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Overview

geometric inequalities ←→ entropy inequalities

trace

Brascamp-Lieb inequalities have wide range of applications and satisfy
beautiful duality. We study a quantum formulation, motivated by the
desire to identify new tools to proving entropy inequalities.

Plan for today:
1 Introduction
2 Quantum BL duality, applications and connections
3 Geometric quantum BL inequalities
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Classical Brascamp-Lieb inequalities

For Bk : Rm →→ Rmk linear, qk > 0, C > 0, an inequality of the form∫
Rm

n∏
k=1

|fk(Bkx)| dx 6 C
n∏

k=1
‖fk‖1/qk ∀fk

This generalizes many classical integral inequalities (Hölder, Young, . . . )
Many proofs, applications, variations. . .

I Optimal C can be computed by optimizing over Gaussian fk . [Lieb]

I When is C finite? Fully classified. [Bennett et al]

I How to compute C efficiently? Still partly open! [Garg et al]

Geometric case: Bk projections s.th.
∑n

k=1 qkB∗k Bk = Im.
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Duality and entropy

BL inequality is dual to ‘subadditivity’ inequality for differential entropy:
n∑

k=1
qk S(BkX ) > S(X ) − log C ∀ RV X on Rm

Apart from information theoretic interest, equivalence also enables new
proof techniques (heat flow). [Carlen–Cordero-Erausquin]

The duality can be generalized to arbitrary channels and relative entropies.
Framework includes hypercontractivity, strong data processing, etc. [Liu et al]

Our results: Quantum version of the general duality and applications. In
addition, quantum version of the geometric BL inequalities on L2(Rm).
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Result: Quantum Brascamp-Lieb Duality

Let Ek : L(H)→ L(Hk) positive & TP, qk > 0, σ, σk � 0, C > 0.
Then the following are equivalent:

n∑
k=1

qk D(Ek(ρ)‖σk) 6 D(ρ‖σ) + log C ∀ states ρ

and

tr elogσ+
∑k

k=1 E
∗
k(logωk) 6 C

n∏
k=1
‖elogωk+qk logσk‖1/qk ∀ ωk � 0

I Proof via Legendre: D(ρ‖σ) = supω�0{tr ρ logω− log tr e logω+logσ} [Petz]

I Not clear which side looks more intimidating. . .
I Useful choices: σk = Ek(σ) or σk = I, σ = I
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Without side information [Carlen-Lieb]

When specializing to σk = I, σ = I, recover equivalence between
n∑

k=1
qk S(Ek(ρ)) > S(ρ) − log C ∀ states ρ

and

tr e
∑k

k=1 E
∗
k(logωk) 6 C

n∏
k=1
‖ωk‖1/qk ∀ ωk � 0

For example, can prove uncertainty relations via trace inequalities, as
pioneered by Frank-Lieb:

I Maassen-Uffink: S(X ) + S(Z ) > S(ρ) + 1 via Golden-Thompson
I Six-state [Coles et al]: S(X ) + S(Y ) + S(Z ) > S(ρ) + 2 via Lieb 3-matrix
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Applications and questions

I Can we prove new uncertainty relations involving multiple
measurements (and even general quantum channels)? N-matrix GT?

I Strong data-processing inequalities fall into the framework:

D(E(ρ)‖E(σ)) 6 ηD(ρ‖σ) ∀ρ

I Tensorization holds classically, but fails quantumly:

(E,C) & (E ′,C ′) ��⇒ (E⊗ E ′,C · C ′)
Examples include non-additivity of minimal output entropy. Useful?

I Computational complexity of testing validity of (families of) BL ineqs?
I Relation to works by Carlen-Maas?
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Back to geometry. . .

Recall the classical Brascamp-Lieb inequalities in the geometric case:
n∑

k=1
qk S(PkX ) > S(X ) ∀ RV X on Rm

with Pk projections onto subspaces Vk ⊆ Rm s.th.
∑n

k=1 qkPk = Im.

How can we formulate a quantum version? For any subspace V ⊆ Rm,

L2(Rm) = L2(V ⊕ V⊥) = L2(V )⊗ L2(V⊥)

hence can define reduced state ρV for any state ρ on L2(Rm).

This generalizes the usual partial trace. In general, can interpret as state
of subset of modes after subjecting ρ to network of beamsplitters.
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Result: Geometric Quantum Brascamp-Lieb Inequality

Theorem
Let Pk projections onto subspaces Vk ⊆ Rm s.th.

∑n
k=1 qkPk = Im. Then,

for all states ρ on L2(Rm) with finite first and second moments:
n∑

k=1
qk S(ρVk ) > S(ρ)

I For coordinate subspaces recover quantum Shearer inequality. [Carlen-Lieb]

I But already nontrivial for “Mercedes star” configuration in R2:

I Also holds conditioned on side information. [Ligthard]

I Can generate more ineqs. via Gaussian unitaries: Sp2m y L2(Rm). . .
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Sketch of proof
n∑

k=1
qk S(ρVk ) > S(ρ)

Implement classical proof strategy of Carlen–Cordero-Erausquin
using quantum heat flow of König-Smith: cf. [De Palma–Trevisan]

d
dt ρ = −

m∑
j=1

[Qj , [Qj , ρ]] + [Pj , [Pj , ρ]]

Asymptotic scaling of entropy: S(ρV (t)) ∼ dim V log t
I Inequality holds at t = ∞ if

∑
k qk dim Vk > m.

Quantum de Bruijn identity: d
dt S(ρ) = J(ρ), a Fisher information.

I Can prove reverse inequality for Fisher information if
∑

k qkPk 6 Im:
n∑

k=1
qk J(ρVk ) 6 J(ρ)
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Gaussian BL beyond the geometric case [De Palma–Trevisan]

There is a natural action of Sp2m on L2(Rm) by Gaussian unitaries. Any
symplectic matrix B ∈ R2m ′×2m determines subsystem of m ′ modes, so we
can define reduced state ρB on L2(Rm ′) for any state ρ on L2(Rm).

This notion generalizes the reduced state ρV for subspaces V ⊆ Rm and
leads naturally to the following class of Gaussian quantum BL inequalities:

n∑
k=1

qkS(ρBk ) > S(ρ) + c

where the Bk ∈ R2mk×2m symplectic matrices. When does it hold?

Recent result (De Palma–Trevisan): Assuming
∑n

k=1 qkmk = m,
inequality holds for all quantum states iff holds for all probability densities!

I Also holds conditioned on side information.
I Can also include “classical” outputs (= quadrature measurements)
I Proof again based on quantum heat flow strategy!
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Outlook

trace inequalities BL←→
duality

entropy inequalities

Duality between quantum relative entropy inequalities and trace
inequalities. Unifying framework to tackle information theoretic questions.
New family of geometric quantum Brascamp-Lieb inequalities.

Many exciting directions:
I Uncertainty relations from n-matrix GT?
I Sufficient conditions for tensorization?
I Applications of new trace inequalities?
I Other applications of quantum heat flow?
I . . .

Thank you for your attention!
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