 𝜌#,%$  & B(,)$  live on different (larger and larger) Hilbert spaces…
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Open problems and speculations

ωq ≤ ωq,compiled ≤ ωqc. What is the right answer?

Both plausible! Surprisingly, not absurd to approximate 
commuting operator correlations by finite-dim. objects…

cf. [Ozawa, Coudron-Vidick]
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Open problems and speculations

These results show rigorously how spacelike correlations 
can emerge from perspective of poly-time “observers”. 
Anything to learn for quantum gravity?

Cf. works connecting complexity, pseudo-randomness, holography 
[Susskind-Maldacena, May, Bouland et al, …]

ωq ≤ ωq,compiled ≤ ωqc. What is the right answer?

Both plausible! Surprisingly, not absurd to approximate 
commuting operator correlations by finite-dim. objects…

cf. [Ozawa, Coudron-Vidick]

Rigidity inside the encrypted (“Alice”) part of prover?

Other situations in which one can connect computational 
and information-theoretic security?

lim
#→%

16



/17

Summary

Nonlocal games are a foundational tool in quantum 
information and complexity. 

Thank you for your attention!

Recent results establish links between the 
traditional space-like (information theoretic) 
and a time-like (computational) setting.

This gives new protocols to verify quantum advantage, 
computations, etc. It may also offer new insights into how 
locality can emerge in low-complexity effective theories.

?
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