Quantum circuits for the Dirac field in 1+1 dimensions J

Michael Walter

UNIVERSITY OF AMSTERDAM q)_uSOf't Ny O

It from Qubit seminar, Stanford, May 2019

joint work with Freek Witteveen, Volkher Scholz, Brian Swingle (arXiv:1905.08821)

1/22


http://arxiv.org/abs/1905.08821

Tensor networks
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Efficient variational classes for many-body quantum states:
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. MERA
matrix product states

» can have interpretation as quantum circuit

Useful theoretical formalism:
> geometrize entanglement structure: generalized area law
» bulk-boundary dualities: lift physics to the virtual level

» quantum phases, topological order, RG, holography, ...
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MERA multi-scale entanglement renormalization ansatz (Vidal)
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J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

> self-similar layers that are short-depth quantum circuits
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MERA multi-scale entanglement renormalization ansatz (Vidal)

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

> self-similar layers that are short-depth quantum circuits
» variational class for critical systems in 1D

> interpretation: disentangle & coarse-grain

v

network arises from tensor network renormalization:

3/22



MERA multi-scale entanglement renormalization ansatz (Vidal)

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

> self-similar layers that are short-depth quantum circuits
» variational class for critical systems in 1D

> interpretation: disentangle & coarse-grain

v

network arises from tensor network renormalization:

3/22



MERA and holography

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

» can always extend to ‘holographic’ mapping (Qi)
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MERA and holography

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

» can always extend to ‘holographic’ mapping (Qi) N
'\

» hyperbolic geometry (Swingle)

» starting point for tensor network toy models
of holography (HaPPY; Hayden-...-W.)

» quantum error correction property = noise-resilience on QC (Kim et al)
~> important to understand design principles
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Tensor networks and quantum field theory

Tensor networks are discrete and finitary representations, while QFTs have
infinite # of degrees of freedom and are defined in the continuum.

Two successful approaches:

» modify ansatz ~ continuum tensor networks (cMPS, cMERA, ...)

> connect discrete ansatz to continuum theory (MPS, PEPS, MERA, ...)

Questions:
» what do tensor networks capture?
» how to measure goodness of approximation?

» can we give rigorous construction principles?

» why do tensor networks work well?

cf. plethora of results on gapped 1D lattice systems in QIT/cond-mat
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Tensor networks for correlation functions

Given many-body system in state p and choice of operators { O, }, consider
correlation functions:

Clai, - ,an) =tr[pOqy - -+ On,]

Goal: Design tensor network for correlation functions!

» unified perspective: system can be continuous — discreteness imposed
by how we probe it

» tensor network for p sufficient (if possible), but likely suboptimal

Examples: Zaletel-Mong (MPS/q. Hall states), Kénig-Scholz (MPS/CFTs),
cf. quantum marginal problem
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Our results

Result (informal)

We construct tensor networks for the Dirac CFT in 141 dimensions.

Key features:
> tensor networks target correlation functions

» rigorous approximation guarantees

v

entanglement renormalization quantum circuits

v

explicit construction, no variational optimization
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Our results

Result (informal)

We construct tensor networks for the Dirac CFT in 141 dimensions.

Key features:
> tensor networks target correlation functions
» rigorous approximation guarantees

» entanglement renormalization quantum circuits

» explicit construction, no variational optimization

We achieve this using tools from signal processing: multiresolution analysis
and discrete/continuum duality in wavelet theory.

Majorana and Ising CFT from sub-circuits. In prior work, we constructed
(branching) MERA for free fermions on 1d and 2d square lattice (Fermi surface!).
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In more detail. . .

Massless Dirac fermion in 1+1d: iv*0,% =0

Easily solved using Fourier transform. But not using
geometrically local quantum circuit/tensor network. . .
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In more detail. . .

Massless Dirac fermion in 1+1d: iv*0,% =0

Easily solved using Fourier transform. But not using
geometrically local quantum circuit/tensor network. . .

o N We construct networks that target
1110 11)10) . .

’ | ’ vacuum correlation functions:

s

C({0Oi}) :=(01--- On)
of smeared fields or normal-
ordered bilinears (e.g., T, Lp)

Result (simplified)

Cexact ~ CMERA

Goodness depends on quality parameter and # layers. Rigorous approximation!
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1D Dirac fermion — Numerics for two-point functions

For different values of quality parameter and large number of layers:
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Similarly for higher-point functions.
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1D Dirac fermion — Numerics for two-point functions

For different values of quality parameter and number of layers:

quality (depth per layer)

10

8

6

4

2
1I0 2I0 3I0 4I0 5I0

number of layers

103

Error

7 o 7

Similarly for higher-point functions.
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1D Dirac fermion — Verifying conformal data

o)

> central charge: S(R) = §log R+ ¢

> 2.0
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—— L2log(R) +0.7

1.0 — Llog(R) +0.73
+ K=L=1
x K=L=3
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subsystem size
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1D Dirac fermion — Verifying conformal data

o)

> central charge: S(R) = §log R+ ¢

» usual procedure: identify fields by searching for
operators that coarse-grain to themselves
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1D Dirac fermion — Verifying conformal data

o)

> central charge: S(R) = §log R+ ¢

» usual procedure: identify fields by searching for
operators that coarse-grain to themselves

—— 12log(R) +0.7

1.0 — Llog(R) +0.73
+ K=L=1
x K=L=3

0 100 200
subsystem size

[0) {10) |10)

~> diagonalize ‘scaling superoperator’ (Evenbly-Vidal)
> in our case, no need to diagonalize — theorem contains ‘dictionary’

» some scaling dimensions exact (fermion fields)
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How to construct a free-fermion (= Gaussian) MERA?

Need to construct Fermi sea of negative single-particle energy modes.

How to perform entanglement renormalization on the single-particle level?
Is there a single-particle variant of MERA?
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How to construct a free-fermion (= Gaussian) MERA?

Need to construct Fermi sea of negative single-particle energy modes.

How to perform entanglement renormalization on the single-particle level?
Is there a single-particle variant of MERA?

Yes — wavelet transforms!
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Wavelets and renormalization

Fourier basis resolves signal into scales, but is completely nonlocal.
In contrast, can also generate bases by scalings and translates of single
localized wave packet — a wavelet:
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Wavelets and renormalization

Fourier basis resolves signal into scales, but is completely nonlocal.
In contrast, can also generate bases by scalings and translates of single
localized wave packet — a wavelet:

] I

Then we can recursively resolve signal into different scales:

N I ”J_L

el

W, = span of wavelets at scale j

where

V; =signals at scaleup to j = W; & Wj;1 @ ...

13 /22



Wavelets and MERA

The basis transformation

Vi = W) & W R

is implemented by a classical circuit acting on single-particle Hilbert space:

Discrete circuit resolves continuous signal by scale!
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Wavelets and MERA

The basis transformation

L
2

\/J_)VVJ@VVJ+1 _ﬂ4 I +J_f\_
A = v

Vo

is implemented by a classical circuit acting on single-particle Hilbert space:

Discrete circuit resolves continuous signal by scale!

Second quantization yields layer of a Gaussian MERA!
» in fact, obtain ‘holographic’ mapping (Qi)
» depth of classical circuit = depth of quantum circuit (Evenbly-White)

Still need to design wavelet transform that targets negative energy modes.
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1D Dirac fermion — Vacuum state

Massless Dirac equation in 1+1d:

iv"0, =0
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1D Dirac fermion — Vacuum state

Massless Dirac equation in 1+1d:

Pa(x,t)|  |ixs(x = 8) —ix-(x + 1)

lwl(x, r)] _ lmx— £)+ x-(x+t)

Negative energy modes:
> x4+ supported on k <0 / k>0
> 1)y related by —isign(k) at t = 0 (Hilbert transform)
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1D Dirac fermion — Vacuum state

Massless Dirac equation in 1+1d:

da(x )] _ [alx— ) +x-(x + 1)
Yol )] T |is (x = 1) = i (x + ¢)

Negative energy modes:
> x4+ supported on k <0 / k>0
> 1)y related by —isign(k) at t = 0 (Hilbert transform)

Can choose any basis of Fermi sea. So let’s design pair of wavelets related
by Hilbert transform!
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1D Dirac fermion — Hilbert wavelet pairs

Such wavelet pairs have been studied in the signal processing community:
» motivated by directionality and shift-invariance (Selesnick)

» impossible exactly with local circuit, but possible to arbitrary accuracy

— ynlt) — Wh(w) + V()]
1.0 WO | g

0.
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-0 0.24

J”
T

0.0

=15

After second quantizing and careful analysis, obtain tensor network with rigorous
approximation guarantee. ..
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1D Dirac fermion — Result

11)10) [1)]0)
* .

: Parameters:

Ure
L

» £ — number of layers

» ¢ — accuracy of Hilbert pair

wioy [ o [F e [ o
* H * i *

» [ — support and smoothness
of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:

C({fi, A}) = (Wi(R) - W(fan) AL Aw)

Result (simplified)

1
| Cexact — Cmera| < Tmax{27/3 ¢ log E}

In particular, all conformal symmetries approximately inherited.
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1D Dirac fermion — Result
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Result (simplified)

1
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1D Dirac fermion — Circle

Construction also works for Dirac fermion on circle:

» finite number of layers once UV cut-off fixed

» systematic construction by (anti)periodizing wavelets
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Non-relativistic 2D fermions — Lattice model

When put on lattice, massless Dirac fermion becomes: (Kogut-Susskind)

Hip & — Z a',];a,,ﬂ + h.c.
n
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Non-relativistic 2D fermions — Lattice model

When put on lattice, massless Dirac fermion becomes: (Kogut-Susskind)

Hipp = — Z a,T,a,,Jrl + h.c.
n

Non-relativistic fermions hopping on 2D square lattice at half filling:

Hap = =Y aly nam+1,n + 3 pdm,n+1 + h.c.

m,n

Fermi surface:

T N

v

» violation of area law: S(R) ~ Rlog R (Wolf, Gioev-Klich, Swingle)
» Green's function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions — Branching MERA

Natural construction — perform wavelet transforms in both directions:

W = tiow © Uhigh  ~ (W@ W)Y = by © i © n © PYn
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Non-relativistic 2D fermions — Branching MERA

Natural construction — perform wavelet transforms in both directions:

WY = Yiow @ Yhigh  ~ (W R W) =y @ i © Y © Yan

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

~» approximation theorem (with Haegeman, Swingle, Cotler, Evenbly, Scholz).
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Summary and outlook

i 110) i )
i [ i .
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» entanglement renormalization quantum circuits for 1D Dirac CFT
» explicit construction with rigorous guarantees

Outlook:
» thermofield double, massive theories, Dirac cones, . ..

» building block for more interesting CFTs? starting point for
perturbation theory or variational optimization?
» lift wavelet theory to quantum circuit level!

Thank you for your attention!
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How to build an approximate Hilbert pair [Selesnick]

Wavelets are built from filters g[n] that relate functions at different scale:

¢j-1(x) = D _ glnl ¢j(x —277n)

nez

Necessary and sufficient to obtain orthonormal basis (roughly speaking):

1GO))?+ GO +7)>=2 G(0)=+2
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How to build an approximate Hilbert pair [Selesnick]

Wavelets are built from filters g[n] that relate functions at different scale:

Bj-1(x Zg[n]¢lx—2f)

nez

Necessary and sufficient to obtain orthonormal basis (roughly speaking):
1GO))?+ GO +7)>=2 G(0)=+2
Wavelets are related by Hilbert transform iff filters related by half-shift:
G(0) = H(#)e /2
To achieve this, find explicit approximation

. )
i0/2 ~ iLo
¢ ¢ D(9)

Then, H(#) = Q(8)D(6) and G(6) = Q(A)e Y D(—h) are approximately
related by half-shift for any choice of Q(#).
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