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Complexity of many-body quantum physics

Many-body states have exponentially large description:
|Ψ〉 =

∑
i1,...,in

Ψi1,...,in |i1, . . . , in〉

In practice, entanglement local ; compact description:

Start with local entangled pairs. . .

. . . and glue by applying local transformations:
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Tensor networks in practice and theory

Tensor network: many-body state
defined by contracting network of
(local) tensors

matrix product state
[White, Fannes-Nachtergaele-Werner, Östlund-Rommer]

PEPS [Verstraete-Cirac] MERA [Vidal]

Numerical tool: ansatz classes for many-body states
I geometrize entanglement: area (RT) laws
I some are quantum circuits

Hilbert space

Powerful theoretical formalism that provides ‘dual’ or ‘holographic’
descriptions of complex phenomena: topological order, . . .
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Tensor networks and quantum field theory

Quantum field theories are defined in the continuum, while tensor networks
are discrete and finitary. How to reconcile?

Two successful approaches:
I modify ansatz ; continuum tensor networks
I relate discrete networks to correlation functions of

continuum theory = unified perspective!

General definition

Given:

Underlying system can be continuous; discreteness is 
imposed in our choice of how to probe the system

state

operator choice

In either case. . .
What do tensor networks capture? Can we identify general
construction principles? Why do tensor networks work well?

cf. plethora of rigorous results on gapped lattice systems in 1+1d [Hastings, . . . ]

More generally: How to study QI in QFT?

/ notions like subsystem, entropy,
approximation, etc. subtle

, exciting recent progress. large body of
work in mathematical physics.

c-theorem from subadditivity, Bekenstein bound via relative entropy, renormaliza-
tion vs QEC, approximate QEC, . . .
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Our contributions

Result
We construct tensor networks for the Dirac CFT in 1+1 dimensions.

Key features:
I explicit construction – no variational optimization
I rigorous approximation of correlation functions
I quantum circuits that renormalize entanglement

We achieve this using tools from signal processing: multiresolution analysis
and discrete/continuum duality from wavelet theory.

Also obtain sub-circuits for Majorana and Ising CFT. In prior work, we constructed
(branching) MERA for critical free-fermion lattice models.
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Approach: Multi-scale Entanglement Renormalization Ansatz (MERA)

Tensor network ansatz for critical systems: [Vidal]

↓ local quantum circuit that
prepares state from |0〉⊗N

↑ entanglement renormalization

l organize q. information by scale

I introduce entanglement at all scales / disentangle & coarse-grain
I noise-resilient on quantum computer [Kim et al]

I reminiscent of holography [Swingle], starting point
for tensor network models [Qi, HaPPY, Hayden-. . . -W]

Important to understand design principles! Can we bridge numerics and toy models?
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Result: Entanglement renormalization for Dirac CFT
Massless Dirac fermion in 1+1d: iγµ∂µψ = 0

We construct MERAs that target vacuum correlation
functions C =

〈
O1 · · ·On

〉
of smeared observables.

General definition

Given:

Underlying system can be continuous; discreteness is 
imposed in our choice of how to probe the system

state

operator choice

Result (simplified)

Cexact ≈ CMERA

Goodness depends on smearing, #layers,
quality parameter. Comes with ‘dictionary’
for mapping observables. Symmetries
approximately inherited!

First rigorous proof that entanglement renormalization can work for a CFT!
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Two-point functions: A-priori error

For different values of quality parameter and number of layers:
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Similarly for higher-point functions.
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Two-point functions: Numerics

For different values of quality parameter and large number of layers:

〈T (x)T (y)〉
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Verifying conformal data

I central charge: S(R) = c
3 log R + c ′

0 100 200
subsystem size

1.0

1.5

2.0

2.5

en
tro

py

1.2
3 log(R) + 0.7

1.0
3 log(R) + 0.73
K = L = 1
K = L = 3

I usual procedure: identify fields by searching for
operators that coarse-grain to themselves

; diagonalize ‘scaling superoperator’ [Evenbly-Vidal]

K=L=1 K=L=2
∆I 0 0
∆η 0.5 0.5
∆η̄ 0.5 0.5
∆ε 1 1
∆σ 0.097 0.131
∆µ 0.170 0.120

(for Majorana subtheory)

I not necessary in order to compute correlation functions using our
MERAs – theorem provides dictionary!
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How does it work?

Key technique: Entanglement renormalization using wavelet theory.

Tool from signal processing to resolve signal by scale:

Mathematically, basis transform built from scalings
and translates of single localized ‘wavelet’.

I second quantization: quantum circuit!

We construct wavelets that target Fermi sea of
Dirac field using recent signal processing results
(Selesnick’s Hilbert pairs).
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In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

j = −1 j = 0 j = 1

We can recursively resolve signal into different scales (multiresolution analysis):

scaling basis (scale ≥ j) scaling basis (scale ≥ j +1)

wavelet basis (scale = j)

Transform is implemented by circuit on single-particle Hilbert space:

I Discrete circuit resolves continuous signal by scale!
I Second quantization yields Gaussian MERA layer. [Evenbly-White]
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Wavelets for the Dirac fermion

Massless Dirac equation in 1+1d:[
ψ1(x , t)
ψ2(x , t)

]
=
[
χ+(x − t) + χ−(x + t)
iχ+(x − t)− iχ−(x + t)

]
Filled Fermi sea

Need wavelets that target negative/positive momenta. Studied in signal
processing, motivated by directionality and shift-invariance! [Selesnick]

After second quantizing and careful analysis, obtain tensor network with rigorous
approximation guarantees. . .
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Technical Result

Parameters:
I L – number of layers
I ε – accuracy of wavelet pair
I Γ – support and smoothness

of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:
C :=

〈
Ψ†(f1) · · ·Ψ(f2N)O1 · · ·OM

〉
Theorem (simplified)∣∣Cexact − CMERA

∣∣ ≤ Γ max{2−L/3, ε log 1
ε
}

We provide dictionary for CMERA (discretize smearing functions in scaling basis etc).
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Dirac fermion on circle

Construction can be easily adapted to Dirac fermion on circle:

=

I finite number of layers once UV cut-off fixed
I systematic construction by (anti)periodizing wavelets

15 / 16



Summary and outlook

!" = $%
"& ,	!& =

%
'

( = 1,	* = 1

|1〉|0〉 |1〉|0〉

|1〉|0〉 |1〉|0〉

|1〉|0〉 |1〉|0〉

−//4

234

234
−//4

−//4 −//4 −//4 −//4

I entanglement renormalization quantum circuits for 1+1d Dirac CFT
I systematic construction with rigorous guarantees

Outlook:
I thermofield double, Dirac cones, . . .
I building block for more interesting CFTs? starting point for

perturbation theory or variational optimization?
I lift wavelet theory to quantum circuits! tensor network bootstrap?

Thank you for your attention!
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How to build an approximate Hilbert pair [Selesnick]

Wavelets are built from filters g [n] that relate functions at different scale:

φj−1(x) =
∑
n∈Z

g [n]φj(x − 2−jn)

Necessary and sufficient to obtain orthonormal basis (roughly speaking):

|G(θ)|2 + |G(θ + π)|2 = 2, G(0) =
√
2

Wavelets are related by Hilbert transform iff filters related by half-shift:

G(θ) = H(θ)e−iθ/2

To achieve this, find explicit approximation

e−iθ/2 ≈ e−iLθD(−θ)
D(θ) .

Then, H(θ) = Q(θ)D(θ) and G(θ) = Q(θ)e−iLθD(−θ) are approximately
related by half-shift for any choice of Q(θ).
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Non-relativistic 2D fermions – Lattice model

When put on lattice, massless Dirac fermion becomes: (Kogut-Susskind)

H1D ∼= −
∑

n
a†nan+1 + h.c.

Non-relativistic fermions hopping on 2D square lattice at half filling:

H2D = −
∑
m,n

a†m,nam+1,n + a†m,nam,n+1 + h.c.

Fermi surface:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

I violation of area law: S(R) ∼ R log R (Wolf, Gioev-Klich, Swingle)
I Green’s function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions – Branching MERA

Natural construction – perform wavelet transforms in both directions:

Wψ = ψlow ⊕ ψhigh ; (W ⊗W )ψ = ψll ⊕ ψlh ⊕ ψhl ⊕ ψhh

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

; approximation theorem (with Haegeman, Swingle, Cotler, Evenbly, Scholz).
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