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Invariant Theory

K algebraically closed base field
G reductive algebraic group over K
e.g., GLn, SLn, On, finite, or products of these

V n-dimensional representation of G
K [V ] ring of polynomial functions on V
G acts by polynomial automorphisms on K [V ]

Definition

invariant ring K [V ]G = {f ∈ K [V ] | ∀g ∈ G g · f = f }
= {f ∈ K [V ] | f constant on G -orbits}.

Theorem (Hilbert, Nagata, Haboush)

K [V ]G is a finitely generated K -algebra
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Geometry of Orbits

Definition

an invariant f ∈ K [V ]G separates v ,w ∈ V if f (v) 6= f (w)

G · v is Zariski closure of orbit G · v .

Proposition

G · v ∩ G · w = ∅ ⇔ f (v) 6= f (w) for some f ∈ K [V ]G

⇐ is easy to see

Orbit Closure Problem

given v ,w ∈W determine whether G · v ∩ G · w = ∅
if so, find explicit f ∈ K [V ]G with f (v) 6= f (w)

N := {v ∈ V | 0 ∈ G · v} Null cone
v ∈ N ⇔ G · v ∩ G · 0 6= ∅ ⇔ ∀f ∈ K [V ]G , f (v) = f (0)
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Matrix Conjugation

Example: V = Matn,n n × n matrices
G = GLn acts on V by conjugation: g · A = gAg−1

characteristic polynomial of A ∈ Matn,n:
χA(t) := det(tI − A) = tn + f1(A)tn−1 + · · ·+ fn(A)
K [V ]G = K [f1, f2, . . . , fn]

G · A ∩ G · B 6= ∅ ⇔ χA(t) = χB(t)

A ∈ N ⇔ f1(A) = · · · = fn(A) = 0⇔ χA(t) = tn ⇔ A is nilpotent
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Simultaneous Matrix Conjugation

Example: V = Matmn,n m-tuples n × n matrices
G = GLn acts on V by simultaneous conjugation:
g · (A1, . . . ,Am) = (gA1g

−1, . . . , gAmg
−1)

for a word w = w1w2 · · ·wr with w1, . . . ,wr ∈ {1, 2, . . . ,m} define
Aw = Aw1Aw2 · · ·Awr

the length `(w) of w is r

Theorem (Procesi, Razmyslov, char(K ) = 0)

K [V ]G generated by all A = (A1, . . . ,Am) 7→ Trace(Aw )
for all w of length ≤ n2

Theorem (Donkin, char(K ) arbitrary)

K [V ]G generated by all coefficients of χAw (t) for all w

D.-Makam: only need w with `(w) ≤ (m + 1)n4
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Simultaneous Matrix Conjugation

Algorithm

Forbes and Shpilka (2013) gave a (parallel) polynomial time
algorithm for the orbit closure problem if char(K ) = 0 but
algorithm does not explicitly construct a separating invariant if
orbit closures are disjoint

Algorithm

D. and Makam (2018) gave a polynomial time algorithm for orbit
closure problem in arbitary characteristic that also explicitly
constructs a separating invariant when orbit closures are disjoint

Harm Derksen Algorithms for Orbit Closure Separation



Simultaneous Matrix Conjugation

Algorithm

Forbes and Shpilka (2013) gave a (parallel) polynomial time
algorithm for the orbit closure problem if char(K ) = 0 but
algorithm does not explicitly construct a separating invariant if
orbit closures are disjoint

Algorithm

D. and Makam (2018) gave a polynomial time algorithm for orbit
closure problem in arbitary characteristic that also explicitly
constructs a separating invariant when orbit closures are disjoint

Harm Derksen Algorithms for Orbit Closure Separation



Orbit Closures for Simultaneous Conjugation

given A = (A1, . . . ,Am),B = (B1, . . . ,Bm) ∈ V = Matmn,n

define Ci =

(
Ai 0

0 Bi

)
, i = 1, 2, . . . ,m

C = K 〈C1, . . . ,Cm〉 = Span{Cw | w word}

order all words lexicographically
∅, 1, 2, . . . ,m, 11, 12, . . . , 1m, 21, . . . , 2m, . . . , 111, 112, . . .

Definition

w is called a pivot if Cw 6∈ Span{Cu | u < w}

Lemma

{Cw | w is a pivot} is basis of C
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Orbit Closures for Simultaneous Conjugation

Lemma

every subword of a pivot is also a pivot

so # of pivots is at most dim C ≤ 2n2

largest pivot has length < 2n2 (actually O(n log(n)) by Shitov)

suppose we found all pivots of length d
to find pivots of length d + 1 we only have to check all words wi
where w is a pivot of length d and 1 ≤ i ≤ m

we can find all pivots in polynomial time
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Orbit Closures for Simultaneous Conjugation

Theorem (char(K ) = 0)

G · A ∩ G · B 6= ∅ ⇔ Trace(Aw ) = Trace(Bw ) for all pivots w

Proof: ⇒ clear, ⇐:

C ⊆
{(

A 0

0 B

) ∣∣∣Trace(A) = Trace(B)

}
so Trace(Aw ) = Trace(Bw ) for all words w
by Procesi’s Theorem G · A ∩ G · B 6= ∅ �

Using Donkin’s theorem one gets (with more effort):

Theorem (char(K ) arbitrary)

G · A ∩ G · B 6= ∅ ⇔ χAw (t) = χBw (t) for all pivots w
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Simultaneous Left-Right Action

Example: V = Matmn,n m-tuples n × n matrices
H = SLn×SLn acts on V by simultaneous left-right action:
(g , h) · (A1, . . . ,Am) = (gA1h

−1, . . . , gAmh
−1)

Theorem (D. and Makam)

K [V ]H generated by all A = (A1, . . . ,Am) 7→ det(
∑m

i=1 Ai ⊗ Ti )
where T = (T1, . . . ,Tm) ∈ Matmd ,d and d < mn3

for T = (T1, . . . ,Tm) ∈ Matmd ,d , define fT ∈ K [V ]H by
fT (A) = det(

∑m
i=1 Ai ⊗ Ti )

Garg-Gurvitz-Oliviera-Wigderson, Ivanyos-Qiao-Subrahmanyan

there is polynomial time algorithm for deciding whether
A = (A1, . . . ,Am) ∈ N and algorithm constructs T ∈ Matmn,n with
fT (A) 6= 0 if A 6∈ N

Harm Derksen Algorithms for Orbit Closure Separation



Simultaneous Left-Right Action

Example: V = Matmn,n m-tuples n × n matrices
H = SLn×SLn acts on V by simultaneous left-right action:
(g , h) · (A1, . . . ,Am) = (gA1h

−1, . . . , gAmh
−1)

Theorem (D. and Makam)

K [V ]H generated by all A = (A1, . . . ,Am) 7→ det(
∑m

i=1 Ai ⊗ Ti )
where T = (T1, . . . ,Tm) ∈ Matmd ,d and d < mn3

for T = (T1, . . . ,Tm) ∈ Matmd ,d , define fT ∈ K [V ]H by
fT (A) = det(

∑m
i=1 Ai ⊗ Ti )

Garg-Gurvitz-Oliviera-Wigderson, Ivanyos-Qiao-Subrahmanyan

there is polynomial time algorithm for deciding whether
A = (A1, . . . ,Am) ∈ N and algorithm constructs T ∈ Matmn,n with
fT (A) 6= 0 if A 6∈ N

Harm Derksen Algorithms for Orbit Closure Separation



Simultaneous Left-Right Action

Example: V = Matmn,n m-tuples n × n matrices
H = SLn×SLn acts on V by simultaneous left-right action:
(g , h) · (A1, . . . ,Am) = (gA1h

−1, . . . , gAmh
−1)

Theorem (D. and Makam)

K [V ]H generated by all A = (A1, . . . ,Am) 7→ det(
∑m

i=1 Ai ⊗ Ti )
where T = (T1, . . . ,Tm) ∈ Matmd ,d and d < mn3

for T = (T1, . . . ,Tm) ∈ Matmd ,d , define fT ∈ K [V ]H by
fT (A) = det(

∑m
i=1 Ai ⊗ Ti )

Garg-Gurvitz-Oliviera-Wigderson, Ivanyos-Qiao-Subrahmanyan

there is polynomial time algorithm for deciding whether
A = (A1, . . . ,Am) ∈ N and algorithm constructs T ∈ Matmn,n with
fT (A) 6= 0 if A 6∈ N

Harm Derksen Algorithms for Orbit Closure Separation



Simultaneous Left-Right Action

Example: V = Matmn,n m-tuples n × n matrices
H = SLn×SLn acts on V by simultaneous left-right action:
(g , h) · (A1, . . . ,Am) = (gA1h

−1, . . . , gAmh
−1)

Theorem (D. and Makam)

K [V ]H generated by all A = (A1, . . . ,Am) 7→ det(
∑m

i=1 Ai ⊗ Ti )
where T = (T1, . . . ,Tm) ∈ Matmd ,d and d < mn3

for T = (T1, . . . ,Tm) ∈ Matmd ,d , define fT ∈ K [V ]H by
fT (A) = det(

∑m
i=1 Ai ⊗ Ti )

Garg-Gurvitz-Oliviera-Wigderson, Ivanyos-Qiao-Subrahmanyan

there is polynomial time algorithm for deciding whether
A = (A1, . . . ,Am) ∈ N and algorithm constructs T ∈ Matmn,n with
fT (A) 6= 0 if A 6∈ N

Harm Derksen Algorithms for Orbit Closure Separation



Orbit Closure Separation Algorithm for Left-Right Action

(H = SLn×SLn, G = GLn)
suppose A = (A1, . . . ,Am),B = (B1, . . . ,Bm) ∈ Matmn,n are given

if A,B ∈ N then 0 ∈ H · A ∩ H · B 6= ∅

suppose A 6∈ N
we find T ∈ Matn,n with fT (A) 6= 0
if fT (A) 6= fT (B) then G · A ∩ G · B = ∅

suppose fT (A) = fT (B) 6= 0

(using T ) we define a polynomial map ζ : Matmn,n → Matmn2
n,n of

degree n2 with the property

H · A ∩ H · B = ∅ ⇔ G · ζ(A) ∩ G · ζ(B) = ∅

we reduced the problem to simultaneous conjugation!
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we reduced the problem to simultaneous conjugation!
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Orbit Closure Separation Algorithm for Left-Right Action

(H = SLn×SLn, G = GLn)
suppose A = (A1, . . . ,Am),B = (B1, . . . ,Bm) ∈ Matmn,n are given

if A,B ∈ N then 0 ∈ H · A ∩ H · B 6= ∅

suppose A 6∈ N
we find T ∈ Matn,n with fT (A) 6= 0
if fT (A) 6= fT (B) then G · A ∩ G · B = ∅

suppose fT (A) = fT (B) 6= 0

(using T ) we define a polynomial map ζ : Matmn,n → Matmn2
n,n of

degree n2 with the property

H · A ∩ H · B = ∅ ⇔ G · ζ(A) ∩ G · ζ(B) = ∅

we reduced the problem to simultaneous conjugation!
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