Quantum Brascamp-Lieb Inequalities

Michael Walter

凶 University of Amsterdam

ICMP, August 2021
based on joint work with Mario Berta and David Sutter arXiv:1909.02383

Overview

geometric inequalities \longleftrightarrow entropy inequalities

Brascamp-Lieb inequalities have wide range of applications and satisfy beautiful duality.
desire to identify new tools to proving entropy inequalities.

Plan for today:
(1) Introduction
(2) Quantum BL duality, applications and connections
(3) Geometric quantum BL inequalities

Overview

trace

Brascamp-Lieb inequalities have wide range of applications and satisfy beautiful duality. We study a quantum formulation, motivated by the desire to identify new tools to proving entropy inequalities.

Plan for today:
(1) Introduction
(2) Quantum BL duality, applications and connections
(3) Geometric quantum BL inequalities

Classical Brascamp-Lieb inequalities

For $B_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{k}}$ linear, $q_{k}>0, C>0$, an inequality of the form

$$
\int_{\mathbb{R}^{m}} \prod_{k=1}^{n}\left|f_{k}\left(B_{k} x\right)\right| d x \leqslant C \prod_{k=1}^{n}\left\|f_{k}\right\|_{1 / q_{k}} \quad \forall f_{k}
$$

This generalizes many classical integral inequalities (Hölder, Young, ...) Many proofs, applications, variations...

- Optimal C can be computed by optimizing over Gaussian f_{k}. [Lieb]
- When is C finite? Fully classified. [Bennett et al]
- How to compute C efficiently? Still partly open! [Garg eta]

Geometric case: B_{k} projections s.th. $\sum_{k=1}^{n} q_{k} B_{k}^{*} B_{k}=I_{m}$.

Classical Brascamp-Lieb inequalities

For $B_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{k}}$ linear, $q_{k}>0, C>0$, an inequality of the form

$$
\int_{\mathbb{R}^{m}} \prod_{k=1}^{n}\left|f_{k}\left(B_{k} x\right)\right| d x \leqslant C \prod_{k=1}^{n}\left\|f_{k}\right\|_{1 / q_{k}} \quad \forall f_{k}
$$

This generalizes many classical integral inequalities (Hölder, Young, ...) Many proofs, applications, variations...

- Optimal C can be computed by optimizing over Gaussian f_{k}. [Lieb]
- When is C finite? Fully classified. [Bennett et al]
- How to compute C efficiently? Still partly open! [Garg et al]

Geometric case: B_{k} projections s.th. $\sum_{k=1}^{n} q_{k} B_{k}^{*} B_{k}=I_{m}$.

Duality and entropy

BL inequality is dual to 'subadditivity' inequality for differential entropy:

$$
\sum_{k=1}^{n} q_{k} S\left(B_{k} X\right) \geqslant S(X)-\log C \quad \forall \mathrm{RV} X \text { on } \mathbb{R}^{m}
$$

Apart from information theoretic interest, equivalence also enables new proof techniques (heat flow). [Carlen-Cordero-Erausquin]

Duality and entropy

BL inequality is dual to 'subadditivity' inequality for differential entropy:

$$
\sum_{k=1}^{n} q_{k} S\left(B_{k} X\right) \geqslant S(X)-\log C \quad \forall \mathrm{RV} X \text { on } \mathbb{R}^{m}
$$

Apart from information theoretic interest, equivalence also enables new proof techniques (heat flow). [Carlen-Cordero-Erausquin]

The duality can be generalized to arbitrary channels and relative entropies. Framework includes hypercontractivity, strong data processing, etc. [Liu et al]

Our results: Quantum version of the general duality and applications. In addition, quantum version of the geometric $B L$ inequalities on $L^{2}\left(\mathbb{R}^{m}\right)$.

Result: Quantum Brascamp-Lieb Duality

Let $\mathcal{E}_{k}: L(\mathcal{H}) \rightarrow L\left(\mathcal{H}_{k}\right)$ positive \& TP, $q_{k}>0, \sigma, \sigma_{k} \succ 0, C>0$.
Then the following are equivalent:

$$
\sum_{k=1}^{n} q_{k} D\left(\varepsilon_{k}(\rho) \| \sigma_{k}\right) \leqslant D(\rho \| \sigma)+\log C \quad \forall \text { states } \rho
$$

and

$$
\operatorname{tr} e^{\log \sigma+\sum_{k=1}^{k} \varepsilon_{k}^{*}\left(\log \omega_{k}\right)} \leqslant C \prod_{k=1}^{n}\left\|e^{\log \omega_{k}+q_{k} \log \sigma_{k}}\right\|_{1 / q_{k}} \quad \forall \omega_{k} \succ 0
$$

- Proof via Legendre: $D(\rho \| \sigma)=\sup _{\omega \succ 0}\left\{\operatorname{tr} \rho \log \omega-\log \operatorname{tr} e^{\log \omega+\log \sigma}\right\}$
- Not clear which side looks more intimidating.
- Useful choices: $\sigma_{k}=\varepsilon_{k}(\sigma)$ or $\sigma_{k}=I, \sigma=I$

Result: Quantum Brascamp-Lieb Duality

Let $\mathcal{E}_{k}: L(\mathcal{H}) \rightarrow L\left(\mathcal{H}_{k}\right)$ positive \& TP, $q_{k}>0, \sigma, \sigma_{k} \succ 0, C>0$.
Then the following are equivalent:

$$
\sum_{k=1}^{n} q_{k} D\left(\mathcal{E}_{k}(\rho) \| \sigma_{k}\right) \leqslant D(\rho \| \sigma)+\log C \quad \forall \text { states } \rho
$$

and

$$
\operatorname{tr} e^{\log \sigma+\sum_{k=1}^{k} \varepsilon_{k}^{*}\left(\log \omega_{k}\right)} \leqslant C \prod_{k=1}^{n}\left\|e^{\log \omega_{k}+q_{k} \log \sigma_{k}}\right\|_{1 / q_{k}} \quad \forall \omega_{k} \succ 0
$$

- Proof via Legendre: $D(\rho \| \sigma)=\sup _{\omega \succ 0}\left\{\operatorname{tr} \rho \log \omega-\log \operatorname{tr} e^{\log \omega+\log \sigma}\right\} \quad$ [Petz]
- Not clear which side looks more intimidating...
- Useful choices: $\sigma_{k}=\mathcal{E}_{k}(\sigma)$ or $\sigma_{k}=I, \sigma=I$

Without side information

When specializing to $\sigma_{k}=I, \sigma=I$, recover equivalence between

$$
\sum_{k=1}^{n} q_{k} S\left(\varepsilon_{k}(\rho)\right) \geqslant S(\rho)-\log C \quad \forall \text { states } \rho
$$

and

$$
\operatorname{tr} e^{\sum_{k=1}^{k} \varepsilon_{k}^{*}\left(\log \omega_{k}\right)} \leqslant C \prod_{k=1}^{n}\left\|\omega_{k}\right\|_{1 / q_{k}} \quad \forall \omega_{k} \succ 0
$$

For example, can prove uncertainty relations via trace inequalities, as pioneered by Frank-Lieb:

- Maassen-Uffink: $S(X)+S(Z) \geqslant S(\rho)+1$ via Golden-Thompson
- Six-state [Coleset al]: $S(X)+S(Y)+S(Z) \geqslant S(\rho)+2$ via Lieb 3-matrix

Without side information

When specializing to $\sigma_{k}=I, \sigma=I$, recover equivalence between

$$
\sum_{k=1}^{n} q_{k} S\left(\varepsilon_{k}(\rho)\right) \geqslant S(\rho)-\log C \quad \forall \text { states } \rho
$$

and

$$
\operatorname{tr} e^{\sum_{k=1}^{k} \varepsilon_{k}^{*}\left(\log \omega_{k}\right)} \leqslant C \prod_{k=1}^{n}\left\|\omega_{k}\right\|_{1 / q_{k}} \quad \forall \omega_{k} \succ 0
$$

For example, can prove uncertainty relations via trace inequalities, as pioneered by Frank-Lieb:

- Maassen-Uffink: $S(X)+S(Z) \geqslant S(\rho)+1$ via Golden-Thompson
- Six-state [Coles et a]: $S(X)+S(Y)+S(Z) \geqslant S(\rho)+2$ via Lieb 3-matrix

Applications and questions

- Can we prove new uncertainty relations involving multiple measurements (and even general quantum channels)? N-matrix GT?
- Strong data-processing inequalities fall into the framework:

$$
D(\mathcal{E}(\rho) \| \mathcal{E}(\sigma)) \leqslant \eta D(\rho \| \sigma) \quad \forall \rho
$$

- Tensorization holds classically, but fails quantumly:

$$
(\varepsilon, C) \&\left(\varepsilon^{\prime}, C^{\prime}\right) \Rightarrow\left(\varepsilon \otimes \varepsilon^{\prime}, C \cdot C^{\prime}\right)
$$

Examples include non-additivity of minimal output entropy. Useful?

- Computational complexity of testing validity of (families of) BL ineqs?
- Relation to works by Carlen-Maas?

Back to geometry...

Recall the classical Brascamp-Lieb inequalities in the geometric case:

$$
\sum_{k=1}^{n} q_{k} S\left(P_{k} X\right) \geqslant S(X) \quad \forall \mathrm{RV} X \text { on } \mathbb{R}^{m}
$$

with P_{k} projections onto subspaces $V_{k} \subseteq \mathbb{R}^{m}$ s.th. $\sum_{k=1}^{n} q_{k} P_{k}=I_{m}$.

How can we formulate a quantum version? For any subspace $V \subseteq \mathbb{R}^{m}$

$$
L^{2}\left(\mathbb{R}^{m}\right)=L^{2}\left(V \oplus V^{\perp}\right)=L^{2}(V) \otimes L^{2}\left(V^{\perp}\right)
$$

hence can define reduced state ρ_{V} for any state ρ on $L^{2}\left(\mathbb{R}^{m}\right)$.
This generalizes the usual partial trace. In general, can interpret as state of subset of modes after subjecting ρ to network of beamsplitters.

Back to geometry...

Recall the classical Brascamp-Lieb inequalities in the geometric case:

$$
\sum_{k=1}^{n} q_{k} S\left(P_{k} X\right) \geqslant S(X) \quad \forall \mathrm{RV} X \text { on } \mathbb{R}^{m}
$$

with P_{k} projections onto subspaces $V_{k} \subseteq \mathbb{R}^{m}$ s.th. $\sum_{k=1}^{n} q_{k} P_{k}=I_{m}$.

How can we formulate a quantum version? For any subspace $V \subseteq \mathbb{R}^{m}$,

$$
L^{2}\left(\mathbb{R}^{m}\right)=L^{2}\left(V \oplus V^{\perp}\right)=L^{2}(V) \otimes L^{2}\left(V^{\perp}\right)
$$

hence can define reduced state ρ_{V} for any state ρ on $L^{2}\left(\mathbb{R}^{m}\right)$.
This generalizes the usual partial trace. In general, can interpret as state of subset of modes after subjecting ρ to network of beamsplitters.

Result: Geometric Quantum Brascamp-Lieb Inequality

Theorem

Let P_{k} projections onto subspaces $V_{k} \subseteq \mathbb{R}^{m}$ s.th. $\sum_{k=1}^{n} q_{k} P_{k}=I_{m}$. Then, for all states ρ on $L^{2}\left(\mathbb{R}^{m}\right)$ with finite first and second moments:

$$
\sum_{k=1}^{n} q_{k} S\left(\rho v_{k}\right) \geqslant S(\rho)
$$

- For coordinate subspaces recover quantum Shearer inequality. [Carlen-Lieb]
- But already nontrivial for "Mercedes star" configuration in \mathbb{R}^{2} :

- Also holds conditioned on side information. [Ligthard]
- Can generate more ineqs. via Gaussian unitaries: $\mathrm{Sp}_{2 m} \curvearrowright L^{2}\left(\mathbb{R}^{m}\right) \ldots$

Sketch of proof

$$
\sum_{k=1}^{n} q_{k} S\left(\rho v_{k}\right) \geqslant S(\rho)
$$

Implement classical proof strategy of Carlen-Cordero-Erausquin using quantum heat flow of König-Smith:

$$
\frac{d}{d t} \rho=-\sum_{j=1}^{m}\left[Q_{j},\left[Q_{j}, \rho\right]\right]+\left[P_{j},\left[P_{j}, \rho\right]\right]
$$

Asymptotic scaling of entropy: $S\left(\rho_{V}(t)\right) \sim \operatorname{dim} V \log t$

- Inequality holds at $t=\infty$ if $\sum_{k} q_{k} \operatorname{dim} V_{k} \geqslant m$.

Quantum de Bruijn identity: $\frac{d}{d t} S(\rho)=J(\rho)$, a Fisher information.

- Can prove reverse inequality for Fisher information if Σ

Sketch of proof

$$
\sum_{k=1}^{n} q_{k} S\left(\rho_{V_{k}}\right) \geqslant S(\rho)
$$

Implement classical proof strategy of Carlen-Cordero-Erausquin using quantum heat flow of König-Smith:

$$
\frac{d}{d t} \rho=-\sum_{j=1}^{m}\left[Q_{j},\left[Q_{j}, \rho\right]\right]+\left[P_{j},\left[P_{j}, \rho\right]\right]
$$

Asymptotic scaling of entropy: $S\left(\rho_{V}(t)\right) \sim \operatorname{dim} V \log t$

- Inequality holds at $t=\infty$ if $\sum_{k} q_{k} \operatorname{dim} V_{k} \geqslant m$.

Quantum de Bruijn identity: $\frac{d}{d t} S(\rho)=J(\rho)$, a Fisher information.

- Can prove reverse inequality for Fisher information if $\sum_{k} q_{k} P_{k} \leqslant I_{m}$:

$$
\sum_{k=1}^{n} q_{k} J\left(\rho v_{k}\right) \leqslant J(\rho)
$$

Gaussian BL beyond the geometric case

There is a natural action of $\mathrm{Sp}_{2 m}$ on $L^{2}\left(\mathbb{R}^{m}\right)$ by Gaussian unitaries. Any symplectic matrix $B \in \mathbb{R}^{2 m^{\prime} \times 2 m}$ determines subsystem of m^{\prime} modes, so we can define reduced state ρ_{B} on $L^{2}\left(\mathbb{R}^{m^{\prime}}\right)$ for any state ρ on $L^{2}\left(\mathbb{R}^{m}\right)$.

where the $B_{k} \in \mathbb{R}^{2 m_{k} \times 2 m}$ symplectic matrices. When does it hold?

Gaussian BL beyond the geometric case

There is a natural action of $\mathrm{Sp}_{2 m}$ on $L^{2}\left(\mathbb{R}^{m}\right)$ by Gaussian unitaries. Any symplectic matrix $B \in \mathbb{R}^{2 m^{\prime} \times 2 m}$ determines subsystem of m^{\prime} modes, so we can define reduced state ρ_{B} on $L^{2}\left(\mathbb{R}^{m^{\prime}}\right)$ for any state ρ on $L^{2}\left(\mathbb{R}^{m}\right)$.

This notion generalizes the reduced state ρ_{V} for subspaces $V \subseteq \mathbb{R}^{m}$ and leads naturally to the following class of Gaussian quantum BL inequalities:

$$
\sum_{k=1}^{n} q_{k} S\left(\rho_{B_{k}}\right) \geqslant S(\rho)+c
$$

where the $B_{k} \in \mathbb{R}^{2 m_{k} \times 2 m}$ symplectic matrices. When does it hold?

Gaussian BL beyond the geometric case

There is a natural action of $\mathrm{Sp}_{2 m}$ on $L^{2}\left(\mathbb{R}^{m}\right)$ by Gaussian unitaries. Any symplectic matrix $B \in \mathbb{R}^{2 m^{\prime} \times 2 m}$ determines subsystem of m^{\prime} modes, so we can define reduced state ρ_{B} on $L^{2}\left(\mathbb{R}^{m^{\prime}}\right)$ for any state ρ on $L^{2}\left(\mathbb{R}^{m}\right)$.

This notion generalizes the reduced state ρ_{V} for subspaces $V \subseteq \mathbb{R}^{m}$ and leads naturally to the following class of Gaussian quantum $B L$ inequalities:

$$
\sum_{k=1}^{n} q_{k} S\left(\rho_{B_{k}}\right) \geqslant S(\rho)+c
$$

where the $B_{k} \in \mathbb{R}^{2 m_{k} \times 2 m}$ symplectic matrices. When does it hold?
Recent result (De Palma-Trevisan): Assuming $\sum_{k=1}^{n} q_{k} m_{k}=m$, inequality holds for all quantum states iff holds for all probability densities!

- Also holds conditioned on side information.
- Can also include "classical" outputs (= quadrature measurements)
- Proof again based on quantum heat flow strategy!

Outlook

Duality between quantum relative entropy inequalities and trace inequalities. Unifying framework to tackle information theoretic questions. New family of geometric quantum Brascamp-Lieb inequalities.

Many exciting directions:

- Uncertainty relations from n-matrix GT?
- Sufficient conditions for tensorization?
- Applications of new trace inequalities?
- Other applications of quantum heat flow?
- ...

Thank you for your attention!

