Algorithms for the Separation of Orbit Closures of Matrices (arXiv:1801.02043)

Harm Derksen (University of Michigan) joint work with Visu Makam (IAS)

> SIAM conference on Applied Algebraic Geometry July 12, 2019

> > Harm Derksen Algorithms for Orbit Closure Separation

Э

K algebraically closed base field G reductive algebraic group over K e.g., GL_n , SL_n , O_n , finite, or products of these

イロト イヨト イヨト イヨト

E DQC

K algebraically closed base field G reductive algebraic group over K e.g., GL_n , SL_n , O_n , finite, or products of these

V *n*-dimensional representation of GK[V] ring of polynomial functions on VG acts by polynomial automorphisms on K[V]

イロト イボト イヨト

3

San

K algebraically closed base field G reductive algebraic group over K e.g., GL_n , SL_n , O_n , finite, or products of these

V *n*-dimensional representation of GK[V] ring of polynomial functions on VG acts by polynomial automorphisms on K[V]

Definition

invariant ring
$$K[V]^G = \{f \in K[V] \mid \forall g \in G \ g \cdot f = f\}$$

= $\{f \in K[V] \mid f \text{ constant on } G \text{-orbits}\}.$

イロト イボト イヨト

3

San

K algebraically closed base field G reductive algebraic group over K e.g., GL_n , SL_n , O_n , finite, or products of these

V *n*-dimensional representation of GK[V] ring of polynomial functions on VG acts by polynomial automorphisms on K[V]

Definition

invariant ring
$$K[V]^G = \{f \in K[V] \mid \forall g \in G \ g \cdot f = f\}$$

= $\{f \in K[V] \mid f \text{ constant on } G \text{-orbits}\}.$

Theorem (Hilbert, Nagata, Haboush)

 $K[V]^G$ is a finitely generated K-algebra

Definition

an invariant $f \in K[V]^G$ separates $v, w \in V$ if $f(v) \neq f(w)$

Harm Derksen Algorithms for Orbit Closure Separation

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Definition

an invariant $f \in K[V]^G$ separates $v, w \in V$ if $f(v) \neq f(w)$

 $\overline{G \cdot v}$ is Zariski closure of orbit $G \cdot v$.

Proposition

$$\overline{G \cdot v} \cap \overline{G \cdot w} = \emptyset \Leftrightarrow f(v) \neq f(w)$$
 for some $f \in K[V]^G$

 $\Leftarrow \mathsf{is} \mathsf{ easy to see}$

Definition

an invariant $f \in K[V]^G$ separates $v, w \in V$ if $f(v) \neq f(w)$

 $\overline{G \cdot v}$ is Zariski closure of orbit $G \cdot v$.

Proposition

$$\overline{G \cdot v} \cap \overline{G \cdot w} = \emptyset \Leftrightarrow f(v) \neq f(w)$$
 for some $f \in K[V]^G$

 \Leftarrow is easy to see

Orbit Closure Problem

given $v, w \in W$ determine whether $\overline{G \cdot v} \cap \overline{G \cdot w} = \emptyset$ if so, find explicit $f \in K[V]^G$ with $f(v) \neq f(w)$

イロト イボト イヨト

1

San

Definition

an invariant $f \in K[V]^G$ separates $v, w \in V$ if $f(v) \neq f(w)$

 $\overline{G \cdot v}$ is Zariski closure of orbit $G \cdot v$.

Proposition

$$\overline{G \cdot v} \cap \overline{G \cdot w} = \emptyset \Leftrightarrow f(v) \neq f(w)$$
 for some $f \in K[V]^G$

 \Leftarrow is easy to see

Orbit Closure Problem

given $v, w \in W$ determine whether $\overline{G \cdot v} \cap \overline{G \cdot w} = \emptyset$ if so, find explicit $f \in K[V]^G$ with $f(v) \neq f(w)$

$$\begin{array}{l} \mathcal{N} := \{ v \in V \mid 0 \in \overline{G \cdot v} \} \text{ Null cone} \\ v \in \mathcal{N} \Leftrightarrow \overline{G \cdot v} \cap \overline{G \cdot 0} \neq \emptyset \Leftrightarrow \forall f \in K[V]^G, f(v) = f(0) \end{array}$$

イロト イボト イヨト

1

San

characteristic polynomial of $A \in Mat_{n,n}$: $\chi_A(t) := det(tI - A) = t^n + f_1(A)t^{n-1} + \dots + f_n(A)$ $K[V]^G = K[f_1, f_2, \dots, f_n]$

characteristic polynomial of
$$A \in Mat_{n,n}$$
:
 $\chi_A(t) := det(tI - A) = t^n + f_1(A)t^{n-1} + \dots + f_n(A)$
 $K[V]^G = K[f_1, f_2, \dots, f_n]$

$$\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \chi_A(t) = \chi_B(t)$$

characteristic polynomial of
$$A \in Mat_{n,n}$$
:
 $\chi_A(t) := det(tI - A) = t^n + f_1(A)t^{n-1} + \dots + f_n(A)$
 $K[V]^G = K[f_1, f_2, \dots, f_n]$
 $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \chi_A(t) = \chi_B(t)$
 $A \in \mathcal{N} \Leftrightarrow f_1(A) = \dots = f_n(A) = 0 \Leftrightarrow \chi_A(t) = t^n \Leftrightarrow A \text{ is nilpotent}$

Example: $V = Mat_{n,n}^m$ m-tuples $n \times n$ matrices $G = GL_n$ acts on V by simultaneous conjugation: $g \cdot (A_1, \ldots, A_m) = (gA_1g^{-1}, \ldots, gA_mg^{-1})$

A B > A B > A B > B
 B > B
 B > A B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B

na Cr

Example: $V = \operatorname{Mat}_{n,n}^m m$ -tuples $n \times n$ matrices $G = \operatorname{GL}_n$ acts on V by simultaneous conjugation: $g \cdot (A_1, \ldots, A_m) = (gA_1g^{-1}, \ldots, gA_mg^{-1})$

for a word $w = w_1 w_2 \cdots w_r$ with $w_1, \ldots, w_r \in \{1, 2, \ldots, m\}$ define $A_w = A_{w_1} A_{w_2} \cdots A_{w_r}$ the length $\ell(w)$ of w is r

* ロト * 同ト * 三ト * 三ト - 三 - のくぐ

Example: $V = \operatorname{Mat}_{n,n}^m m$ -tuples $n \times n$ matrices $G = \operatorname{GL}_n$ acts on V by simultaneous conjugation: $g \cdot (A_1, \ldots, A_m) = (gA_1g^{-1}, \ldots, gA_mg^{-1})$

for a word $w = w_1 w_2 \cdots w_r$ with $w_1, \ldots, w_r \in \{1, 2, \ldots, m\}$ define $A_w = A_{w_1} A_{w_2} \cdots A_{w_r}$ the length $\ell(w)$ of w is r

Theorem (Procesi, Razmyslov, char(K) = 0)

 $K[V]^G$ generated by all $A = (A_1, ..., A_m) \mapsto \text{Trace}(A_w)$ for all w of length $\leq n^2$

* ロト * 同ト * 三ト * 三ト - 三 - のくぐ

Example: $V = \operatorname{Mat}_{n,n}^m$ m-tuples $n \times n$ matrices $G = \operatorname{GL}_n$ acts on V by simultaneous conjugation: $g \cdot (A_1, \ldots, A_m) = (gA_1g^{-1}, \ldots, gA_mg^{-1})$

for a word $w = w_1 w_2 \cdots w_r$ with $w_1, \ldots, w_r \in \{1, 2, \ldots, m\}$ define $A_w = A_{w_1} A_{w_2} \cdots A_{w_r}$ the length $\ell(w)$ of w is r

Theorem (Procesi, Razmyslov, char(K) = 0)

 $K[V]^G$ generated by all $A = (A_1, \ldots, A_m) \mapsto \text{Trace}(A_w)$ for all w of length $\leq n^2$

Theorem (Donkin, char(K) arbitrary)

 $K[V]^G$ generated by all coefficients of $\chi_{A_w}(t)$ for all w

D.-Makam: only need w with $\ell(w) \leq (m+1)n^4$

ロト 《圖》 《 문》 《 문》

Algorithm

Forbes and Shpilka (2013) gave a (parallel) polynomial time algorithm for the orbit closure problem if char(K) = 0 but algorithm does not explicitly construct a separating invariant if orbit closures are disjoint

(日本)(日本)(日本)

Э

Algorithm

Forbes and Shpilka (2013) gave a (parallel) polynomial time algorithm for the orbit closure problem if char(K) = 0 but algorithm does not explicitly construct a separating invariant if orbit closures are disjoint

Algorithm

D. and Makam (2018) gave a polynomial time algorithm for orbit closure problem in arbitary characteristic that also explicitly constructs a separating invariant when orbit closures are disjoint

given
$$A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in V = Mat_{n,n}^m$$

define $C_i = \left(\begin{array}{c|c} A_i & 0 \\ \hline 0 & B_i \end{array} \right), i = 1, 2, \dots, m$

Harm Derksen Algorithms for Orbit Closure Separation

given
$$A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in V = \operatorname{Mat}_{n,n}^m$$

define $C_i = \left(\begin{array}{c|c} A_i & 0\\ \hline 0 & B_i \end{array}\right), i = 1, 2, \dots, m$

 $\mathcal{C} = \mathcal{K} \langle C_1, \dots, C_m \rangle = \mathsf{Span} \{ C_w \mid w \text{ word} \}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

given
$$A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in V = Mat_{n,n}^m$$

define $C_i = \left(\begin{array}{c|c} A_i & 0\\ \hline 0 & B_i \end{array}\right), i = 1, 2, \dots, m$

$$\mathcal{C} = \mathcal{K} \langle C_1, \ldots, C_m \rangle = \mathsf{Span} \{ C_w \mid w \text{ word} \}$$

order all words lexicographically $\emptyset, 1, 2, \dots, m, 11, 12, \dots, 1m, 21, \dots, 2m, \dots, 111, 112, \dots$

Definition

w is called a pivot if $C_w \notin \text{Span}\{C_u \mid u < w\}$

Lemma

 $\{C_w \mid w \text{ is a pivot}\}\$ is basis of C

Lemma

every subword of a pivot is also a pivot

so # of pivots is at most dim $C \le 2n^2$ largest pivot has length $< 2n^2$ (actually $O(n \log(n))$ by Shitov)

I = 1

Э

Lemma

every subword of a pivot is also a pivot

so # of pivots is at most dim $C \le 2n^2$ largest pivot has length $< 2n^2$ (actually $O(n \log(n))$ by Shitov)

suppose we found all pivots of length dto find pivots of length d + 1 we only have to check all words wi where w is a pivot of length d and $1 \le i \le m$

we can find all pivots in polynomial time

3

San

Theorem (char(K) = 0)

 $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all pivots w

Harm Derksen Algorithms for Orbit Closure Separation

Theorem (char(K) = 0) $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow Trace(A_w) = Trace(B_w)$ for all pivots w Proof: \Rightarrow clear, \Leftarrow : $C \subseteq \left\{ \left(\frac{A \mid 0}{0 \mid B} \right) \mid Trace(A) = Trace(B) \right\}$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Theorem (char(K) = 0)

 $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all pivots w

Proof:
$$\Rightarrow$$
 clear, \Leftarrow :
 $C \subseteq \left\{ \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array} \right) \middle| \operatorname{Trace}(A) = \operatorname{Trace}(B) \right\}$
so $\operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all words w

Sac

Theorem (char(K) = 0)

 $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all pivots w

Proof:
$$\Rightarrow$$
 clear, \Leftarrow :
 $C \subseteq \left\{ \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array} \right) \middle| \operatorname{Trace}(A) = \operatorname{Trace}(B) \right\}$
so $\operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all words w
by Procesi's Theorem $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset$

<回ト < 注ト < 注ト - 注

Theorem (char(K) = 0)

 $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all pivots w

Proof:
$$\Rightarrow$$
 clear, \Leftarrow :
 $C \subseteq \left\{ \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array} \right) \middle| \operatorname{Trace}(A) = \operatorname{Trace}(B) \right\}$
so $\operatorname{Trace}(A_w) = \operatorname{Trace}(B_w)$ for all words w
by Procesi's Theorem $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset$

Using Donkin's theorem one gets (with more effort):

Theorem (char(K) arbitrary)

 $\overline{G \cdot A} \cap \overline{G \cdot B} \neq \emptyset \Leftrightarrow \chi_{A_w}(t) = \chi_{B_w}(t)$ for all pivots w

Example: $V = \operatorname{Mat}_{n,n}^m$ m-tuples $n \times n$ matrices $H = \operatorname{SL}_n \times \operatorname{SL}_n$ acts on V by simultaneous left-right action: $(g, h) \cdot (A_1, \dots, A_m) = (gA_1h^{-1}, \dots, gA_mh^{-1})$

Example: $V = \operatorname{Mat}_{n,n}^m$ m-tuples $n \times n$ matrices $H = \operatorname{SL}_n \times \operatorname{SL}_n$ acts on V by simultaneous left-right action: $(g, h) \cdot (A_1, \dots, A_m) = (gA_1h^{-1}, \dots, gA_mh^{-1})$

Theorem (D. and Makam)

 $K[V]^H$ generated by all $A = (A_1, \ldots, A_m) \mapsto \det(\sum_{i=1}^m A_i \otimes T_i)$ where $T = (T_1, \ldots, T_m) \in \operatorname{Mat}_{d,d}^m$ and $d < mn^3$

イロン スポン イラン イラン・ラ

Example: $V = \operatorname{Mat}_{n,n}^m$ m-tuples $n \times n$ matrices $H = \operatorname{SL}_n \times \operatorname{SL}_n$ acts on V by simultaneous left-right action: $(g, h) \cdot (A_1, \dots, A_m) = (gA_1h^{-1}, \dots, gA_mh^{-1})$

Theorem (D. and Makam)

 $K[V]^H$ generated by all $A = (A_1, \ldots, A_m) \mapsto \det(\sum_{i=1}^m A_i \otimes T_i)$ where $T = (T_1, \ldots, T_m) \in \operatorname{Mat}_{d,d}^m$ and $d < mn^3$

for $T = (T_1, \ldots, T_m) \in \operatorname{Mat}_{d,d}^m$, define $f_T \in K[V]^H$ by $f_T(A) = \det(\sum_{i=1}^m A_i \otimes T_i)$

Example: $V = \operatorname{Mat}_{n,n}^m$ m-tuples $n \times n$ matrices $H = \operatorname{SL}_n \times \operatorname{SL}_n$ acts on V by simultaneous left-right action: $(g, h) \cdot (A_1, \dots, A_m) = (gA_1h^{-1}, \dots, gA_mh^{-1})$

Theorem (D. and Makam)

 $K[V]^H$ generated by all $A = (A_1, \ldots, A_m) \mapsto \det(\sum_{i=1}^m A_i \otimes T_i)$ where $T = (T_1, \ldots, T_m) \in \operatorname{Mat}_{d,d}^m$ and $d < mn^3$

for $T = (T_1, ..., T_m) \in Mat_{d,d}^m$, define $f_T \in K[V]^H$ by $f_T(A) = det(\sum_{i=1}^m A_i \otimes T_i)$

Garg-Gurvitz-Oliviera-Wigderson, Ivanyos-Qiao-Subrahmanyan

there is polynomial time algorithm for deciding whether $A = (A_1, \ldots, A_m) \in \mathcal{N}$ and algorithm constructs $T \in Mat_{n,n}^m$ with $f_T(A) \neq 0$ if $A \notin \mathcal{N}$

イロト イボト イヨト

Ξ

$$(H = SL_n \times SL_n, G = GL_n)$$

suppose $A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in Mat_{n,n}^m$ are given

◆ロ → ◆回 → ◆ 臣 → ◆ 臣 → ○ へ ()

$$(H = SL_n \times SL_n, \ G = GL_n)$$

suppose $A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in Mat_{n,n}^m$ are given
if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$

$$(H = SL_n \times SL_n, G = GL_n)$$

suppose $A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in Mat_{n,n}^m$ are given

if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$

suppose $A \notin \mathcal{N}$ we find $T \in Mat_{n,n}$ with $f_T(A) \neq 0$ if $f_T(A) \neq f_T(B)$ then $\overline{G \cdot A} \cap \overline{G \cdot B} = \emptyset$

E nac

$$(H = SL_n \times SL_n, G = GL_n)$$

suppose $A = (A_1, \dots, A_m), B = (B_1, \dots, B_m) \in Mat_{n,n}^m$ are given
if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$
suppose $A \notin \mathcal{N}$

we find $T \in \operatorname{Mat}_{n,n}$ with $f_T(A) \neq 0$ if $f_T(A) \neq f_T(B)$ then $\overline{G \cdot A} \cap \overline{G \cdot B} = \emptyset$ suppose $f_T(A) = f_T(B) \neq 0$ (using T) we define a polynomial map $\zeta : \operatorname{Mat}_{n,n}^m \to \operatorname{Mat}_{n,n}^{mn^2}$ of degree n^2 with the property

$$\overline{H \cdot A} \cap \overline{H \cdot B} = \emptyset \Leftrightarrow \overline{G \cdot \zeta(A)} \cap \overline{G \cdot \zeta(B)} = \emptyset$$

イロト イボト イヨト

= nan

$$(H = SL_n \times SL_n, G = GL_n)$$

suppose $A = (A_1, \ldots, A_m), B = (B_1, \ldots, B_m) \in Mat_{n,n}^m$ are given
if $A, B \in \mathcal{N}$ then $0 \in \overline{H \cdot A} \cap \overline{H \cdot B} \neq \emptyset$
suppose $A \notin \mathcal{N}$
we find $T \in Mat_{n,n}$ with $f_T(A) \neq 0$
if $f_T(A) \neq f_T(B)$ then $\overline{G \cdot A} \cap \overline{G \cdot B} = \emptyset$
suppose $f_T(A) = f_T(B) \neq 0$
(using T) we define a polynomial map $\zeta : Mat_{n,n}^m \to Mat_{n,n}^{mn^2}$ of
degree n^2 with the property

$$\overline{H \cdot A} \cap \overline{H \cdot B} = \emptyset \Leftrightarrow \overline{G \cdot \zeta(A)} \cap \overline{G \cdot \zeta(B)} = \emptyset$$

we reduced the problem to simultaneous conjugation!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ