Algorithms for the Separation of Orbit Closures of Matrices (arXiv:1801.02043)

Harm Derksen (University of Michigan) joint work with Visu Makam (IAS)

SIAM conference on

Applied Algebraic Geometry
July 12, 2019

Invariant Theory

K algebraically closed base field
G reductive algebraic group over K
e.g., $\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{O}_{n}$, finite, or products of these

Invariant Theory

K algebraically closed base field
G reductive algebraic group over K
e.g., $\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{O}_{n}$, finite, or products of these
V n-dimensional representation of G
$K[V]$ ring of polynomial functions on V
G acts by polynomial automorphisms on $K[V]$

Invariant Theory

K algebraically closed base field
G reductive algebraic group over K
e.g., $\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{O}_{n}$, finite, or products of these
V n-dimensional representation of G
$K[V]$ ring of polynomial functions on V
G acts by polynomial automorphisms on $K[V]$

Definition

invariant ring $K[V]^{G}=\{f \in K[V] \mid \forall g \in G g \cdot f=f\}$
$=\{f \in K[V] \mid f$ constant on G-orbits $\}$.

Invariant Theory

K algebraically closed base field
G reductive algebraic group over K
e.g., $\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{O}_{n}$, finite, or products of these
V n-dimensional representation of G
$K[V]$ ring of polynomial functions on V
G acts by polynomial automorphisms on $K[V]$

Definition

 invariant ring $K[V]^{G}=\{f \in K[V] \mid \forall g \in G g \cdot f=f\}$$=\{f \in K[V] \mid f$ constant on G-orbits $\}$.

Theorem (Hilbert, Nagata, Haboush)

$K[V]^{G}$ is a finitely generated K-algebra

Geometry of Orbits

Definition
 an invariant $f \in K[V]^{G}$ separates $v, w \in V$ if $f(v) \neq f(w)$

Geometry of Orbits

Definition

an invariant $f \in K[V]^{G}$ separates $v, w \in V$ if $f(v) \neq f(w)$ $\overline{G \cdot v}$ is Zariski closure of orbit $G \cdot v$.

Proposition

$\overline{G \cdot v} \cap \overline{G \cdot w}=\emptyset \Leftrightarrow f(v) \neq f(w)$ for some $f \in K[V]^{G}$
\Leftarrow is easy to see

Geometry of Orbits

Definition

an invariant $f \in K[V]^{G}$ separates $v, w \in V$ if $f(v) \neq f(w)$
$\overline{G \cdot v}$ is Zariski closure of orbit $G \cdot v$.

Proposition

$\overline{G \cdot v} \cap \overline{G \cdot w}=\emptyset \Leftrightarrow f(v) \neq f(w)$ for some $f \in K[V]^{G}$
\Leftarrow is easy to see
Orbit Closure Problem
given $v, w \in W$ determine whether $\overline{G \cdot v} \cap \overline{G \cdot w}=\emptyset$
if so, find explicit $f \in K[V]^{G}$ with $f(v) \neq f(w)$

Geometry of Orbits

Definition

an invariant $f \in K[V]^{G}$ separates $v, w \in V$ if $f(v) \neq f(w)$
$\overline{G \cdot v}$ is Zariski closure of orbit $G \cdot v$.

Proposition

$\overline{G \cdot v} \cap \overline{G \cdot w}=\emptyset \Leftrightarrow f(v) \neq f(w)$ for some $f \in K[V]^{G}$
\Leftarrow is easy to see

Orbit Closure Problem

given $v, w \in W$ determine whether $\overline{G \cdot v} \cap \overline{G \cdot w}=\emptyset$
if so, find explicit $f \in K[V]^{G}$ with $f(v) \neq f(w)$
$\mathcal{N}:=\{v \in V \mid 0 \in \overline{G \cdot v}\}$ Null cone
$v \in \mathcal{N} \Leftrightarrow \overline{G \cdot v} \cap \overline{G \cdot 0} \neq \emptyset \Leftrightarrow \forall f \in K[V]^{G}, f(v)=f(0)$

Matrix Conjugation

Example: $V=$ Mat $_{n, n} n \times n$ matrices
$G=G L_{n}$ acts on V by conjugation: $g \cdot A=g A g^{-1}$

Matrix Conjugation

Example: $V=$ Mat $_{n, n} n \times n$ matrices
$G=G L_{n}$ acts on V by conjugation: $g \cdot A=g A g^{-1}$
characteristic polynomial of $A \in$ Mat $_{n, n}$:
$\chi_{A}(t):=\operatorname{det}(t I-A)=t^{n}+f_{1}(A) t^{n-1}+\cdots+f_{n}(A)$
$K[V]^{G}=K\left[f_{1}, f_{2}, \ldots, f_{n}\right]$

Matrix Conjugation

Example: $V=$ Mat $_{n, n} n \times n$ matrices
$G=G L_{n}$ acts on V by conjugation: $g \cdot A=g A g^{-1}$
characteristic polynomial of $A \in$ Mat $_{n, n}$:
$\chi_{A}(t):=\operatorname{det}(t I-A)=t^{n}+f_{1}(A) t^{n-1}+\cdots+f_{n}(A)$
$K[V]^{G}=K\left[f_{1}, f_{2}, \ldots, f_{n}\right]$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \chi_{A}(t)=\chi_{B}(t)$

Matrix Conjugation

Example: $V=$ Mat $_{n, n} n \times n$ matrices
$G=G L_{n}$ acts on V by conjugation: $g \cdot A=g A g^{-1}$
characteristic polynomial of $A \in$ Mat $_{n, n}$:
$\chi_{A}(t):=\operatorname{det}(t I-A)=t^{n}+f_{1}(A) t^{n-1}+\cdots+f_{n}(A)$
$K[V]^{G}=K\left[f_{1}, f_{2}, \ldots, f_{n}\right]$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \chi_{A}(t)=\chi_{B}(t)$
$A \in \mathcal{N} \Leftrightarrow f_{1}(A)=\cdots=f_{n}(A)=0 \Leftrightarrow \chi_{A}(t)=t^{n} \Leftrightarrow A$ is nilpotent

Simultaneous Matrix Conjugation

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices $G=G L_{n}$ acts on V by simultaneous conjugation: $g \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} g^{-1}, \ldots, g A_{m} g^{-1}\right)$

Simultaneous Matrix Conjugation

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices
$G=G L_{n}$ acts on V by simultaneous conjugation:
$g \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} g^{-1}, \ldots, g A_{m} g^{-1}\right)$
for a word $w=w_{1} w_{2} \cdots w_{r}$ with $w_{1}, \ldots, w_{r} \in\{1,2, \ldots, m\}$ define
$A_{w}=A_{w_{1}} A_{w_{2}} \cdots A_{w_{r}}$ the length $\ell(w)$ of w is r

Simultaneous Matrix Conjugation

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices
$G=G L_{n}$ acts on V by simultaneous conjugation:
$g \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} g^{-1}, \ldots, g A_{m} g^{-1}\right)$
for a word $w=w_{1} w_{2} \cdots w_{r}$ with $w_{1}, \ldots, w_{r} \in\{1,2, \ldots, m\}$ define
$A_{w}=A_{w_{1}} A_{w_{2}} \cdots A_{w_{r}}$ the length $\ell(w)$ of w is r

Theorem (Procesi, Razmyslov, $\operatorname{char}(K)=0$)
$K[V]^{G}$ generated by all $A=\left(A_{1}, \ldots, A_{m}\right) \mapsto \operatorname{Trace}\left(A_{w}\right)$ for all w of length $\leq n^{2}$

Simultaneous Matrix Conjugation

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices
$G=G L_{n}$ acts on V by simultaneous conjugation:
$g \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} g^{-1}, \ldots, g A_{m} g^{-1}\right)$
for a word $w=w_{1} w_{2} \cdots w_{r}$ with $w_{1}, \ldots, w_{r} \in\{1,2, \ldots, m\}$ define
$A_{w}=A_{w_{1}} A_{w_{2}} \cdots A_{w_{r}}$ the length $\ell(w)$ of w is r

Theorem (Procesi, Razmyslov, char $(K)=0$)

$K[V]^{G}$ generated by all $A=\left(A_{1}, \ldots, A_{m}\right) \mapsto \operatorname{Trace}\left(A_{w}\right)$ for all w of length $\leq n^{2}$

Theorem (Donkin, char (K) arbitrary)

$K[V]^{G}$ generated by all coefficients of $\chi_{A_{w}}(t)$ for all w
D.-Makam: only need w with $\ell(w) \leq(m+1) n^{4}$

Simultaneous Matrix Conjugation

Algorithm

Forbes and Shpilka (2013) gave a (parallel) polynomial time algorithm for the orbit closure problem if $\operatorname{char}(K)=0$ but algorithm does not explicitly construct a separating invariant if orbit closures are disjoint

Simultaneous Matrix Conjugation

Algorithm

Forbes and Shpilka (2013) gave a (parallel) polynomial time algorithm for the orbit closure problem if $\operatorname{char}(K)=0$ but algorithm does not explicitly construct a separating invariant if orbit closures are disjoint

Algorithm

D. and Makam (2018) gave a polynomial time algorithm for orbit closure problem in arbitary characteristic that also explicitly constructs a separating invariant when orbit closures are disjoint

Orbit Closures for Simultaneous Conjugation

$$
\text { given } A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in V=\operatorname{Mat}_{n, n}^{m}
$$

$$
\text { define } C_{i}=\left(\begin{array}{c|c}
A_{i} & 0 \\
\hline 0 & B_{i}
\end{array}\right), i=1,2, \ldots, m
$$

Orbit Closures for Simultaneous Conjugation

$$
\text { given } A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in V=\operatorname{Mat}_{n, n}^{m}
$$

define $C_{i}=\left(\begin{array}{c|c}A_{i} & 0 \\ \hline 0 & B_{i}\end{array}\right), i=1,2, \ldots, m$
$\mathcal{C}=K\left\langle C_{1}, \ldots, C_{m}\right\rangle=\operatorname{Span}\left\{C_{w} \mid w\right.$ word $\}$

Orbit Closures for Simultaneous Conjugation

given $A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in V=\operatorname{Mat}_{n, n}^{m}$
define $C_{i}=\left(\begin{array}{c|c}A_{i} & 0 \\ \hline 0 & B_{i}\end{array}\right), i=1,2, \ldots, m$
$\mathcal{C}=K\left\langle C_{1}, \ldots, C_{m}\right\rangle=\operatorname{Span}\left\{C_{w} \mid w\right.$ word $\}$
order all words lexicographically $\emptyset, 1,2, \ldots, m, 11,12, \ldots, 1 m, 21, \ldots, 2 m, \ldots, 111,112, \ldots$

Definition

w is called a pivot if $C_{w} \notin \operatorname{Span}\left\{C_{u} \mid u<w\right\}$

Lemma

$\left\{C_{w} \mid w\right.$ is a pivot $\}$ is basis of \mathcal{C}

Orbit Closures for Simultaneous Conjugation

Lemma

every subword of a pivot is also a pivot
so \# of pivots is at most $\operatorname{dim} \mathcal{C} \leq 2 n^{2}$
largest pivot has length $<2 n^{2}$ (actually $O(n \log (n))$ by Shitov)

Orbit Closures for Simultaneous Conjugation

Lemma

every subword of a pivot is also a pivot
so \# of pivots is at most $\operatorname{dim} \mathcal{C} \leq 2 n^{2}$
largest pivot has length $<2 n^{2}$ (actually $O(n \log (n))$ by Shitov)
suppose we found all pivots of length d to find pivots of length $d+1$ we only have to check all words wi where w is a pivot of length d and $1 \leq i \leq m$
we can find all pivots in polynomial time

Orbit Closures for Simultaneous Conjugation

Theorem ($\operatorname{char}(K)=0)$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all pivots w

Orbit Closures for Simultaneous Conjugation

Theorem $(\operatorname{char}(K)=0)$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all pivots w
Proof: \Rightarrow clear, \Leftarrow :
$\mathcal{C} \subseteq\left\{\left.\left(\begin{array}{c|c}A & 0 \\ \hline 0 & B\end{array}\right) \right\rvert\, \operatorname{Trace}(A)=\operatorname{Trace}(B)\right\}$

Orbit Closures for Simultaneous Conjugation

Theorem $(\operatorname{char}(K)=0)$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all pivots w
Proof: \Rightarrow clear, \Leftarrow :
$\mathcal{C} \subseteq\left\{\left.\left(\begin{array}{c|c}A & 0 \\ \hline 0 & B\end{array}\right) \right\rvert\, \operatorname{Trace}(A)=\operatorname{Trace}(B)\right\}$
so $\operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all words w

Orbit Closures for Simultaneous Conjugation

Theorem ($\operatorname{char}(K)=0)$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all pivots w
Proof: \Rightarrow clear, \Leftarrow :
$\mathcal{C} \subseteq\left\{\left.\left(\begin{array}{c|c}A & 0 \\ \hline 0 & B\end{array}\right) \right\rvert\, \operatorname{Trace}(A)=\operatorname{Trace}(B)\right\}$
so $\operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all words w
by Procesi's Theorem $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset$

Orbit Closures for Simultaneous Conjugation

Theorem $(\operatorname{char}(K)=0)$
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all pivots w
Proof: \Rightarrow clear, \Leftarrow :
$\mathcal{C} \subseteq\left\{\left.\left(\begin{array}{c|c}A & 0 \\ \hline 0 & B\end{array}\right) \right\rvert\, \operatorname{Trace}(A)=\operatorname{Trace}(B)\right\}$
so $\operatorname{Trace}\left(A_{w}\right)=\operatorname{Trace}\left(B_{w}\right)$ for all words w
by Procesi's Theorem $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset$
Using Donkin's theorem one gets (with more effort):
Theorem (char (K) arbitrary)
$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \chi_{A_{w}}(t)=\chi_{B_{w}}(t)$ for all pivots w

Simultaneous Left-Right Action

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices
$H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}$ acts on V by simultaneous left-right action:
$(g, h) \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} h^{-1}, \ldots, g A_{m} h^{-1}\right)$

Simultaneous Left-Right Action

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices $H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}$ acts on V by simultaneous left-right action:
$(g, h) \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} h^{-1}, \ldots, g A_{m} h^{-1}\right)$

Theorem (D. and Makam)

$K[V]^{H}$ generated by all $A=\left(A_{1}, \ldots, A_{m}\right) \mapsto \operatorname{det}\left(\sum_{i=1}^{m} A_{i} \otimes T_{i}\right)$ where $T=\left(T_{1}, \ldots, T_{m}\right) \in \mathrm{Mat}_{d, d}^{m}$ and $d<m n^{3}$

Simultaneous Left-Right Action

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices $H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}$ acts on V by simultaneous left-right action:
$(g, h) \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} h^{-1}, \ldots, g A_{m} h^{-1}\right)$

Theorem (D. and Makam)
$K[V]^{H}$ generated by all $A=\left(A_{1}, \ldots, A_{m}\right) \mapsto \operatorname{det}\left(\sum_{i=1}^{m} A_{i} \otimes T_{i}\right)$ where $T=\left(T_{1}, \ldots, T_{m}\right) \in$ Mat $_{d, d}^{m}$ and $d<m n^{3}$
for $T=\left(T_{1}, \ldots, T_{m}\right) \in \operatorname{Mat}_{d, d}^{m}$, define $f_{T} \in K[V]^{H}$ by $f_{T}(A)=\operatorname{det}\left(\sum_{i=1}^{m} A_{i} \otimes T_{i}\right)$

Simultaneous Left-Right Action

Example: $V=$ Mat $_{n, n}^{m} m$-tuples $n \times n$ matrices $H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}$ acts on V by simultaneous left-right action:
$(g, h) \cdot\left(A_{1}, \ldots, A_{m}\right)=\left(g A_{1} h^{-1}, \ldots, g A_{m} h^{-1}\right)$

Theorem (D. and Makam)
$K[V]^{H}$ generated by all $A=\left(A_{1}, \ldots, A_{m}\right) \mapsto \operatorname{det}\left(\sum_{i=1}^{m} A_{i} \otimes T_{i}\right)$ where $T=\left(T_{1}, \ldots, T_{m}\right) \in$ Mat $_{d, d}^{m}$ and $d<m n^{3}$
for $T=\left(T_{1}, \ldots, T_{m}\right) \in$ Mat $_{d, d}^{m}$, define $f_{T} \in K[V]^{H}$ by $f_{T}(A)=\operatorname{det}\left(\sum_{i=1}^{m} A_{i} \otimes T_{i}\right)$

Garg-Gurvitz-Oliviera-Wigderson, Ivanyos-Qiao-Subrahmanyan there is polynomial time algorithm for deciding whether $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{N}$ and algorithm constructs $T \in \mathrm{Mat}_{n, n}^{m}$ with $f_{T}(A) \neq 0$ if $A \notin \mathcal{N}$

Orbit Closure Separation Algorithm for Left-Right Action

$$
\begin{aligned}
& \left(H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}, G=\mathrm{GL}_{n}\right) \\
& \text { suppose } A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in \text { Mat }_{n, n}^{m} \text { are given }
\end{aligned}
$$

Orbit Closure Separation Algorithm for Left-Right Action

$$
\begin{aligned}
& \left(H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}, G=\mathrm{GL}_{n}\right) \\
& \text { suppose } A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in \mathrm{Mat}_{n, n}^{m} \text { are given }
\end{aligned}
$$

$$
\text { if } A, B \in \mathcal{N} \text { then } 0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset
$$

Orbit Closure Separation Algorithm for Left-Right Action

$\left(H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}, G=\mathrm{GL}_{n}\right)$
suppose $A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in$ Mat $_{n, n}^{m}$ are given
if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$
suppose $A \notin \mathcal{N}$
we find $T \in$ Mat $_{n, n}$ with $f_{T}(A) \neq 0$
if $f_{T}(A) \neq f_{T}(B)$ then $\overline{G \cdot A} \cap \overline{G \cdot B}=\emptyset$

Orbit Closure Separation Algorithm for Left-Right Action

$\left(H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}, G=\mathrm{GL}_{n}\right)$
suppose $A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in$ Mat $_{n, n}^{m}$ are given
if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$
suppose $A \notin \mathcal{N}$
we find $T \in$ Mat $_{n, n}$ with $f_{T}(A) \neq 0$
if $f_{T}(A) \neq f_{T}(B)$ then $\overline{G \cdot A} \cap \overline{G \cdot B}=\emptyset$
suppose $f_{T}(A)=f_{T}(B) \neq 0$
(using T) we define a polynomial map $\zeta:$ Mat $_{n, n}^{m} \rightarrow$ Mat $_{n, n}^{m n^{2}}$ of degree n^{2} with the property

$$
\overline{H \cdot A} \cap \overline{H \cdot B}=\emptyset \Leftrightarrow \overline{G \cdot \zeta(A)} \cap \overline{G \cdot \zeta(B)}=\emptyset
$$

Orbit Closure Separation Algorithm for Left-Right Action

$\left(H=\mathrm{SL}_{n} \times \mathrm{SL}_{n}, G=\mathrm{GL}_{n}\right)$
suppose $A=\left(A_{1}, \ldots, A_{m}\right), B=\left(B_{1}, \ldots, B_{m}\right) \in$ Mat $_{n, n}^{m}$ are given
if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$
suppose $A \notin \mathcal{N}$
we find $T \in$ Mat $_{n, n}$ with $f_{T}(A) \neq 0$
if $f_{T}(A) \neq f_{T}(B)$ then $\overline{G \cdot A} \cap \overline{G \cdot B}=\emptyset$
suppose $f_{T}(A)=f_{T}(B) \neq 0$
(using T) we define a polynomial map $\zeta:$ Mat $_{n, n}^{m} \rightarrow$ Mat $_{n, n}^{m n^{2}}$ of degree n^{2} with the property
$\overline{H \cdot A} \cap \overline{H \cdot B}=\emptyset \Leftrightarrow \overline{G \cdot \zeta(A)} \cap \overline{G \cdot \zeta(B)}=\emptyset$
we reduced the problem to simultaneous conjugation!

