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Complexity of many-body quantum physics
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Many-body states have exponentially large description:
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Complexity of many-body quantum physics

Many-body states have exponentially large description:

)= > R

In practice, entanglement local ~» compact description:

Start with local entangled pairs. . .

... and glue by applying local transformations:
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Tensor networks in practice and theory

Tensor network: many-body state N 5 B B JB
defined by contracting network of matrix product state
(|Oca|) tensors [White, Fannes-Nachtergaele-Werner, Ostlund-Rommer]

PEPS [Verstraete-Cirac] - MERA[V.dal] A
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Tensor networks in practice and theory

Tensor network: many-body state P99
defined by contracting network of matrix product state
(|Oca|) tensors [White, Fannes-Nachtergaele-Werner, Ostlund-Rommer]

PEPS [Verstraete-Cirac] - MERA[V.daI] R

Numerical tool: ansatz classes for many-body states
Hilbert space
> geometrize entanglement: area (RT) laws
> some are quantum circuits

Powerful theoretical formalism that provides ‘dual’ or ‘holographic’
descriptions of complex phenomena: topological order, ...
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Tensor networks and quantum field theory

Quantum field theories are defined in the continuum, while tensor networks
are discrete and finitary. How to reconcile?
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> relate discrete networks to correlation functions of
continuum theory = unified perspective!
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Tensor networks and quantum field theory

Quantum field theories are defined in the continuum, while tensor networks
are discrete and finitary. How to reconcile?

Two successful approaches:

» modify ansatz ~» continuum tensor networks

> relate discrete networks to correlation functions of

continuum theory = unified perspective!

In either case. ..

What do tensor networks capture? Can we identify general
construction principles? Why do tensor networks work well?

cf. plethora of rigorous results on gapped lattice systems in 1+1d [Hastings, ...]
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Tensor networks and quantum field theory

Quantum field theories are defined in the continuum, while tensor networks
are discrete and finitary. How to reconcile?

Two successful approaches:
» modify ansatz ~» continuum tensor networks

> relate discrete networks to correlation functions of

More generally: How to study QI in QFT?
Inei| © notions like subsystem, entropy,
approximation, etc. subtle

© exciting recent progress. large body of
work in mathematical physics.

cf. pl
c-theorem from subadditivity, Bekenstein bound via relative entropy, renormaliza-
tion vs QEC, approximate QEC, ...
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Our contributions

We construct tensor networks for the Dirac CFT in 141 dimensions.

Key features:

» explicit construction — no variational optimization
» rigorous approximation of correlation functions

» quantum circuits that renormalize entanglement
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Our contributions

We construct tensor networks for the Dirac CFT in 141 dimensions.

Key features:

» explicit construction — no variational optimization

» rigorous approximation of correlation functions

» quantum circuits that renormalize entanglement

We achieve this using tools from signal processing: multiresolution analysis
and discrete/continuum duality from wavelet theory.

Also obtain sub-circuits for Majorana and Ising CFT. In prior work, we constructed
(branching) MERA for critical free-fermion lattice models.
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Approach: Multi-scale Entanglement Renormalization Ansatz (MERA)

Tensor network ansatz for critical systems: (vidal

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

» introduce entanglement at all scales
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1 organize q. information by scale

» introduce entanglement at all scales / disentangle & coarse-grain

> noise-resilient on quantum computer [Kim et al
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Approach: Multi-scale Entanglement Renormalization Ansatz (MERA)

Tensor network ansatz for critical systems: (vidal

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

» introduce entanglement at all scales / disentangle & coarse-grain

> noise-resilient on quantum computer (kim et al]

» reminiscent of holography [swinge, Starting point
for tensor network models [qi, HaPPY. Hayden-...-W]

Important to understand design principles! Can we bridge numerics and toy models?
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Result: Entanglement renormalization for Dirac CFT

Massless Dirac fermion in 1+1d: iv*0,4¥ =0

We construct MERASs that target vacuum correlation
functions C = (O; - - - O,) of smeared observables.

Result (simplified)

Cexact = CMERA

Goodness depends on smearing, #layers,
quality parameter. Comes with ‘dictionary’
for mapping observables. Symmetries
approximately inherited!
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Result: Entanglement renormalization for Dirac CFT

Massless Dirac fermion in 1+1d: iv*0,4¥ =0

We construct MERASs that target vacuum correlation
functions C = (O; - - - O,) of smeared observables.

Result (simplified)

Cexact = CMERA

Goodness depends on smearing, #layers,
quality parameter. Comes with ‘dictionary’
for mapping observables. Symmetries
approximately inherited!

First rigorous proof that entanglement renormalization can work for a CFT!J
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Two-point functions: A-priori error

For different values of quality parameter and number of layers:
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Similarly for higher-point functions.
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Two-point functions: Numerics

For different values of quality parameter and large number of layers:
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Verifying conformal data

. _ C /
> central charge: S(R) = 5log R+ ¢ L
2.0
Q
g
€
Vs
— L2log(R) +0.7
1.0 — Llog(R) +0.73
+ K=L=1
x K=L=3
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subsystem size
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Verifying conformal data

> central charge: S(R) = §log R+ ¢’ s

> usual procedure: identify fields by searching for 2
operators that coarse-grain to themselves 5

e e ] — Ylog(R)+0.7
1.0 — Llog(R) +0.73
+ K=L=1
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Verifying conformal data

> central charge: S(R) = §log R+ ¢’

» usual procedure: identify fields by searching for
operators that coarse-grain to themselves

~» diagonalize ‘scaling superoperator’ [evenbly-Vvidal]

>
Q
o
=4
=4
=
Vs
—— 12log(R) +0.7
1.0 L0l0g(R) +0.73
+ K=L=1
x K=L=3
0 100 200

subsystem size

K=L=1 | K=L=2
Iy 0 0
Ay 05 05
Aj 05 05
Ac 1 1
A, | 0007 0.131
A, | 0170 0.120

(for Majorana subtheory)
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Verifying conformal data

> central charge: S(R) = §log R+ ¢’ s

> usual procedure: identify fields by searching for 2
operators that coarse-grain to themselves 5

— 12log(R) +0.7

L0l0g(R) +0.73
+ K=L=1
x K=L=3

o 100 200
subsystem size

K=L=1 | K=L=2
Iy 0 0
Ay 05 05
Aj 05 05
Ac 1 1
A, | 0007 0.131
A, | 0170 0.120

~» diagonalize ‘scaling superoperator’ [evenbly-Vvidal]
(for Majorana subtheory)
> not necessary in order to compute correlation functions using our

MERASs — theorem provides dictionary!
10 / 16



How does it work?

Key technique: Entanglement renormalization using wavelet theory.J

Tool from signal processing to resolve signal by scale:
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Tool from signal processing to resolve signal by scale:

Mathematically, basis transform built from scalings = **
and translates of single localized ‘wavelet'. >
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» second quantization: quantum circuit!
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How does it work?

Key technique: Entanglement renormalization using wavelet theory.J

Tool from signal processing to resolve signal by scale:

10

Mathematically, basis transform built from scalings = ** J
and translates of single localized ‘wavelet'. > : v\'

-05

-10

» second quantization: quantum circuit!

— [Whlw) + Wylw)]

We construct wavelets that target Fermi sea of 0
Dirac field using recent signal processing results o
(Selesnick’s Hilbert pairs).




In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

e e (A
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We can recursively resolve signal into different scales (multiresolution analysis):

S,

12 /16



In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

Sl =l AL

We can recursively resolve signal into different scales (multiresolution analysis):

el Tl dee T g

12 /16



In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

S A Al

We can recursively resolve signal into different scales (multiresolution analysis):

S,

12 /16



In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

e e (A

We can recursively resolve signal into different scales (multiresolution analysis):

S,

2

wavelet basis (scale = j)
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In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

We can recursively resolve signal into different scales (multiresolution analysis):

AT I

scaling basis (scale > j) z 2 scaling basis (scale > j+1)
wavelet basis (scale = j)

Transform is implemented by circuit on single-particle Hilbert space:
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In more detail: Wavelets and MERA

Wavelet bases are built from scalings & translates of single wave packet:

We can recursively resolve signal into different scales (multiresolution analysis):

AT I

scaling basis (scale > j) z 2 scaling basis (scale > j+1)
wavelet basis (scale = j)

Transform is implemented by circuit on single-particle Hilbert space:

» Discrete circuit resolves continuous signal by scale!

» Second quantization yields Gaussian MERA layer.  (Evenbly-white]
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Wavelets for the Dirac fermion

Massless Dirac equation in 1+1d:

Pa(x,t)|  |ixs(x = 8) —ix-(x + 1)

lwl(x, r)] _ lmx— £)+ x-(x+t)

Need wavelets that target negative/positive momenta.

13/ 16



Wavelets for the Dirac fermion
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Yol )] T |is (x = 1) = i (x + ¢)

Need wavelets that target negative/positive momenta. Studied in signal
processing, motivated by directionality and shift-invariance! [Selesnick]

13/ 16



Wavelets for the Dirac fermion

Massless Dirac equation in 1+1d:

da(x )] _ [alx— ) +x-(x + 1)
Yol )] T |is (x = 1) = i (x + ¢)

Need wavelets that target negative/positive momenta. Studied in signal
processing, motivated by directionality and shift-invariance! [Selesnick]

wn(t) — |Wh(w) + iWg(w)|

— wlt)
05
0.0 — [\ > 0.4

-4 -2 0 2 4 6 -8 -6 -4 -2 0 2 3 6 8
t win

After second quantizing and careful analysis, obtain tensor network with rigorous
approximation guarantees. . .
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Technical Result
0} [0

Consider correlation function with smeared fields & normal-ordered bilinears:
C = <\|;T(f1) - Y(fpy)0y - - 0M>
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Technical Result

Parameters:
» L — number of layers
» ¢ — accuracy of wavelet pair

» [ — support and smoothness
of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:

C = <\|}T(f‘1) - W(fHN)O1 - Opm)

Theorem (simplified)

1
|Cexact - CMERAl <r max{2—5/3, € Iog g}
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Technical Result

Parameters:
» L — number of layers
» ¢ — accuracy of wavelet pair

» [ — support and smoothness
of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:

C = (WI(f) - W(on)O1--- On)

Theorem (simplified)

1
|Cexact - CMERAl <r max{2—5/3, € Iog g}
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Technical Result

11)10) [1)10)

* *

= [=m/a)]

*"/ Parameters:

» L — number of layers

» ¢ — accuracy of wavelet pair

» [ — support and smoothness
of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:

C = <\|;T(f1) - W(Hn)O01 -+ Om)

Theorem (simplified)

1
| Cexact — Cmera| < T max{27%/3, ¢ log E}

We provide dictionary for Cymera (discretize smearing functions in scaling basis etc).
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Dirac fermion on circle

Construction can be easily adapted to Dirac fermion on circle:

» finite number of layers once UV cut-off fixed

> systematic construction by (anti)periodizing wavelets
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Summary and outlook

A

i

HEU

‘::11
Aol

110) 4 11)10)
. i *
!
Urc

=

» entanglement renormalization quantum circuits for 1+1d Dirac CFT
» systematic construction with rigorous guarantees

Outlook:
» thermofield double, Dirac cones, ...
» building block for more interesting CFTs? starting point for
perturbation theory or variational optimization?
» lift wavelet theory to quantum circuits! tensor network bootstrap?

Thank you for your attention!
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How to build an approximate Hilbert pair [Selesnick]

Wavelets are built from filters g[n] that relate functions at different scale:

¢j-1(x) = D _ glnl ¢j(x —277n)

nez

Necessary and sufficient to obtain orthonormal basis (roughly speaking):

1GO))?+ GO +7)>=2 G(0)=+2
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How to build an approximate Hilbert pair [Selesnick]

Wavelets are built from filters g[n] that relate functions at different scale:

Bj-1(x Zg[n]¢lx—2f)

nez

Necessary and sufficient to obtain orthonormal basis (roughly speaking):
1GO))?+ GO +7)>=2 G(0)=+2
Wavelets are related by Hilbert transform iff filters related by half-shift:
G(0) = H(#)e /2
To achieve this, find explicit approximation

. _10D(—0)
i0/2 ~ iLo
¢ ¢ D(0)

Then, H(#) = Q(8)D(6) and G(6) = Q(A)e Y D(—8h) are approximately
related by half-shift for any choice of Q(#).
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Non-relativistic 2D fermions — Lattice model

When put on lattice, massless Dirac fermion becomes: (Kogut-Susskind)

Hip & — Z a',];a,,ﬂ + h.c.
n
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Non-relativistic 2D fermions — Lattice model

When put on lattice, massless Dirac fermion becomes: (Kogut-Susskind)

Hipp = — Z a,T,a,,Jrl + h.c.
n

Non-relativistic fermions hopping on 2D square lattice at half filling:

Hap = =Y aly nam+1,n + 3 pdm,n+1 + h.c.

m,n

Fermi surface:

T N

v

» violation of area law: S(R) ~ Rlog R (Wolf, Gioev-Klich, Swingle)
» Green's function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions — Branching MERA

Natural construction — perform wavelet transforms in both directions:

W = tiow © Uhigh  ~ (W@ W)Y = by © i © n © PYn
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Non-relativistic 2D fermions — Branching MERA

Natural construction — perform wavelet transforms in both directions:

WY = Yiow @ Yhigh  ~ (W R W) =y @ i © Y © Yan

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

~» approximation theorem (with Haegeman, Swingle, Cotler, Evenbly, Scholz).
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