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Tensor networks
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Efficient variational classes for many-body quantum states:
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. MERA
matrix product states

» can have interpretation as quantum circuit

Useful theoretical formalism:
> geometrize entanglement structure: generalized area law
» bulk-boundary dualities: lift physics to the virtual level

» quantum phases, topological order, RG, holography, ...
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MERA multi-scale entanglement renormalization ansatz (Vidal)
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J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

> self-similar layers that are short-depth quantum circuits
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prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

> self-similar layers that are short-depth quantum circuits
» variational class for critical systems in 1D

> interpretation: disentangle & coarse-grain
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MERA and holography

J local quantum circuit that
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MERA and holography

J local quantum circuit that
prepares state from |0)®"

1 entanglement renormalization

1 organize q. information by scale

» can always extend to ‘holographic’ mapping N

> hyperbolic geometry (Swingle)

» starting point for tensor network models of
holography (HaPPY; Hayden-...-W.)

> quantum error correction property = noise-resilience on QC (Kim et al)
~> important to understand design principles
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Tensor networks and quantum field theories

Tensor networks are discrete and finitary representations, while QFTs are
infinite and defined in the continuum.

Two successful approaches:
» continuum (cMPS, cMERA, . ..)
> lattice (MPS, PEPS, MERA, ...)

Questions:
» what do tensor networks capture?
» how to measure goodness of approximation?
> can we give rigorous construction principles?

» why do tensor networks work well?

cf. plethora of results on gapped 1D lattice systems in QIT/cond-mat
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Tensor networks for correlation functions

Given many-body system in state p and choice of operators {O,}, define
correlation function:

Clai, - ,an) =tr[pOqy - -+ On,]

Goal: Design tensor network for correlation functions!

» unified perspective: system can be continuous — discreteness imposed
by how we probe it

» tensor network for p sufficient (if possible), but likely suboptimal

Examples: Zaletel-Mong (MPS/q. Hall states), Kénig-Scholz (MPS/CFTs),
cf. quantum marginal problem

6/ 22



Our results

We construct tensor networks for free fermion theories:
» 1D Dirac fermion in continuum & lattice

» non-relativistic 2D fermions on lattice (Fermi surface)

Key features:
> tensor networks that target correlation functions
> rigorous approximation guarantees
» entanglement renormalization quantum circuits: (branching) MERA

» explicit construction, no variational optimization

We achieve this using tools from signal processing: wavelet theory.
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1D Dirac fermion — Lattice result

Fermions hopping on infinite 1D lattice at half filling:

Hip = — Z a}:anﬂ + h.c.
n

> equivalent to ‘staggered’ massless Dirac fermions (Kogut-Susskind)

» easily solved using Fourier transform — but not using local q. circuit!

8/ 22



1D Dirac fermion — Lattice result

Fermions hopping on infinite 1D lattice at half filling:

Hip = — Z a}L,a,,H + h.c.
n

> equivalent to ‘staggered’ massless Dirac fermions (Kogut-Susskind)

» easily solved using Fourier transform — but not using local q. circuit!

o & 110 We construct MERA networks
that target correlation functions:
Urg
C({f}) := (a'(f)--- a(fan))
Result (simplified)
Ura Cexact ~ CMERA
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1D Dirac fermion — Numerics

Energy error
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1D Dirac fermion — Continuum result

Massless Dirac fermion in 1+1d:

i"0, =0

We construct circuits that target vacuum correlation functions in Dirac CFT:

C({fi, A}) = (WH(R) - W(fan) AL - Aw)

V(f;) smeared fields, A; normal-ordered bilinears (e.g. smeared T, L,)

Rl (S|mp||f|ed) Rigorous quantum circuit

Coxact ~ CMERA approximation for a QFT!
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1D Dirac fermion — Verifying conformal data

> central charge: S(R) = §log R+ ¢ 250

— YPlog(R) +0.73
+ + x=64

o 100 200
subsystem size
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1D Dirac fermion — Verifying conformal data

> central charge: S(R) = §log R+ ¢ 250

» usual procedure: identify fields by searching for
operators that coarse-grain to themselves

— L%l0g(R) +0.73
+ + x=64

o 100 200
subsystem size

[0) {10) |10)

~> diagonalize ‘scaling superoperator’ (Evenbly-Vidal)

> in our case, no need to diagonalize — theorem contains ‘dictionary’
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1D Dirac fermion — Numerics

Two-point functions:
(TCAT(y)) S (Wx)v(y)h)
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Similarly: OPE coefficients.
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How to construct a free-fermion (= Gaussian) MERA?

Free-fermion ground states are Fermi seas filled with negative energy modes
of single-particle Hamiltonian. This begs the question:

How to perform entanglement renormalization on the single-particle level?
Is there a single-particle variant of MERA?
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How to construct a free-fermion (= Gaussian) MERA?

Free-fermion ground states are Fermi seas filled with negative energy modes
of single-particle Hamiltonian. This begs the question:

How to perform entanglement renormalization on the single-particle level?
Is there a single-particle variant of MERA?

Yes — wavelet transforms!
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Wavelets and renormalization

Fourier basis resolves signal into scales, but is completely nonlocal.
In contrast, can also generate basis by scalings and translates of single
localized wave packet — a wavelet:

14 / 22



Wavelets and renormalization

Fourier basis resolves signal into scales, but is completely nonlocal.
In contrast, can also generate basis by scalings and translates of single
localized wave packet — a wavelet:

] I

Then we can recursively resolve signal into different scales:

N I ”J_L

el

W, = span of wavelets at scale j

where

V; =signals at scaleup to j = W; & Wj;1 @ ...
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Wavelets and MERA

The basis transformation

Vi = W & Wi 3] —
Vo

is implemented by a classical circuit acting on single-particle Hilbert space:
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Wavelets and MERA

The basis transformation

Vi = W @ Wi i
Vo

is implemented by a classical circuit acting on single-particle Hilbert space:

Second quantization yields layer of a Gaussian MERA!
» in fact, obtain ‘holographic’ mapping (Qi)
» depth of classical circuit = depth of quantum circuit (Evenbly-White)

Upshot: To construct free-fermion ground state, design wavelet transform
that targets positive/negative energy modes.
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1D Dirac fermion — Vacuum state

Massless Dirac equation in 1+1d:

iv"0, =0
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1D Dirac fermion — Vacuum state

Massless Dirac equation in 1+1d:

Pa(x,t)|  |ixs(x = 8) —ix-(x + 1)

lwl(x, r)] _ lmx— £)+ x-(x+t)

Negative energy modes:
> x4+ supported on k <0 / k>0
> 1)y related by —isign(k) at t = 0 (Hilbert transform)
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1D Dirac fermion — Vacuum state

Massless Dirac equation in 1+1d:

lwl(x, r)] _ lmx— £)+ x-(x+t)

Pa(x,t)|  |ixs(x = 8) —ix-(x + 1)

Negative energy modes:
> X+ supported on k <0/ k>0

> 1)y related by —isign(k) at t = 0 (Hilbert transform)
» can choose any basis of Fermi sea. ..

Goal: Design pair of wavelets related by Hilbert transform!
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1D Dirac fermion — Hilbert wavelet pairs

Such wavelet pairs have been studied in the signal processing community:
» motivated by directionality and shift-invariance (!)

» impossible exactly with local circuit, but possible to arbitrary accuracy

(Selesnick)
— unlt) — [Wh(w) + Wy(w)]|
1.0
wo | o]
0.51
001 — | o4
-0.5 1 .
~104 \
1s 0.0
-4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6 8

After second quantizing and careful analysis, obtain tensor network with rigorous
approximation guarantee. ..
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1D Dirac fermion — Result

11)10) [1)]0)
* .

: Parameters:

Ure
L

» £ — number of layers

» ¢ — accuracy of Hilbert pair

wioy [ o [F e [ o
* H * i *

» [ — support and smoothness
of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:

C({fi, A}) = (Wi(R) - W(fan) AL Aw)

Result (simplified)

1
| Cexact — Cmera| < T max{27%/% ¢ log E}

In particular, all conformal symmetries approximately inherited.
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1D Dirac fermion — Result

11)10) 11)]0)
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C({fi, A}) = (WH(R) - W(Fan) AL+ Au)

Result (simplified)

1
| Cexact — Cmera| < T max{27%/% ¢ log E}

In particular, all conformal symmetries approximately inherited.
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1D Dirac fermion — Circle

Construction also works for Dirac fermion on circle:

» finite number of layers once UV cut-off fixed
» systematic construction by (anti)periodizing wavelets

> only top layers change — wavelet modes start ‘wrapping around’
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Non-relativistic 2D fermions — Lattice model

Hip & — Z ai,a,,H + h.c.
n
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Non-relativistic 2D fermions — Lattice model

Hipp = — Z ai,a,,Jrl + h.c.
n

Non-relativistic fermions hopping on 2D square lattice at half filling:

Hop = — Z a;fn’namﬂ,n + a:fn’,,am,,,ﬂ + h.c.

m,n

Fermi surface:

A

v

» violation of area law: S(R) ~ Rlog R (Wolf, Gioev-Klich, Swingle)

> Green's function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions — Branching MERA

Natural construction — perform wavelet transforms in both directions:

W = tiow © Uhigh  ~ (W@ W)Y = by © i © n © PYn
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Non-relativistic 2D fermions — Branching MERA

Natural construction — perform wavelet transforms in both directions:

WY = Yiow @ Yhigh  ~ (W R W) =y @ i © Y © Yan

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

Similar approximation theorem holds.
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Summary and outlook

> entanglement renormalization quantum circuits for free fermions

» explicit construction with rigorous guarantees (lattice 4+ continuum)

Outlook:
» thermofield double, massive theories, Dirac cones, . ..

» building block for more interesting CFTs? starting point for
perturbation theory or variational optimization?

Thank you for your attention!
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