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Outline

1. Moment polytopes by example

2. Algorithms for the general problem
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Moment polytopes



Motivating question

Horn’s problem:

Are λ1,λ2,λ3 ∈ Rn the spectra of three n × n matrices H1, H2, H3

such that

H1 + H2 = H3?

If so, can one find the matrices efficiently?
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Horn set

Let V = P(Mat(n)2), define

µ : V → Herm(n)3

by

µ : [A1,A2] 7→
(A1A

†
1, A2A

†
2, A†

1A1 + A†
2A2)

‖A1‖2 + ‖A2‖2
.

Note eigs(AA†) = eigs(A†A), so

eigs(A1A
†
1), eigs(A2A

†
2), eigs(A†

1A1 + A†
2A2)

is a “yes” instance to Horn’s problem (in fact, all such instances take this

form).
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Moment polytopes

• G = GL(n)

• π : G → Cm a representation of G where U(n) acts unitarily

• V ⊂ P(Cm) a projective variety fixed by G ,

Moment map is the map µ : V → n × n Hermitians =: Herm(n) given by

µ : v 7→ ∇H∈Herm(n) log ‖eH · v‖

iµ is a moment map for U(n) in the physical sense! In particular:

Theorem (Kirwan)

Image of

V Herm(n) Rnµ take eigs.

is a convex polytope in Rn known as moment polytope, denoted ∆(V)
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Horn polytope

• V = P(Mat(n)2)

• G = GL(n)3

• π given by

(g1, g2, g3) · (A1,A2) = (g1A1g
†
3 , g2A2g

†
3).

• µ : V → Herm(n)3 given by

µ : [A1,A2] 7→
(A1A

†
1, A2A

†
2, A†

1A1 + A†
2A2)

‖A1‖2 + ‖A2‖2
.

Thus, image of

V Herm(n)3 (Rn)3
µ take eigs.

is the* solution set of the Horn problem!
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Link to algebra

Why are moment polytopes interesting?

Encode asymptotic representation theory of coordinate ring of V!

Theorem (Mumford, Ness ’84, Brion ’87)

Let VG ,λ denote irrep of G of type λ. Then⋃
k

1

k
{λ : VG ,λ ⊂ C[V]k} = ∆(V) ∩Qn!

Additional math (Schur-Weyl duality, Saturation [KT00]) =⇒

Horn polytope ∩ (Zn)3 = {(λ1,λ2,λ3) : VGL(n),λ3
∈ VGL(n),λ1

⊗VGL(n),λ2
}
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Algorithmic tasks

Input (V, π, λ)

• Projective variety V as arithmetic circuit parametrizing it

• Representation π as its list of irreducible subrepresentations as

elements of Zn

• Target λ ∈ Qn

1. membership: determine whether λ in ∆(V).

2. ε-search: given λ ∈ Rn, either find an element v ∈ λ such that

• ‖µ(v)− diag(λ)‖ < ε, OR

• correctly declare λ 6∈ ∆(V).

i.e. find an approximate preimage under µ!

1/exp(poly)-search suffices for membership!
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Algorithm for ε-search for Horn polytope (F18)

Input: (λ1,λ2,λ3) ∈ (Rn)3 and ε > 0.

1. Choose A1,A2 at random. Define

µ1 = A1A
†
1, µ2 = A2A

†
2, µ3 = A†

1A1 + A†
2A2.

Want µi = diag(λi )

2. while ‖µ3 − diag(λ3)‖ > ε, do:
a. Choose B upper triangular such that B†µ3B = diag(λ3),

Set Ai ← AiB .

b. For i ∈ 1, 2, choose B i upper triangular s.t. B†i µiB i = diag(λi ),

Set Ai ← B†i Ai .

3. output A†
1A1,A

†
2A2.
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Complexity of moment polytope membership?

The case λ = 0 is the null-cone problem from Ankit’s talk!

1. Is membership in P?

• For tori (G = Cn
×) Folklore,[SV17]

• For Horn polytope, by saturation conjecture[MNS12]

2. Is it in RP?

• We think so in general, but no proof yet!

3. Is it in NP or coNP?

• In NP ∩ coNP for V = P(Cm) [BCMW17]

• Not known in general!
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General algorithms



Convert ε-search to an optimization problem

For b ∈ B := upper triangular matrices, define

capλ(v) := inf
b∈B

‖b · v‖∏
i |bii |λi

.

Kempf-Ness Theorem

λ ∈ ∆(V) ⇐⇒ capλ(v) > 0 for generic v ∈ V

ε-search reduces to finding algorithm for the following:

• Given b with ‖µ(b · v)− diag(λ)‖ > ε,
• Output b′ with

‖b′ · v‖∏
i |b′ii |λi

< (1− δ)
‖b · v‖∏
i |bii |λi

.
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Optimization algorithms

Alternating minimization: poly(1/ε) time [BFGOWW18]

• Tensor products of easy reps e.g. Horn, k-tensors

log capλ(v) can be cast as a geodesically convex program!

Domain is positive-semidefinite matrices; geodesics through P take the

form
√
PeHt

√
P

Geodesic gradient descent: poly(1/ε) time [BFGOWW19]

• Any representation, e.g. V =
∧k Cn,SymkCn, arbitrary quivers

Geodesic trust-regions: poly(log(1/ε), log κ) time [BFGOWW19]

• κ is smallest condition-number of an ε-optimizer for capλ(v)

• polynomial for some interesting cases, e.g. arbitrary quivers with

λ = 0
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Open problems

1. Is moment polytope membership in NP ∩ coNP, or even RP or P?

2. Membership is in P for Horn’s problem. But how about

exp(− poly)-search?

3. If (A1,A2) a random pair of matrices, does capλ(A1,A2) have an

ε-minimizer with condition number at most

exp(poly(log(1/ε), 〈λ〉))?
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Merci!
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