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Tensor networks

|Ψ〉 =
∑

i1,...,in
Ψi1,...,in |i1, . . . , in〉

Efficient variational classes for many-body quantum states:

matrix product states MERA

I can have interpretation as quantum circuit

Useful theoretical formalism:
I geometrize entanglement structure: generalized area law
I bulk-boundary dualities: lift physics to the virtual level
I quantum phases, topological order, RG, holography, . . .
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MERA multi-scale entanglement renormalization ansatz (Vidal)

↓ local quantum circuit that
prepares state from |0〉⊗N

↑ entanglement renormalization

l organize q. information by scale

I self-similar layers that are short-depth quantum circuits
I variational class for critical systems in 1D
I interpretation: disentangle & coarse-grain
I network arises from tensor network renormalization:
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MERA and holography

↓ local quantum circuit that
prepares state from |0〉⊗N

↑ entanglement renormalization

l organize q. information by scale

I can always extend to ‘holographic’ mapping

I hyperbolic geometry (Swingle)
I starting point for tensor network models of

holography (HaPPY; Hayden-. . . -W.)

I quantum error correction property = noise-resilience on QC (Kim et al)
; important to understand design principles
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Tensor networks and quantum field theories

Tensor networks are discrete and finitary representations, while QFTs are
infinite and defined in the continuum.

Two successful approaches:
I continuum (cMPS, cMERA, . . . )
I lattice (MPS, PEPS, MERA, . . . )

Questions:
I what do tensor networks capture?
I how to measure goodness of approximation?
I can we give rigorous construction principles?
I why do tensor networks work well?

cf. plethora of results on gapped 1D lattice systems in QIT/cond-mat
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Tensor networks for correlation functions

Given many-body system in state ρ and choice of operators {Oα}, define
correlation function:

C(α1, · · · , αn) = tr[ρOα1 · · ·Oαn ]

General definition

Given:

Underlying system can be continuous; discreteness is 
imposed in our choice of how to probe the system

state

operator choice

Goal: Design tensor network for correlation functions!
I unified perspective: system can be continuous – discreteness imposed

by how we probe it
I tensor network for ρ sufficient (if possible), but likely suboptimal

Examples: Zaletel-Mong (MPS/q. Hall states), König-Scholz (MPS/CFTs),
cf. quantum marginal problem
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Our results

We construct tensor networks for free fermion theories:
I 1D Dirac fermion in continuum & lattice
I non-relativistic 2D fermions on lattice (Fermi surface)

Key features:
I tensor networks that target correlation functions
I rigorous approximation guarantees
I entanglement renormalization quantum circuits: (branching) MERA
I explicit construction, no variational optimization

We achieve this using tools from signal processing: wavelet theory.
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1D Dirac fermion – Lattice result

Fermions hopping on infinite 1D lattice at half filling:

H1D = −
∑

n
a†nan+1 + h.c.

I equivalent to ‘staggered’ massless Dirac fermions (Kogut-Susskind)
I easily solved using Fourier transform – but not using local q. circuit!
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'

( = 1,	* = 1
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|1〉|0〉 |1〉|0〉

|1〉|0〉 |1〉|0〉
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−//4 −//4 −//4 −//4

We construct MERA networks
that target correlation functions:

C({fi}) :=
〈
a†(f1) · · · a(f2N)

〉
Result (simplified)

Cexact ≈ CMERA
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1D Dirac fermion – Numerics

Energy error
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1D Dirac fermion – Continuum result

Massless Dirac fermion in 1+1d:

iγµ∂µψ = 0

Filled Fermi sea

We construct circuits that target vacuum correlation functions in Dirac CFT:

C({fi ,Aj}) :=
〈
Ψ†(f1) · · ·Ψ(f2N)A1 · · ·AM

〉
Ψ(fi ) smeared fields, Aj normal-ordered bilinears (e.g. smeared T , Ln)

Result (simplified)

Cexact ≈ CMERA

Rigorous quantum circuit
approximation for a QFT!
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1D Dirac fermion – Verifying conformal data

I central charge: S(R) = c
3 log R + c ′
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= 64

I usual procedure: identify fields by searching for
operators that coarse-grain to themselves

; diagonalize ‘scaling superoperator’ (Evenbly-Vidal)
I in our case, no need to diagonalize – theorem contains ‘dictionary’

11 / 22



1D Dirac fermion – Verifying conformal data

I central charge: S(R) = c
3 log R + c ′

0 100 200
subsystem size

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

en
tro

py

1.0
3 log(R) + 0.73
= 64

I usual procedure: identify fields by searching for
operators that coarse-grain to themselves

; diagonalize ‘scaling superoperator’ (Evenbly-Vidal)
I in our case, no need to diagonalize – theorem contains ‘dictionary’

11 / 22



1D Dirac fermion – Verifying conformal data

I central charge: S(R) = c
3 log R + c ′

0 100 200
subsystem size

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

en
tro

py

1.0
3 log(R) + 0.73
= 64

I usual procedure: identify fields by searching for
operators that coarse-grain to themselves

; diagonalize ‘scaling superoperator’ (Evenbly-Vidal)
I in our case, no need to diagonalize – theorem contains ‘dictionary’

11 / 22



1D Dirac fermion – Numerics

Two-point functions:
〈T (x)T (y)〉
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Similarly: OPE coefficients.
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How to construct a free-fermion (= Gaussian) MERA?

Free-fermion ground states are Fermi seas filled with negative energy modes
of single-particle Hamiltonian. This begs the question:

How to perform entanglement renormalization on the single-particle level?
Is there a single-particle variant of MERA?

Yes – wavelet transforms!
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Wavelets and renormalization

Fourier basis resolves signal into scales, but is completely nonlocal.
In contrast, can also generate basis by scalings and translates of single
localized wave packet – a wavelet:

j = −1 j = 0 j = 1

Then we can recursively resolve signal into different scales:

 













where
Wj = span of wavelets at scale j
Vj = signals at scale up to j = Wj ⊕Wj+1 ⊕ . . .
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Wavelets and MERA

The basis transformation

Vj →Wj ⊕Wj+1

 

is implemented by a classical circuit acting on single-particle Hilbert space:

Second quantization yields layer of a Gaussian MERA!
I in fact, obtain ‘holographic’ mapping (Qi)
I depth of classical circuit = depth of quantum circuit (Evenbly-White)

Upshot: To construct free-fermion ground state, design wavelet transform
that targets positive/negative energy modes.
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1D Dirac fermion – Vacuum state

Massless Dirac equation in 1+1d:

iγµ∂µψ = 0

Filled Fermi sea

Negative energy modes:
I χ± supported on k < 0 / k > 0
I ψ1,2 related by −i sign(k) at t = 0 (Hilbert transform)
I can choose any basis of Fermi sea. . .

Goal: Design pair of wavelets related by Hilbert transform!
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1D Dirac fermion – Hilbert wavelet pairs

Such wavelet pairs have been studied in the signal processing community:
I motivated by directionality and shift-invariance (!)
I impossible exactly with local circuit, but possible to arbitrary accuracy

(Selesnick)
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After second quantizing and careful analysis, obtain tensor network with rigorous
approximation guarantee. . .
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1D Dirac fermion – Result
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Parameters:
I L – number of layers
I ε – accuracy of Hilbert pair
I Γ – support and smoothness

of smearing functions

Consider correlation function with smeared fields & normal-ordered bilinears:
C({fi ,Aj}) :=

〈
Ψ†(f1) · · ·Ψ(f2N)A1 · · ·AM

〉
Result (simplified)∣∣Cexact − CMERA

∣∣ ≤ Γ max{2−L/4, ε log 1
ε
}

In particular, all conformal symmetries approximately inherited.
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1D Dirac fermion – Circle

Construction also works for Dirac fermion on circle:

I finite number of layers once UV cut-off fixed
I systematic construction by (anti)periodizing wavelets
I only top layers change – wavelet modes start ‘wrapping around’
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Non-relativistic 2D fermions – Lattice model

H1D ∼= −
∑

n
a†nan+1 + h.c.

Non-relativistic fermions hopping on 2D square lattice at half filling:

H2D = −
∑
m,n

a†m,nam+1,n + a†m,nam,n+1 + h.c.

Fermi surface:
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I violation of area law: S(R) ∼ R log R (Wolf, Gioev-Klich, Swingle)
I Green’s function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions – Branching MERA

Natural construction – perform wavelet transforms in both directions:

Wψ = ψlow ⊕ ψhigh ; (W ⊗W )ψ = ψll ⊕ ψlh ⊕ ψhl ⊕ ψhh

After second quantization, obtain variant of branching MERA (Evenbly-Vidal):

Similar approximation theorem holds.
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Summary and outlook
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I entanglement renormalization quantum circuits for free fermions
I explicit construction with rigorous guarantees (lattice + continuum)

Outlook:
I thermofield double, massive theories, Dirac cones, . . .
I building block for more interesting CFTs? starting point for

perturbation theory or variational optimization?

Thank you for your attention!
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