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1. Moment polytopes by example
2. Algorithms for the general problem
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Horn’s problem:
Are A1, A2, A3 € R” the spectra of three n X n matrices Hy, Hy, H3
such that

Hi + Hy = H3?

If so, can one find the matrices efficiently?
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Let V = P(Mat(n)?), define
p:V — Herm(n)?
by

(AAL  AAL  ALA + AL,
1AL + 1422

JUa [Al7 A2] —
Note eigs(AAT) = eigs(AT A), so
eigs(AlAI), eigs(AzAz), eig;s(AJ{A1 + AgAz)

is a “yes" instance to Horn's problem (in fact, all such instances take this
form).
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Moment polytopes

e G =GL(n)
e 7: G — C™ a representation of G where U(n) acts unitarily
e V C P(C™) a projective variety fixed by G,

Moment map is the map u : V — n x n Hermitians =: Herm(n) given by

BV vHeHerm(n) log ||eH ’ VH

ip is a moment map for U(n) in the physical sense! In particular:

Theorem (Kirwan)

Image of
take eigs.

YV —X 5 Herm(n) R"

is a convex polytope in R” known as moment polytope, denoted A())
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Horn polytope

e V = P(Mat(n)?)
e G=GL(n)}
e T given by

(81,82, 83) - (A1, A2) = (g1A1g§7g2A2g3T)-
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Horn polytope

e V = P(Mat(n)?)
e G=GL(n)}
e T given by

(81,82, 83) - (A1, A2) = (g1A1g§7g2A2g3T)-

e 11 :V — Herm(n)? given by
(AAL AAL ATA + ALA)

: [Ag, Ag] —
e A2 + Ao
Thus, image of
Y “w Herm(n)3 take eigs. (Rn)?’

is the* solution set of the Horn problem!
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Link to algebra

Why are moment polytopes interesting?

Encode asymptotic representation theory of coordinate ring of V!
Theorem (Mumford, Ness '84, Brion '87)

Let Vi ) denote irrep of G of type A. Then

U %{A : Ve CCIVIk} =A(V)NQ"
k

Additional math (Schur-Weyl duality, Saturation [KT00]) =

Horn polytope N (Z")* = {(A1, A2, A3) 1 VaL(m s € VoL(man® VoLm )}
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Algorithmic tasks

Input (V, 7, \)
e Projective variety ) as arithmetic circuit parametrizing it
e Representation 7 as its list of irreducible subrepresentations as
elements of Z"

e Target A € Q"

1. membership: determine whether X in A(V).

2. e-search: given A € R", either find an element v € A such that
o ||u(v) —diag(M)]| < e, OR
e correctly declare A &€ A(V).

i.e. find an approximate preimage under u!

1/exp(poly)-search suffices for membership!
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Algorithm for c-search for Horn polytope (F18)
Input: (A1, A2,A3) € (R")3 and € > 0.

1. Choose A1, As at random. Define
= A Al = A A = AlA, + ALA
Ha 171 H2 22, M3 11 2/2-

Want p; = diag(\;)
2. while ||p3 — diag(A3)|| > €, do:
a. Choose B upper triangular such that BT3B = diag(\3),

b. For i € 1,2, choose B; upper triangular s.t. B:-f,u,-B,- = diag(\)),
Set | A; + BIA,.

3. output AlA,, ATA,.



Complexity of moment polytope membership?

The case A = 0 is the null-cone problem from Ankit's talk!

1. Is membership in P?

e For tori (G = C7) Folklore,[SV17]
e For Horn polytope, by saturation conjecture[MNS12]
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Complexity of moment polytope membership?

The case A = 0 is the null-cone problem from Ankit's talk!

1. Is membership in P?

e For tori (G = C7) Folklore,[SV17]

e For Horn polytope, by saturation conjecture[MNS12]
2. Isiit in RP?

e We think so in general, but no proof yet!
3. Isiit in NP or coNP?

e In NP N coNP for V = P(C™) [BCMW17]
e Not known in general!
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Convert c-search to an optimization problem

For b € B := upper triangular matrices, define

Kempf-Ness Theorem

‘)\ € A(V) <= cap,(v) > 0 for generic v € V

e-search reduces to finding algorithm for the following:
e Given b with ||u(b - v) — diag(N)]| > e,
e Output b with
[6"- v
IT; ;1

[b- v

<=

11



Optimization algorithms

Alternating minimization: poly(1/c) time [BFGOWW18]

e Tensor products of easy reps e.g. Horn, k-tensors
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Optimization algorithms

Alternating minimization: poly(1/c) time [BFGOWW18]

e Tensor products of easy reps e.g. Horn, k-tensors

log cap,(v) can be cast as a geodesically convex program!

Domain is positive-semidefinite matrices; geodesics through P take the
form v/ Pett\/P
Geodesic gradient descent: poly(1/s) time [BFGOWW19]

e Any representation, e.g. V = /\k C",Sym*C", arbitrary quivers
Geodesic trust-regions: poly(log(1/<), log ) time [BFGOWW19]

e k is smallest condition-number of an e-optimizer for cap,(v)
e polynomial for some interesting cases, e.g. arbitrary quivers with
A=0
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Open problems

1. Is moment polytope membership in NP N coNP, or even RP or P?
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Open problems

1. Is moment polytope membership in NP N coNP, or even RP or P?

2. Membership is in P for Horn's problem. But how about
exp(— poly)-search?

3. If (A1, A2) a random pair of matrices, does cap,(Aj, A2) have an
e-minimizer with condition number at most

exp(poly(log(1/¢), (\)))?
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Merci!
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