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Tensor networks

|Ψ〉 =
∑

i1,...,in
Ψi1,...,in |i1, . . . , in〉

Efficient variational classes for many-body quantum states:

matrix product states MERA

I can have interpretation as quantum circuit

Useful theoretical formalism:
I geometrize entanglement structure: generalized area law
I bulk-boundary dualities: lift physics to the virtual level
I quantum phases, topological order, RG, holography, . . .

2 / 22



MERA multi-scale entanglement renormalization ansatz (Vidal)

↓ local quantum circuit that
prepares state from |0〉⊗N

↑ entanglement renormalization

l organize q. information by scale

I self-similar layers that are short-depth quantum circuits
I variational class for critical systems in 1D
I interpretation: disentangle & coarse-grain
I network arises from tensor network renormalization:
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MERA and holography

↓ local quantum circuit that
prepares state from |0〉⊗N

↑ entanglement renormalization

l organize q. information by scale

I can always extend to ‘holographic’ mapping (Qi)

I hyperbolic geometry (Swingle)
I starting point for tensor network toy models

of holography (HaPPY; Hayden-. . . -W.)

I quantum error correction property = noise-resilience on QC (Kim et al)
; important to understand design principles
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Tensor networks and quantum field theory

Tensor networks are discrete and finitary representations, while QFTs have
infinite # of degrees of freedom and are defined in the continuum.

Two successful approaches:
I modify ansatz ; continuum tensor networks (cMPS, cMERA, . . . )
I connect discrete ansatz to continuum theory (MPS, PEPS, MERA, . . . )

Questions:
I what do tensor networks capture?
I how to measure goodness of approximation?
I can we give rigorous construction principles?
I why do tensor networks work well?

cf. plethora of results on gapped 1D lattice systems in QIT/cond-mat
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Tensor networks for correlation functions

Given many-body system in state ρ and choice of operators {Oα}, consider
correlation functions:

C(α1, · · · , αn) = tr[ρOα1 · · ·Oαn ]

General definition

Given:

Underlying system can be continuous; discreteness is 
imposed in our choice of how to probe the system

state

operator choice

Goal: Design tensor network for correlation functions!
I unified perspective: system can be continuous – discreteness imposed

by how we probe it
I tensor network for ρ sufficient (if possible), but likely suboptimal

Examples: Zaletel-Mong (MPS/q. Hall states), König-Scholz (MPS/CFTs),
cf. quantum marginal problem
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Our results

Result (informal)
We construct tensor networks for the Dirac CFT in 1+1 dimensions.

Key features:
I tensor networks target correlation functions
I rigorous approximation guarantees
I entanglement renormalization quantum circuits
I explicit construction, no variational optimization

We achieve this using tools from signal processing: multiresolution analysis
and discrete/continuum duality in wavelet theory.

Majorana and Ising CFT from sub-circuits. In prior work, we constructed
(branching) MERA for free fermions on 1d and 2d square lattice (Fermi surface!).
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In more detail. . .

Massless Dirac fermion in 1+1d: iγµ∂µψ = 0

Easily solved using Fourier transform. But not using
geometrically local quantum circuit/tensor network. . .

Filled Fermi sea
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'
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|1〉|0〉 |1〉|0〉
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We construct networks that target
vacuum correlation functions:

C({Oi}) :=
〈
O1 · · ·On

〉
of smeared fields or normal-
ordered bilinears (e.g., T , Ln)

Result (simplified)

Cexact ≈ CMERA

Goodness depends on quality parameter and # layers. Rigorous approximation!
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1D Dirac fermion – Numerics for two-point functions

For different values of quality parameter and large number of layers:

〈T (x)T (y)〉 〈Ψ(x)†Ψ(y)〉

Similarly for higher-point functions.
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1D Dirac fermion – Verifying conformal data

I central charge: S(R) = c
3 log R + c ′
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3 log(R) + 0.73
K = L = 1
K = L = 3

I usual procedure: identify fields by searching for
operators that coarse-grain to themselves

; diagonalize ‘scaling superoperator’ (Evenbly-Vidal)
I in our case, no need to diagonalize – theorem contains ‘dictionary’
I some scaling dimensions exact (fermion fields)
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How to construct a free-fermion (= Gaussian) MERA?

Need to construct Fermi sea of negative single-particle energy modes.

How to perform entanglement renormalization on the single-particle level?
Is there a single-particle variant of MERA?

Yes – wavelet transforms!
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Wavelets and renormalization

Fourier basis resolves signal into scales, but is completely nonlocal.
In contrast, can also generate bases by scalings and translates of single
localized wave packet – a wavelet:

j = −1 j = 0 j = 1

Then we can recursively resolve signal into different scales:

 













where
Wj = span of wavelets at scale j
Vj = signals at scale up to j = Wj ⊕Wj+1 ⊕ . . .
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Wavelets and MERA

The basis transformation

Vj →Wj ⊕Wj+1

 

is implemented by a classical circuit acting on single-particle Hilbert space:

Discrete circuit resolves continuous signal by scale!

Second quantization yields layer of a Gaussian MERA!
I in fact, obtain ‘holographic’ mapping (Qi)
I depth of classical circuit = depth of quantum circuit (Evenbly-White)

Still need to design wavelet transform that targets negative energy modes.
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1D Dirac fermion – Vacuum state

Massless Dirac equation in 1+1d:

iγµ∂µψ = 0

Filled Fermi sea

Negative energy modes:
I χ± supported on k < 0 / k > 0
I ψ1,2 related by −i sign(k) at t = 0 (Hilbert transform)

Can choose any basis of Fermi sea. So let’s design pair of wavelets related
by Hilbert transform!
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]
=
[
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1D Dirac fermion – Hilbert wavelet pairs

Such wavelet pairs have been studied in the signal processing community:
I motivated by directionality and shift-invariance (Selesnick)

I impossible exactly with local circuit, but possible to arbitrary accuracy
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After second quantizing and careful analysis, obtain tensor network with rigorous
approximation guarantee. . .
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1D Dirac fermion – Result
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Parameters:
I L – number of layers
I ε – accuracy of Hilbert pair
I Γ – support and smoothness

of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:
C({fi ,Aj}) :=

〈
Ψ†(f1) · · ·Ψ(f2N)A1 · · ·AM

〉
Result (simplified)∣∣Cexact − CMERA

∣∣ ≤ Γ max{2−L/3, ε log 1
ε
}

In particular, all conformal symmetries approximately inherited.
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1D Dirac fermion – Circle

Construction also works for Dirac fermion on circle:

=

I finite number of layers once UV cut-off fixed
I systematic construction by (anti)periodizing wavelets
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Non-relativistic 2D fermions – Lattice model

When put on lattice, massless Dirac fermion becomes: (Kogut-Susskind)

H1D ∼= −
∑

n
a†nan+1 + h.c.

Non-relativistic fermions hopping on 2D square lattice at half filling:

H2D = −
∑
m,n

a†m,nam+1,n + a†m,nam,n+1 + h.c.

Fermi surface:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

I violation of area law: S(R) ∼ R log R (Wolf, Gioev-Klich, Swingle)
I Green’s function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions – Branching MERA

Natural construction – perform wavelet transforms in both directions:

Wψ = ψlow ⊕ ψhigh ; (W ⊗W )ψ = ψll ⊕ ψlh ⊕ ψhl ⊕ ψhh

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

; approximation theorem (with Haegeman, Swingle, Cotler, Evenbly, Scholz).
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Summary and outlook
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I entanglement renormalization quantum circuits for 1D Dirac CFT
I explicit construction with rigorous guarantees

Outlook:
I thermofield double, massive theories, Dirac cones, . . .
I building block for more interesting CFTs? starting point for

perturbation theory or variational optimization?
I lift wavelet theory to quantum circuit level!

Thank you for your attention!
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How to build an approximate Hilbert pair [Selesnick]

Wavelets are built from filters g [n] that relate functions at different scale:

φj−1(x) =
∑
n∈Z

g [n]φj(x − 2−jn)

Necessary and sufficient to obtain orthonormal basis (roughly speaking):

|G(θ)|2 + |G(θ + π)|2 = 2, G(0) =
√
2

Wavelets are related by Hilbert transform iff filters related by half-shift:

G(θ) = H(θ)e−iθ/2

To achieve this, find explicit approximation

e−iθ/2 ≈ e−iLθD(−θ)
D(θ) .

Then, H(θ) = Q(θ)D(θ) and G(θ) = Q(θ)e−iLθD(−θ) are approximately
related by half-shift for any choice of Q(θ).
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