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Summary

This course gives an introduction to the mathematics of quantum information.

Notation

• Σ – finite set, Section 1.1
• P(Σ) – probability distributions on Σ, Eq. (1.12)
• H,K, . . . – finite-dimensional Hilbert spaces, Section 1.1
• L(H,H′) – linear operators from H to H′, Eq. (1.5)
• PSD(H) – cone of positive semidefinite operators on H, Eq. (1.8)
• A ≤ B – (Loewner) partial order defined using the PSD cone, Eq. (1.9)
• Tr[M ] – trace of matrix M , Eq. (1.4)
• TrB[MAB] – partial trace of MAB over system B, Definition 2.8
• D(H) – quantum states on H, Definition 1.7
• |Φ+

AB⟩ – maximally entangled state, Definition 3.5
• |Φ(x,z)⟩ – Bell states, Eq. (3.4)
• U(H) – unitary operators on H, Eq. (2.21)
• U(H,K) – isometries from H to K, Eq. (2.20)
• f(M),

√
M , logM , . . . – functions of Hermitian operators, Definition 1.6

• ∥x∥p – ℓp-norm of vectors, Eq. (4.1)
• ∥M∥p – Schatten p-norm of operator M , Definition 4.1
• ∥M∥1 – trace norm of operator M , Eq. (4.2)
• ∥M∥2 – Frobenius norm of operator M , Eq. (4.3)
• ∥M∥∞ – operator norm of M , Eq. (4.5)
• ⟨M,N⟩ – Hilbert-Schmidt inner product, Eq. (4.4)
• T (p, q) – trace distance between distributions p and q, Definition 7.4
• T (ρ, σ) – trace distance between states ρ and σ, Definition 4.6
• F (ρ, σ) – fidelity between states ρ and σ, Definition 4.9
• IA – identity channel on HA, Eq. (4.26)
• CP(HA,HB) – completely positive maps from HA to HB, Definition 4.15
• C(HA,HB) – quantum channels from HA to HB, Definition 4.15
• JΦ

AB – Choi operator of ΦA→B, Eq. (5.1)
• ∆ – completely dephasing channel, Eq. (5.3)
• H(p), H(X), H(X)p – Shannon entropy, Definitions 6.1 and 6.4
• Tn,ε(p) – typical set, Definition 6.10
• H(ρ), H(A), H(A)ρ – von Neumann entropy, Definitions 7.1 and 8.1
• F (T , ρ) – channel fidelity of channel T and state ρ, Definition 7.7
• Sn,ε(ρ) – typical subspace, Definition 7.11
• I(A : B)ρ – mutual information of state ρAB, Definition 8.3
• χ({px, ρx}) – Holevo χ-quantity of ensemble {px, ρx}, Definition 9.1
• D(p∥q) – relative entropy of distribution p with respect to distribution q, Definition 9.6
• D(ρ∥σ) – quantum relative entropy of state ρ with respect to state σ, Definition 9.7
• Sep(HA : HB) – separable operators on HA ⊗HB, Definition 10.8
• SepD(HA : HB) – separable states on HA ⊗HB, Definition 3.1
• SepCP(HA : HB,HA′ : HB′) – separable completely positive maps, Definition 10.4
• SepC(HA : HB,HA′ : HB′) – separable quantum channels, Definition 10.4
• LOCC(HA : HB,HA′ : HB′) – LOCC channels, Definition 10.3
• Entr(HA : HB) – operators of entanglement rank at most r on HA ⊗HB , Definition 10.10
• x ≺ y – majorization of vectors, Definition 11.2
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• Pπ – permutation matrices, Definition 11.3
• λ(A) – vector of eigenvalues of a Hermitian operator, Section 11.2
• A ≺ B – majorization of Hermitian operators, Definition 11.12
• ED(A : B)ρ – distillable entanglement of ρ, Definition 12.1
• EC(A : B)ρ – entanglement cost of ρ, Definition 12.2
• Symn(H) – symmetric subspace of H⊗n, Definition 13.1
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Lecture 1

Introduction to quantum information,
states, and measurements

This course gives an introduction to the mathematical theory of quantum information. We
will learn the basic formalism and toolbox that allows us to reason about states, channels, and
measurements, discuss important notions such as entropy and entanglement, and see how these
can be applied to solve fundamental mathematical problems that relate to the storage, estimation,
compression, and transmission of quantum information.

To make this concrete, suppose that we would like to transmit a message through a com-
munication channel (think of an optical fiber with some loss). To achieve this, we might try to
encode our message m into a quantum state ρm, which we then send through the channel. The
receiver receives some noisy state ρ̃m and wants to apply a measurement that allows them to
recover m with high probability. This situation is visualized in the following figure:

quantum channel decoderencoder
message

m

state

ρm

noisy state

ρ̃m

decoded message

m̂

What is the optimal way of encoding the message when the channel is quantum mechanical? To
even make sense of this question, we first have to learn how to mathematically model quantum
states and channels. We will do so in the first weeks of the course. In the remainder of the course,
we will learn a variety of mathematical tools that will eventually allow us to attack information
processing problems such as the above.

Throughout the course, we will use some linear algebra (in finite dimensions) and probability
theory (of distributions with finitely many outcomes). See Chapter 2.1 and Appendix 1 of
“Quantum Computation and Quantum Information” by Nielsen and Chuang for a good summary.
We will recap the most important bits in these lecture notes.

1.1 Hilbert space and Dirac notation

Today, we start with an introduction to the axioms (rules, laws, postulates) of quantum informa-
tion. Some of the axioms may look differently from (or more general than) what you remember
from a previous course on quantum mechanics, and we will discuss this carefully. The first axiom
is the following:

Axiom 1.1 (System). To every quantum system, we associate a Hilbert space H.

Throughout this course we will restrict to finite-dimensional Hilbert spaces. Recall that a
finite-dimensional Hilbert space is nothing but a complex vector space together with an inner
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product, which we denote by ⟨ϕ|ψ⟩. We will always take our inner product to be anti-linear in
the first argument! Any Hilbert space carries a natural norm, defined by ∥ψ∥ :=

√
⟨ψ|ψ⟩.

Throughout this course we will use Dirac’s “bra-ket” notation, with “kets” |ψ⟩ denoting vectors
in H and “bras” ⟨ψ| denoting the corresponding dual vector in H∗, i.e., ⟨ψ| := ⟨ψ|·⟩. The latter
means that ⟨ψ| is the linear functional that sends a vector |ϕ⟩ to the inner product ⟨ψ|ϕ⟩. Thus,
“bra” and “ket” together give the inner product ⟨ψ|ϕ⟩ = ⟨ψ||ϕ⟩. A unit vector is a vector |ψ⟩
whose norm (or norm squared) is equal to one, i.e., ⟨ψ|ψ⟩ = 1.

A well-known example is the Hilbert space H = Cd with the standard inner product ⟨ϕ|ψ⟩ =∑d
i=1 ϕiψi and norm ∥ψ∥ = (

∑d
i=1|ψi|2)1/2. Any d-dimensional Hilbert space can be identified

with Cd by choosing an orthonormal basis. When we speak of a basis of a Hilbert space we
always mean an orthonormal basis. One can think of kets as column vectors and bras as row
vectors. Hence, if |ψ⟩ is a column vector, then ⟨ψ| denotes the row vector obtained by taking
the conjugate transpose of the column vector. The following compares Dirac notation with the
corresponding expression in coordinates:

|ψ⟩ =



ψ1
...
ψd


 , ⟨ψ| =

(
ψ1 · · · ψd

)
, (1.1)

⟨ϕ|ψ⟩ =
d∑

i=1

ϕiψi, |ψ⟩⟨ϕ| =



ψ1ϕ1 . . . ψ1ϕd

...
...

ψdϕ1 . . . ψdϕd


 .

As a first nontrivial example of using Dirac notation, let |ψ⟩ be a unit vector. Then

P = |ψ⟩⟨ψ| (1.2)

is the orthogonal projection (‘projector’) onto the one-dimensional space C|ψ⟩. For example,
if |ψ⟩ = ( 10 ), then |ψ⟩⟨ψ| = ( 1 0

0 0 ), which clearly projects on the first coordinate. To prove the
general claim, we only need to verify that P |ψ⟩ = |ψ⟩⟨ψ|ψ⟩ = |ψ⟩, since ⟨ψ|ψ⟩ = ∥ψ∥2 = 1, while
P |ϕ⟩ = |ψ⟩⟨ψ|ϕ⟩ = 0 for any |ϕ⟩ that is orthogonal to |ψ⟩. From this, it is also clear that

∑

i

|ei⟩⟨ei| = I (1.3)

is the identity operator for any choice of orthonormal basis |ei⟩.
Another useful formula is that the trace of any X ∈ L(H) can be calculated as follows:

Tr[X] =
∑

i

⟨ei|X|ei⟩. (1.4)

Indeed, the right-hand side terms are just the diagonal entries of X when represented as a matrix
with respect to the basis |ei⟩. Exercises 1.1 and 1.2 allow you to sharpen your Dirac notation
skills some more.

1.1.1 Qubits and qudits

The simplest quantum system is the qubit – short for quantum bit. It corresponds to the
two-dimensional Hilbert space H = C2. We denote its standard (or computational) basis basis by

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.
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These two vectors together make up a classical bit inside a quantum bit: {0, 1} ∋ x 7→ |x⟩ ∈ C2.
More generally, a quantum system with Hilbert space H = Cd is called a qudit. We denote

its standard basis by |x⟩ for x ∈ {0, 1, . . . , d− 1}, that is,

|0⟩ =




1
0
0
...
0



, |1⟩ =




0
1
0
...
0



, . . .

In quantum information, it is often useful to work with Hilbert spaces that have a privileged
basis labeled by some set Σ. The reason is that we might want to use this basis to store some
classical data (such as a message that one would like to transmit, encrypt, or compute with,
or the outcomes of measurement, etc). In principle we could simply use H = Cd, as discussed
above, but it is often convenient to allow Σ to be some arbitrary finite set. This is completely
analogously to how in probability theory one usually considers probability distributions over an
arbitrary alphabet.

Therefore, given a finite set Σ, we denote by CΣ the Hilbert space with orthonormal ba-
sis {|x⟩}x∈Σ. That is, ⟨x|y⟩ = δx,y. Note that the Hilbert space is uniquely determined by this
requirement. As before, we call the basis {|x⟩}x∈Σ the standard (or computational) basis of CΣ.
Remark 1.2. If you would like to picture this vector space concretely, enumerate the elements
of Σ in some arbitrary way, say Σ = {x1, . . . , xd}, where d = |Σ|. Then you can identify CΣ

with Cd (the basis vector |xj⟩ of the former corresponds to the basis vector |j⟩ of the latter).
Formally, the vector space CΣ can be defined as the vector space of functions Σ → C, equipped

with the inner product ⟨f |g⟩ :=∑x∈Σ f(x)g(x). In this picture, the standard basis vector |x⟩
corresponds to the function fx : Σ → C, fx(y) = δx,y which sends x to 1 and all other y ̸= x to 0.

1.2 Operators, eigenvectors, eigenvalues

Throughout these lectures we will often deal with operators on Hilbert spaces, so it is useful to
introduce some notation and recall some concepts from linear algebra. For Hilbert spaces H
and K, define

L(H,K) := {A : H → K linear}, L(H) := L(H,H) = {A : H → H linear}. (1.5)

We write I or IH for the identity operator on a Hilbert space H. Recall that any operator
A ∈ L(H,K) has an adjoint. This is the operator A† ∈ L(K,H) defined by the property that

⟨ϕ|A†|ψ⟩ = ⟨ψ|A|ϕ⟩ ∀|ϕ⟩ ∈ H, |ψ⟩ ∈ K.
If you write A as a matrix with respect to an arbitrary orthonormal basis, then the adjoint is
given by the conjugate transpose matrix:

A† = AT = (A)T.

Note that this is the same rule that we used to go from a ‘ket’ to the corresponding ‘bra’, see
Eq. (1.1). Indeed, if we think of |ψ⟩ ∈ H as an operator C → H then it is not hard (but perhaps
still slightly confusing) to verify that ⟨ψ| = |ψ⟩† – so this makes perfect sense!

An operator A ∈ L(H) is called Hermitian if A = A†. The set of Hermitian operators forms a
real vector space of dimension d2, where d = dimH. Hermitian operators are diagonalizable with
real eigenvalues and orthonormal eigenvectors.1 This is the content of the following important
result.

1Recall that |ψ⟩ is called an eigenvector of A with eigenvalue a if A|ψ⟩ = a|ψ⟩.
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Theorem 1.3 (Spectral theorem for Hermitian operators). Let A ∈ L(H) be a Hermitian
operator, where d = dimH. Then there exist real numbers a1, . . . , ad ∈ R and an orthonormal
basis |ψ1⟩, . . . , |ψd⟩ of H such that each |ψj⟩ is an eigenvector of A, with eigenvalue aj. Moreover,
we have the following “eigendecomposition”:

A =
d∑

j=1

aj |ψj⟩⟨ψj |. (1.6)

Conversely, any operator that has a decomposition of the form of Eq. (1.6), with real ai and
orthonormal |ψj⟩, is necessarily Hermitian with these eigenvectors and eigenvalues. The latter
can be seen by verifying that

A|ψk⟩ =
d∑

j=1

aj |ψj⟩⟨ψj |ψk⟩ =
d∑

j=1

aj |ψj⟩δj,k = ak|ψk⟩

for k = 1, . . . , d. In the second step we crucially used the orthonormality of the |ψj⟩. Indeed,
if A is of the form in Eq. (1.6) but the vectors |ψj⟩ in this decomposition are not orthogonal,
they need not be eigenvectors of A, see Exercise 1.3.

An important class of Hermitian operators are the (orthogonal) projections, which are the
Hermitian operators P such that P 2 = P . Equivalently, their eigenvalues are in {0, 1}, see
Exercise 1.4. For example, P = |ψ⟩⟨ψ| is a projection for any unit vector |ψ⟩, as we already
discussed in Eq. (1.2). Note that the eigendecomposition (1.6) decomposes any Hermitian
operator into a linear combination of projections |ψj⟩⟨ψj | onto (pairwise orthogonal) eigenvectors.

The eigendecomposition as written above is not unique. Indeed, while the eigenvalues
and eigenspaces are uniquely determined, (1.6) depends on choosing an orthonormal basis of
eigenvectors in each eigenspaces. If we want a unique decomposition, we can instead write:

A =
∑

a∈S
aPa, (1.7)

where S is the set of eigenvalues of A and Pa denotes the orthogonal projection onto the eigenspace
corresponding to eigenvalue a ∈ S. This decomposition is unique, and it can be obtained from
Eq. (1.6) by setting S := {aj} and Pa :=

∑
j s.th. aj=a|ψj⟩⟨ψj |.

We now come to a central definition. We say that an operator A is positive semidefinite
(PSD) if A is Hermitian and all its eigenvalues are nonnegative. Thus A can be written as in
Eq. (1.6) with ai ≥ 0. Positive semidefinite operators are so important that we will give them
their own notation and define

PSD(H) = {A ∈ L(H) : A positive semidefinite}. (1.8)

A positive semidefinite operator such that all ai > 0 is called positive definite (PD), and we
write PD(H) for the subset of positive definite operators. Equivalently, PD(H) consists of those
operators in PSD(H) that are invertible. Both sets PSD(H) and PD(H) are convex,2 as you can
prove in Exercise 1.11.

In general it can be difficult to compute the eigenvalues. To this end, the following criterion
is useful to test when an operator is PSD (Exercises 1.5 and 1.7):

2Recall that a set S is convex if px+ (1− p)y ∈ S for every x, y ∈ S and p ∈ [0, 1].
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Lemma 1.4 (When is an operator positive semidefinite?). For a Hermitian operator A ∈ L(H),
the following five conditions are equivalent:

(a) A is positive semidefinite.

(b) A = B†B for an operator B ∈ L(H).

(c) A = B†B for an operator B ∈ L(H,K) and some Hilbert space K.

(d) ⟨ψ|A|ψ⟩ ≥ 0 for every |ψ⟩ ∈ H.

(e) Tr[AC] ≥ 0 for every C ∈ PSD(H).

Careful: There are Hermitian matrices A such that all entries Aij are positive, but A is not
positive semidefinite! You can find an example in Exercise 1.8.

We introduce one final piece of notation: for two operators A,B ∈ L(H), we write

A ≥ B or B ≤ A (1.9)

to denote that A−B ∈ PSD(H). This defines a partial order on L(H) that is sometimes called
the Loewner order. For example, A ≥ 0 means simply that A is positive semidefinite, while
A ≤ I states that I −A is positive semidefinite, i.e., A is Hermitian and has eigenvalues less or
equal to one. See Exercise 1.9 for more detail.

Remark 1.5 (Operators vs. numbers). It is useful to think of the Hermitian operators as the
operator counterpart of the real numbers R, and the PSD operators as the operator counterpart
of the nonnegative numbers R≥0. In fact, this is exactly what you obtain for H = C. For example,
the characterization A = B†B of PSD operators generalizes the statement that the nonnegative
numbers are precisely the absolute values squared of arbitrary complex numbers: a ∈ R≥0 if and
only if a = b̄b = |b|2 for some b ∈ C.

For Hermitian operators, one can construct new operators from old ones by applying an
arbitrary function to the eigenvalues while keeping the eigenvectors the same. This is also known
as a ‘functional calculus’, and it is formally defined as follows:

Definition 1.6 (Functions of Hermitian operators). Let f : D → R be an arbitrary function
where D ⊆ R. For any Hermitian operator A with eigendecomposition A =

∑d
j=1 aj |ψj⟩⟨ψj | and

all eigenvalues aj ∈ D, we define3

f(A) :=

d∑

j=1

f(aj) |ψj⟩⟨ψj |.

Moreover, if g : D → R is another function as above then f(A)g(A) = (fg)(A), where fg is the
pointwise product of f and g (i.e., (fg)(x) = f(x)g(x) for x ∈ D). Similarly, if g : f(D) → R
then g(f(A)) = (g ◦ f)(A), where g ◦ f is the composition (i.e., (g ◦ f)(x) = g(f(x)) for x ∈ D).

For example, if f(x) = xn is the n-th power function on R, then

f(A) = An = A · · ·A︸ ︷︷ ︸
n times

,

3This definition does not depend on the choice of eigendecomposition. Indeed, if we write A in the form (1.7),
which does not depend on any choices, then f(A) =

∑
a f(a)Pa.
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so this agree with the usual definition of the n-th power of an operator. For a more interesting
example, take the square-root function f(x) =

√
x which is only defined on R≥0. We can

use it to define the square root of a PSD operator A by
√
A := A1/2 := f(A). That is,

if A =
∑d

j=1 aj |ψj⟩⟨ψj | is an eigendecomposition of A then the square root is given by

√
A := A1/2 :=

d∑

j=1

√
aj |ψj⟩⟨ψj |. (1.10)

This operator is again PSD and, clearly, (
√
A)2 = A. Moreover,

√
A is the unique PSD operator

with the property that it squares to A. You can show this in Exercise 1.10.
Warning: In general, it is not true that

√
AB =

√
A
√
B for A, B PSD. Indeed, AB will in

general not even be PSD! (Can you find an example?)

1.3 Quantum states

We will now discuss the state space of quantum systems.

Definition 1.7 (State). A state, quantum state, density operator, or density ‘matrix’ is by
definition a positive semidefinite operator with trace one. We denote the set of states on a Hilbert
space H by

D(H) = {ρ ∈ PSD(H) | Tr[ρ] = 1}.

Axiom 1.8 (States). The state space of a quantum system with Hilbert space H is given by D(H).

This definition might look surprising to you if you have taken a quantum mechanics course
(or a popular quantum computing course). Aren’t quantum states described by unit vectors in
Hilbert space? In fact, ρ = |ψ⟩⟨ψ| is a quantum state for any unit vector |ψ⟩ ∈ H. Such states
are called pure, as in the following definition.

Definition 1.9 (Pure and mixed states). A quantum state ρ is called pure if it is of the
form ρ = |ψ⟩⟨ψ| for some unit vector |ψ⟩ ∈ H. Quantum states that are not pure are called mixed.
In particular, we always have a maximally mixed state, defined by τ = I

d , where I denotes the
identity operator and d = dimH.

Note that the pure states ρ = |ψ⟩⟨ψ| are precisely the states of rank one, or equivalently, the
states that have a single nonzero eigenvalue (which is then necessarily equal to 1). Note that
the pure states are in one-to-one correspondence with unit vectors, up to an overall phase (i.e.,
|ψ⟩ and eiθ|ψ⟩ give rise to the same pure state). Indeed, you might know that an overall phase
of a state vector is unobservable – in this sense state vectors are more redundant than density
matrices. Mathematically, the space of pure states is a projective space. For convenience we
will sometimes say things like “the pure state |ψ⟩”, even though this is slightly imprecise and
we should rather say “the pure state |ψ⟩⟨ψ|”. You can explore the difference between pure and
mixed states in Exercise 1.12.

What is the meaning of mixed states? Suppose {pj , ρj} is an ensemble of quantum states –
i.e., (pj) is a probability distribution and the ρj are states. Such an ensemble might describe a
device that outputs state ρj with probability pj . How should we describe the average output of
such a device? Clearly, we should take the average

ρ =
∑

j

pjρj . (1.11)

12



Then it is easy to see that ρ is again a quantum state. But note that even if the ρj are all pure,
ρ will in general be mixed, see Exercise 1.13. Thus, mixed states not only arise naturally, but
they are in fact crucial to describe such common situations.

Mixed states also us to describe probability distributions using quantum states. Let

P(Σ) :=

{
(px)x∈Σ ∈ RΣ

≥0 :
∑

x∈Σ
px = 1

}
∼=
{
p : Σ → R≥0 :

∑

x∈Σ
p(x) = 1

}
(1.12)

denote the set of all probability distributions on a finite set Σ (depending on the context we
will think of p as a vector or as a function). Throughout these lecture notes all probability
distributions will have finitely many outcomes unless explicitly stated otherwise. Then we make
the following definition.

Definition 1.10 (Classical states). Let Σ be a finite set. A quantum state ρ on H = CΣ is called
classical if it is of the form

ρ =
∑

x∈Σ
px|x⟩⟨x| (1.13)

where (px)x∈Σ ∈ P(Σ) is an arbitrary probability distribution. In other words, the classical states
are precisely those that are diagonal with respect to the standard basis.

For example, the classical states of a qubit H = C2 are of the form

ρ = p0|0⟩⟨0|+ p1|1⟩⟨1| =
(
p0 0
0 p1

)
,

where p0, p1 ≥ 0 and p0 + p1 = 1.
Remark 1.11 (Why not restrict to pure states?). There is a more general and somewhat philo-
sophical point that is worth mentioning. In quantum computing, we usually start out with a pure
initial state (say, all qubits are initialized in |0⟩ or |1⟩), apply unitary operations, and only at the
very end carry out a measurement. This allows one to exclusively work with unit vectors |ψ⟩
rather than with density operators ρ.

In contrast, in quantum information theory we often deal with uncertainty and noise. In
this situation, mixed states arise naturally, as we already saw above. Similarly, instead of only
dealing with unitary operations, we will use the more general notion of a quantum channel, which
can send pure states to mixed states. This will be introduced in Lecture 4.

(In physics language, this is the distinction between ‘closed’ and ‘open’ quantum systems.)
However, it is very important to point out that both formalisms are completely equivalent.

For example, one of the key points of Lecture 2 will be that we can always think of mixed states
as describing a part of a larger system that is in a pure state. Similarly, in Lecture 5 we will see
that quantum channels can be understood as the effect of unitary operations on a larger system.

To understand the structure of quantum states better, note that they are (by definition)
Hermitian operators, so the spectral theorem (Theorem 1.3) applies. Accordingly, we can write
any quantum state in the form

ρ =
d∑

j=1

pj |ψj⟩⟨ψj |, (1.14)

with eigenvalues pj ∈ R, orthonormal eigenvectors |ψj⟩, and d = dimH. Since ρ is positive
semidefinite, all pj ≥ 0, and since Tr[ρ] = 1,

∑d
j=1 pj = 1. We record this useful result.
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Lemma 1.12. For any quantum state, the collection of eigenvalues forms a probability distribution.

If we put ρj = |ψj⟩⟨ψj |, then Eq. (1.14) is precisely of the form of Eq. (1.11). This shows that
any quantum state can be understood as the average of an ensemble of (pairwise orthogonal) pure
states. But careful: In general there are many different ways of writing a given quantum state as
an ensemble. In particular, if someone hands you a quantum state in the form of Eq. (1.11), the
ρj might have nothing to do with the eigendecomposition (since the ρj need neither be pure nor
orthogonal). You can explore this in Exercise 1.13.

Formally, the fact that for any ensemble {pj , ρj} of quantum states the average (1.11) is again
a quantum state means that D(H) is convex. The following picture shows three convex sets:

The first has a ‘round’ boundary, while the second also has some ‘flat’ sides, and the third is
a ‘polygon’. What does the convex set of quantum states look like? To get more intuition we
consider the case of a single quantum bit.

1.4 States of a single quantum bit: Bloch ball

In this section we will study the geometry of D(C2) – the state space of a single qubit. We start
by observing that the four Pauli matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(1.15)

are linearly independent and form a basis of the real vector space of Hermitian 2× 2-matrices.4

Indeed, a 2× 2 matrix is Hermitian iff its diagonal entries are real and its top-right entry is the
complex conjugate of its bottom-left entry. Note that X, Y , Z are traceless, while Tr[I] = 2. As
a consequence, we see that

H =
1

2

(
I + xX + yY + zZ

)
=

1

2

(
1 + z x− iy
x+ iy 1− z

)
, where r⃗ =



x
y
z


 ∈ R3,

is the most general form of a Hermitian 2× 2-matrix with Tr[H] = 1. The vector r⃗ is called the
Bloch vector of H, and so far it is completely arbitrary.

When is H a quantum state? We need to determine that H is PSD, i.e., has nonnegative
eigenvalues. Since Tr[H] = 1, its eigenvalues are given by {λ, 1− λ} for some λ ∈ R. A moments
thought shows that λ ≥ 0 and 1− λ ≥ 0 if and only if λ(1− λ) ≥ 0 (since λ and 1− λ cannot
both be negative). But note that this product can be computed by the determinant of H:

λ(1− λ) = det(H) =
1

4
((1 + z)(1− z)− (x+ iy)(x− iy))

=
1

4

(
1− x2 − y2 − z2

)
=

1

4

(
1− ∥r⃗∥2

)
.

(1.16)

Thus, H is a quantum state if and only if ∥r⃗∥ ≤ 1. Thus we have shown that the state space of a
qubit can be identified with the unit ball in R3. This is known as the Bloch ball and it is clearly
convex, in agreement with our prior discussion.

4The Pauli matrices satisfy the following properties which are extremely useful: They each square to the
identity, X2 = Y 2 = Z2 = I, and we have the ‘cyclic’ identity XY Z = iI, which implies XY = −Y X = iZ etc.
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When is H a pure state? This is the case precisely when λ(1− λ) = 0 (one eigenvalue is zero
and the other is one). By Eq. (1.16), the latter means that ∥r⃗∥ = 1, i.e., r⃗ is contained in the
boundary of the ball – the unit sphere – which is called the Bloch sphere. We summarize:

Lemma 1.13 (Bloch ball). Any qubit state ρ ∈ D(C2) can be written in the form

ρ =
1

2
(I + rxX + ryY + rzZ) , (1.17)

where r⃗ =
( rx
ry
rz

)
is an arbitrary vector of norm ∥r⃗∥ ≤ 1. Moreover, ρ is pure if and only if ∥r⃗∥ = 1.

The following figure visualizes the Bloch ball and some important features that we discuss
now:

x

z

y

classical

|0⟩⟨0|

|1⟩⟨1|

τ = I
2

The north and south poles have Bloch vectors

r⃗0 =



0
0
1


 , r⃗1 =




0
0
−1


 , (1.18)

which correspond via Eq. (1.17) to the pure states

|0⟩⟨0| =
(
1 0
0 0

)
, |1⟩⟨1| =

(
0 0
0 1

)
.

The blue line segment between north and south pole corresponds precisely to the classical states

ρ = p|0⟩⟨0|+ (1− p)|1⟩⟨1| =
(
p 0
0 1− p

)
. (1.19)

In particular, the origin of the Bloch ball corresponds to the maximally mixed qubit state τ = I/2,
with Bloch vector r⃗ = 0.

The ‘west and east poles’ of the Bloch ball

r⃗+ =



1
0
0


 , r⃗− =



−1
0
0


 . (1.20)
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must also correspond to pure states. We claim that they correspond to the so-called Hadamard
basis states, which are defined by

|±⟩ := 1√
2
(|0⟩ ± |1⟩) = 1√

2

(
1
±1

)
. (1.21)

Indeed,

|+⟩⟨+| = 1

2

(
1 1
1 1

)
, |−⟩⟨−| = 1

2

(
1 −1
−1 1

)
, (1.22)

are precisely the states that via Eq. (1.17) correspond to r⃗±.
Can you figure out the pure states that correspond to the ‘front’ and ‘back poles’ of the Bloch

ball?
You can learn more about the Bloch sphere in Exercise 1.14. In particular, you may prove

there the useful fact that the components of the Bloch vector r⃗ can be calculated by

x = Tr[Xρ], y = Tr[Y ρ], z = Tr[Zρ].

In Exercise 1.15 you can design a procedure for estimating unknown qubit state by determining
its Bloch vector. This is an eminently practical task faced by experimental quantum physicists
on a daily basis. Naturally this will also require a way to extract information from a quantum
system. We will discuss this next.

1.5 Measurements

The discussion so far has been slightly formal, since we did not yet discuss the rules for getting
information out of a quantum system. For this we need the notion of a measurement.

Definition 1.14 (Measurement). A measurement or POVM (short for positive operator valued
measure) on a Hilbert space H with outcomes in some finite set Ω is a function

µ : Ω → PSD(H) such that
∑

x∈Ω
µ(x) = I. (1.23)

If all µ(x) are orthogonal projections then we say that µ is projective.

When we apply a measurement µ to a quantum system in some state ρ, the outcome will be an
element x ∈ Ω. We will often draw pictures such as the following to illustrate this situation:

µ
ρ x ∈ Ω

(1.24)

By convention, single lines correspond to quantum systems, while double lines denote classical
values.

Importantly, the measurement outcome x will in general be random (even if we know µ
and ρ precisely). Indeed, quantum mechanics is a probabilistic theory. How can we calculate
the probability of each measurement outcome? This is known as the Born’s rule, which is the
content of our next axiom.
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Axiom 1.15 (Born’s rule). If we measure a quantum system in state ρ ∈ D(H) using a
measurement µ, then the probability of outcome x ∈ Ω is given by Born’s rule:

Pr(outcome x) = Tr[µ(x)ρ] (1.25)

Let us verify that Born’s rule in Eq. (1.25) defines a probability distribution. Indeed, Tr[µ(x)ρ] ≥ 0
(since by Lemma 1.4 the trace of a product of two PSD operators is always nonnegative), and

∑

x∈Ω
Tr[µ(x)ρ] = Tr[

∑

x∈Ω
µ(x)ρ] = Tr[ρ] = 1,

where we first use linearity, then Eq. (1.23), and finally that quantum states have trace one.
Thus, Born’s rule is well-defined.

Remark 1.16 (After the measurement?). You may wonder what happens to the quantum state
after the measurement – perhaps you remember from your quantum mechanics course that the
state ‘collapses’ into a post-measurement state, or something similar. At this point we do not
want to make any statement about this. For now we will simply assume that the quantum
state is ‘gone’ after the measurement and all that remains is the measurement outcome – as in
Figure (1.24).

How can we construct measurements? One way is by using an orthonormal basis. For a
qubit, the standard basis of C2 is {|0⟩, |1⟩} and the corresponding standard basis measurement is
defined by

µStd : {0, 1} → PSD(C2), x 7→ |x⟩⟨x|. (1.26)

This clearly defines a projective measurement, since the |x⟩⟨x| are projections and

|0⟩⟨0|+ |1⟩⟨1| =
(
1 0
0 0

)
+

(
0 0
0 1

)
= I.

Another basis of C2 is the Hadamard basis {|+⟩, |−⟩} defined in Eq. (1.21). The corresponding
measurement is called the Hadamard basis measurement. It is given by

µHad : {0, 1} → PSD(C2), µHad(0) = |+⟩⟨+|, µHad(1) = |−⟩⟨−|. (1.27)

This also defines a projective measurement, as follows from Eq. (1.22).
In fact, by Eq. (1.3), the same procedure works for any quantum system and any orthonormal

basis of that system. Basis measurements are so useful that they get their own definition.

Definition 1.17 (Basis measurement). For an arbitrary orthonormal basis {|ψx⟩}x∈Ω of H, the
corresponding basis measurement is the projective measurement

µ : Ω → PSD(H), µ(x) = |ψx⟩⟨ψx|.

If we take Cd or CΣ with its standard basis, so µ(x) = |x⟩⟨x|, this is called the standard basis
measurement.

For a basis measurement, Born’s rule can be rewritten as follows:

Pr(outcome x | state ρ) = Tr[µ(x)ρ] = Tr[|ψx⟩⟨ψx|ρ] = ⟨ψx|ρ|ψx⟩, (1.28)
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where the last equality follows from the cyclic property of the trace (Tr[ABC] = Tr[BCA]), or
by evaluating the trace in the basis {|ψx⟩}. In particular, if you perform a basis measurement
and ρ = |ψx⟩⟨ψx| is one of the basis state then the outcome will be x with certainty!

For a standard basis measurement, we would write Eq. (1.28) as

Pr(outcome x | state ρ) = ⟨x|ρ|x⟩. (1.29)

If ρ = |Ψ⟩⟨Ψ| is a pure state, then Eq. (1.28) is the same as |⟨ψx|Ψ⟩|2, while Eq. (1.29) can also
be written as |⟨x|Ψ⟩|2 = |Ψx|2, where Ψx is the coefficient of |x⟩ when expanding |Ψ⟩ =∑xΨx|x⟩
in the standard basis. (If you are attending Ronald de Wolf’s quantum computing course then
this formula will look very familiar to you!)

As a concrete example, suppose that we have a qubit in state ρ = |0⟩⟨0| and we carry out the
standard basis measurement in Eq. (1.26). Then the probability of outcome ‘0’ is given by

pStd(0) = ⟨0|ρ|0⟩ = |⟨0|0⟩|2 = 1,

i.e., the measurement yields outcome ‘0’ with certainty (as one might expect). In contrast, if
we perform the Hadamard basis measurement in Eq. (1.27) then the probability of outcome ‘0‘
(corresponding to the basis vector |+⟩) is given by

pHad(0) = ⟨+|ρ|+⟩ = |⟨+|0⟩|2 = 1

2
,

so both outcomes are equally likely. Similarly, if ρ = |1⟩⟨1| then the standard basis measurement
always yields outcome ‘1’, while the Hadamard basis measurement is again completely random.
This shows that the standard and the Hadamard basis are in some way ‘complementary’ – if
our qubit is in a standard basis state then doing a Hadamard basis measurement reveals no
information at all.

In Exercise 1.17, you can show an uncertainty relation, which establishes a precise quantitative
tradeoff between the uncertainty in the two measurement outcomes. In particular, there exists
no quantum state for which both outcomes are certain.

Are all measurements projective or even basis measurements? Certainly not! Exercise 1.20 dis-
cusses the so-called ‘pretty good measurements’ as a concrete example of a family of measurements
that are in general not projective.
Remark 1.18 (Quantum theory as non-commutative probability theory). It is instructive to
think of the formalism of quantum information as a non-commutative generalization of ordinary
probability theory. This can be made precise in many ways, for example, using operator algebras.
Here is a very concrete way. We saw that probability distributions can be embedded into quantum
states by associating to each distribution the corresponding “classical” state (Definition 1.10):

P(Σ) → D(CΣ), p = (px)x∈Σ 7→ ρ =
∑

x∈Σ
px|x⟩⟨x|.

We can also ask the converse question: How can we get a probability distribution out of a
quantum state? This is exactly achieved by measurements (Definition 1.14), since for any
measurement µ : Ω → PSD(H) we obtain a map

D(H) → P(Ω), ρ 7→ p = (px)x∈Ω, where p(x) = Tr[µ(x)ρ].

In fact, any map D(H) → P(Ω) that is compatible with convex combinations is necessarily of
this form, see Exercise 1.19! This gives a nice and purely mathematical motivation for defining
measurements as we did.
Remark 1.19 (Measurements vs. observables). If you ever attended a course in quantum mechanics,
you may know the notion of an observable, which is another way to think about measurements.
In fact, observables correspond precisely to projective measurements with outcomes in the reals
(i.e., Ω ⊆ R). In Exercise 1.21 you can explore this further.
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1.6 Exercises

1.1 Dirac notation quiz: In the Dirac notation, every vector is written as a ‘ket’ |ψ⟩ and every
linear functional is written as a ‘bra’ ⟨ψ| = |ψ⟩†, where † denotes the adjoint. One can think
of kets as column vectors and bras as row vectors. Hence, if |ψ⟩ is a column vector, then ⟨ψ|
denotes the row vector obtained by taking the conjugate transpose of the column vector.

Let |ψ⟩ and |ϕ⟩ be vectors in Cn and A an n× n matrix. Which of the following expressions
are syntactically correct? For those that do, what kind of object do they represent (e.g.,
numbers, vectors, . . . )? Can you write them using ‘ordinary’ notation?

(a) |ψ⟩+ ⟨ϕ|
(b) |ψ⟩⟨ϕ|
(c) A⟨ψ|

(d) ⟨ψ|A
(e) ⟨ψ|A+ ⟨ψ|
(f) |ψ⟩⟨ϕ|+A

(g) |ψ⟩⟨ϕ|A
(h) |ψ⟩A⟨ϕ|
(i) ⟨ψ|A|ϕ⟩

(j) ⟨ψ|A|ϕ⟩+ ⟨ψ|ϕ⟩
(k) ⟨ψ|ϕ⟩⟨ψ|
(l) ⟨ψ|ϕ⟩A

1.2 Trace vs. inner product: Let A = |ψ⟩⟨ψ|, B = |ϕ⟩⟨ϕ| for |ψ⟩, |ϕ⟩ ∈ H. Verify that
Tr[AB] = |⟨ψ|ϕ⟩|2.

1.3 Eigenvalue basics:

(a) Suppose that H =
∑
ai|ψi⟩⟨ψi|. Show that when the |ψi⟩ are orthogonal then they are

eigenvectors of H. Show that when the |ψi⟩ are orthonormal then the numbers ai are
eigenvalues of H. Are these assumption necessary?

(b) Consider the matrix H = |0⟩⟨0|+ |+⟩⟨+|, where |+⟩ is defined as in Eq. (1.21). Compute
its eigenvectors and eigenvalues.

(c) Compute the eigenvalues and eigenvectors of the matrix

H =




1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1


 .

Hint: You can avoid computing the determinant of a 4 by 4 matrix!

1.4 Projections: A Hermitian operator P is an (orthogonal) projection if it satisfies either of
the following two properties: (i) any eigenvalue of P is 0 or 1, (ii) P 2 = P . Show that these
two properties are equivalent.

1.5 Criterion for positive semidefiniteness: Prove Lemma 1.4.

1.6 PSD factorization: Find a PSD matrix A, such that A = B†B, for some B ∈ L(H,K)
with dimK < dimH. Also, find a PSD matrix A, for which such K and B do not exist. In
general, how large does dimK have to be?

1.7 Positive semidefinite operators: For all Q ∈ PSD(H), show that:

(a) If Q ∈ PSD(H) and A ∈ L(H) then A†QA ∈ PSD(H)
(b) If Q ∈ PD(H) then Q−1 ∈ PD(H).

1.8 Positive entries but not PSD: Find an example of a Hermitian matrix A with nonnegative
entries which is not a positive semidefinite matrix.

1.9 Positive semidefinite order: Given two operators A and B, we write A ≤ B if the operator
B −A is positive semidefinite. Show that the following three conditions are equivalent:

19



(a) 0 ≤ A ≤ I.
(b) A is Hermitian and has eigenvalues in [0, 1].
(c) ⟨ψ|A|ψ⟩ ∈ [0, 1] for every unit vector |ψ⟩ ∈ H.

1.10 Uniqueness of the PSD square root: Let A ∈ PSD(H). Show that if B ∈ PSD(H) is
such that B2 = A, then B =

√
A. As such, the PSD square root is unique.

1.11 Convexity:

(a) Show that PSD(H) and PD(H) are convex and closed under multiplication by R≥0 (i.e.,
convex cones).

(b) Show that D(H) is convex.
(c) An extreme point of a convex set S is an element z ∈ S that cannot be written as a

proper convex combination (i.e., z ̸= px + (1 − p)y for any p ∈ (0, 1) and x ̸= y ∈ S).
Show that the extreme points of D(H) are precisely the pure states.

1.12 Pure states and unit vectors:

(a) Consider the following states:

ρ1 =
1

2

(
1 1
1 1

)
, ρ2 =

(
3
4 0
0 1

4

)
, ρ3 =

1

2

(
1 −1
−1 1

)
.

Verify for each state whether it is pure, and if so, find |ψi⟩ such that ρi = |ψi⟩⟨ψi|.
(b) Let |ψ⟩ = a|0⟩ + b|1⟩ ∈ C2 with a and b are complex numbers with |a|2 + |b|2 = 1.

Compute the associated density matrix |ψ⟩⟨ψ|.

1.13 States vs. ensembles: Consider the ensemble consisting of the qubit states |0⟩⟨0| and |1⟩⟨1|
occuring with probabilities 2

3 and 1
3 , respectively.

(a) Compute the quantum state ρ corresponding to this ensemble. Is ρ pure or mixed?
(b) Find an ensemble consisting of three distinct pure states (with non-zero probabilities)

that corresponds to the same state ρ. Why can such an ensemble not correspond to an
eigendecomposition?

1.14 Bloch sphere: Recall from Lemma 1.13 that the state ρ of a single qubit can be parameterized
by the Bloch vector r⃗ ∈ R3, ∥r⃗∥ ≤ 1. Namely:

ρ =
1

2
(I + rxX + ryY + rzZ).

(a) Show that rx = Tr[ρX], ry = Tr[ρY ], and rz = Tr[ρZ].
(b) Let σ be another qubit state, with Bloch vector s⃗. Verify that Tr[ρσ] = 1

2 (1 + r⃗ · s⃗) .
(c) Let {|ψi⟩}i=0,1 denote an arbitrary orthonormal basis of C2. Let r⃗i denote the Bloch

vector of |ψi⟩⟨ψi| for i ∈ {0, 1}. Show that r⃗0 = −r⃗1,
(d) Let µ : {0, 1} → PSD(C2) denote the basis measurement corresponding to the basis in

part (c). Show that the probability of obtaining outcome i ∈ {0, 1} when measuring ρ
using µ is given by 1

2 (1 + r⃗ · r⃗i). How can you visualize this fact on the Bloch sphere?

Hint: X2 = Y 2 = Z2 = I, while XY = iZ, Y Z = iX, ZX = iY are traceless.

1.15 Estimating an unknown qubit state: Your goal in this problem is to come up with a
procedure for estimating an unknown qubit state ρ.
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(a) Consider the following function:

µ : {x, y, z} × {0, 1} → PSD(C2), µ(a, b) =
I + (−1)bσa

6
,

where σx = X, σy = Y , and σz = Z are the three Pauli matrices. Show that µ is a valid
measurement. Is it projective?

(b) Show that the probabilities of outcomes when measuring ρ using µ are given by

p(a, b) =
1 + (−1)bra

6
,

where r⃗ =
( rx
ry
rz

)
is the Bloch vector of ρ. Hint: See the hint in Exercise 1.14.

(c) Now suppose an experimentalist prepares the state ρ and carries out the measurement µ
not just once but a large number of times. Afterwards they send you a list {(ai, bi)}ni=1,
where n is the number of repetitions and (ai, bi) is the measurement outcome in the i-th
repetition. Assume that n is very large. How can you obtain a good estimate of the
quantum state ρ from this data?

1.16  Practice: In Exercise 1.15, you discussed how to estimate an unknown qubit state ρ by
performing the following measurement on many copies of ρ:

µ : {x, y, z} × {0, 1} → PSD(C2), µ(a, b) =
I + (−1)bσa

6
,

where σx = X, σy = Y , and σz = Z are the Pauli matrices.

The file 01-measurement-outcomes.txt on the course homepage contains N = 100 000
measurement outcomes produced in this way (one per row). Give an estimate for the
unknown state ρ.

1.17 Uncertainty relation: Given a measurement µ : {0, 1} → PSD(H) with two outcomes and
a state ρ ∈ D(H), define the bias by

β(ρ) =
∣∣Tr[µ(0)ρ]− Tr[µ(1)ρ]

∣∣.

(a) Show that β ∈ [0, 1], that β = 1 iff the measurement outcome is certain, and that β = 0
iff both outcomes are equally likely (for the given measurement and state).

In class, we discussed how to measure a qubit in the standard basis |0⟩,|1⟩ and in the
Hadamard basis |+⟩, |−⟩. Let βStd and βHad denote the bias for these two measurements.

(b) Compute βStd(ρ) and βHad(ρ) in terms of the Bloch vector of the qubit state ρ.
(c) Show that β2Std(ρ) + β2Had(ρ) ≤ 1. Why is this called an uncertainty relation?

1.18 Functionals: Let λ : L(H) → C be a linear function.

(a) Show that there exists a unique X ∈ L(H) such that λ[M ] = Tr[X†M ] for all M ∈ L(H).
(b) Now assume that λ[M ] ≥ 0 for all M ≥ 0. What does this imply for X?

1.19 Measurements: Let H be a Hilbert space, Ω a finite set, and M : D(H) → P(Ω) an
arbitrary map that preserves convex combinations, i.e., M(

∑
j pjρj) =

∑
j pjM(ρj) for any

ensemble {pj , ρj} of quantum states. Show that there exists a measurement µ : Ω → PSD(H)
such that p =M(ρ) is given by p(x) = Tr[µ(x)ρ] for all x ∈ Ω and ρ ∈ D(H).
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1.20 Pretty good measurement: Let ρ1, . . . , ρn ∈ D(H) be quantum states with the property
that I ∈ span {ρ1, . . . , ρn}.

(a) Show that A :=
∑n

j=1 ρj is positive definite.
(b) Define µ : {1, . . . , n} → L(H) by µ(j) = A−1/2ρjA

−1/2. Show that µ is a measurement.

The measurement µ is called the ‘pretty good measurement’. See also Exercise 4.3.

1.21 � Observables (for those of you who have taken a quantum mechanics course): In
this problem we discuss the relationship between measurements as defined in Definition 1.14
and the notion of ‘observables’ that you might be familiar with from an introductory quantum
mechanics course. An observable on a quantum system is by definition a Hermitian operator
on the corresponding Hilbert space H.

(a) Let µ : Ω → PSD(H) be a projective measurement with outcomes in the real numbers,
i.e., a finite subset Ω ⊆ R. Show that the following operator is an observable:

O =
∑

x∈Ω
xµ(x) (1.30)

In fact, this is always an eigendecomposition, but you need not prove this.
(b) Argue that, conversely, any observable can be written as in Eq. (1.30) for some suitable µ.
(c) Now suppose that the system is in state ρ and we perform the measurement µ. Show

that the expectation value of the measurement outcome is given by Tr[ρO].
For a pure state ρ = |ψ⟩⟨ψ|, this can also be written as ⟨ψ|O|ψ⟩. Do you recognize these
formulas from your quantum mechanics class?

(d) Consider an arbitrary qubit observable O = tI + sxX + syY + szZ. Compute its
expectation value in a state with Bloch vector r⃗.
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Lecture 2

Joint systems, reduced states,
purifications

Last week, we mathematically defined quantum states and measurements, and we discussed that
probabilities of measurement outcomes are computed by Born’s rule [Eq. (1.25)]. We saw that
states are described by ‘density operators’ – positive semidefinite operators with unit trace. A
basic distinction is between pure states ρ = |ψ⟩⟨ψ|, which correspond to unit vectors in Hilbert
space (up to overall phase), and mixed states, which cannot be written in this way. We discussed
that one motivation for mixed states is that they allow us to model ensembles.

Today, we will see another use for mixed states. If we have a composite system that consists
of two or more subsystems, then, even if the overall state is pure, the subsystems are typically
described by mixed states (see Eq. (2.13)). This phenomenon is closely related to the notion of
entanglement, which will be discussed in more detail in Lecture 3.

2.1 Joint or composite systems

Axiom 2.1 (Composing systems). For a quantum system composed of n subsystems, with Hilbert
spaces H1, . . . ,Hn, the overall Hilbert space is given by the tensor product H = H1 ⊗ · · · ⊗ Hn.

For example, a quantum system comprised of n qubits is described by the Hilbert space

H = C2 ⊗ · · · ⊗ C2

︸ ︷︷ ︸
n factors

= (C2)⊗n.

This space has a natural product basis

|x1, . . . , xn⟩ = |x1⟩ ⊗ · · · ⊗ |xn⟩,

indexed by bitstrings x = (x1, . . . , xn) ∈ {0, 1}n. We often leave out the commas and write, e.g.,

|010⟩ = |0⟩ ⊗ |1⟩ ⊗ |0⟩.

More generally, if Hi = CΣi for i = 1, . . . , n, then

H = H1 ⊗ · · · ⊗ Hn = CΣ1 ⊗ · · · ⊗ CΣn

has a natural product basis |x1, . . . , xn⟩ = |x1⟩⊗· · ·⊗|xn⟩ indexed by tuples x ∈ Σ = Σ1×· · ·×Σn.
In this way, H ∼= CΣ are isomorphic.

What are possible states of a joint system? Here is a first class of states:
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Definition 2.2 (Product states and correlated states). A state ρ ∈ D(H1 ⊗ · · · ⊗ Hn) is called a
product state if

ρ = ρ1 ⊗ · · · ⊗ ρn. (2.1)

for ρi ∈ D(Hi), i = 1, . . . , n. A state that is not a product state is called correlated.

You can think of product states as the quantum generalization of joint probability distributions
where the random variables are independent, which means that the probability distribution factors
as p(x1, . . . , xn) = p1(x1) . . . pn(xn). See Exercise 2.1.

Not all states are product states. Here is an example of a (maximally classically) correlated
two-qubit state:

ρ =
1

2
|00⟩⟨00|+ 1

2
|11⟩⟨11| = 1

2
|0⟩⟨0| ⊗ |0⟩⟨0|+ 1

2
|1⟩⟨1| ⊗ |1⟩⟨1| = 1

2




1
0

0
1


 . (2.2)

To see the middle equality, remember that |00⟩ = |0⟩ ⊗ |0⟩, so |00⟩⟨00| = (|0⟩ ⊗ |0⟩)(⟨0| ⊗
⟨0|) = |0⟩⟨0| ⊗ |0⟩⟨0| etc. The right-hand side matrix is with respect to the product basis
|00⟩, |01⟩, |10⟩, |11⟩. Note that Eq. (2.2) is a classical state – corresponding to a probability
distribution of two bits which are both equal to 0 or both equal to 1, with 50% probability each.
Thus the notion of correlations has nothing to do with quantum mechanics per se.

Remark 2.3 (Tensor product of operators). In Eq. (2.1) we used the tensor product of operators.
Let us recall its definition. If X ∈ L(H1,K1) and Y ∈ L(H2,K2) are linear operators, then their
tensor product X ⊗ Y is a linear operator in L(H1 ⊗H2,K1 ⊗K2) defined as follows:

(
X ⊗ Y

)(
|ψ⟩ ⊗ |ϕ⟩

)
:= X|ψ⟩ ⊗ Y |ϕ⟩ ∀|ψ⟩ ∈ H1, |ϕ⟩ ∈ H2. (2.3)

Note that this definition is not circular – we define the tensor product of operators in terms of
the tensor product of vectors. In particular, the matrix entries of X ⊗ Y with respect to product
bases are given by

⟨a, b|X ⊗ Y |c, d⟩ = ⟨a|X|c⟩⟨b|Y |d⟩.

Thus, if we think of operators as matrices then X ⊗ Y is simply given by the Kronecker product
of X and Y .

An important special case is when one of the Hilbert spaces is one-dimensional. E.g., suppose
that H2 = C. In this case, any vector |η⟩ ∈ K2 can be identified with an operator Y ∈ L(C,K2)
(in coordinates: a column vector is a matrix with a single column). Thus, we can think of X⊗|η⟩
as the operator in L(H1,K1 ⊗K2) that acts as

(
X ⊗ |η⟩

)
|ψ⟩ = X|ψ⟩ ⊗ |η⟩ ∀|ψ⟩ ∈ H1. (2.4)

(If also H1 = C then we simply recover the tensor product of vectors.)
Similarly, if K2 = C then Y ∈ L(H2,C) is nothing but a dual vector ⟨η| ∈ H∗

2 (in coordinates,
a matrix with a single row is the same as a row vector), so we can think of X⊗⟨χ| as an operator
in L(H1 ⊗H2,K1) that acts as

(
X ⊗ ⟨χ|

)(
|ψ⟩ ⊗ |ϕ⟩

)
= X|ψ⟩ ⟨χ|ϕ⟩︸ ︷︷ ︸

∈C

= ⟨χ|ϕ⟩X|ψ⟩ ∀|ψ⟩ ∈ H1, |ϕ⟩ ∈ H2. (2.5)
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Since ⟨χ|ϕ⟩ is a number, it does not matter if we write it on the left or on the right (by linearity).
(If also K1 = C then we recover the tensor product of dual vectors.)

If all this seems confusing to you, you can simply take Eqs. (2.4) and (2.5) as the definition
of the tensor product of an operator and a vector (or dual vector).

Remark 2.4. Product states are rather special. Indeed, a simple dimension counting argument
shows that generic states are correlated. Note that the space of Hermitian operators on a
d-dimensional Hilbert space has real dimension d2, likewise the space of PSD operators, so the
space of density operators has dimension d2−1 (the condition that Tr ρ = 1 reduces the dimension
by one). For simplicity, suppose that each Hi is d-dimensional, so that H = H1 ⊗ · · · ⊗ Hn has
dimension dn. Then the space of density operators on H has dimension d2n − 1, which grows
exponentially with n. In contrast, the space of product states has dimension n(d2 − 1), which
grows only linearly with n (i.e., much slower).

When writing tensor products of vectors and operators, it can be confusing to remember
which tensor factors we are referring to. To simplify our life, we will henceforth adopt a notation
that is ubiquitous in the quantum information literature.

Definition 2.5 (Subscripts for subsystems). From now on we will always use subscripts to
indicate which subsystem some mathematical object refers to. Thus, we write HAB = HA ⊗HB

for the Hilbert space of a quantum system comprised of two subsystems A and B, |ΨAB⟩ for
vectors in HAB, ρAB for states in D(HAB), XB for linear operators on HB, and so forth.

2.2 Measurements on subsystems

Now suppose µA is a measurement on subsystem A (Definition 1.14), as in the following picture.

µA
x ∈ ΩA

ρAB

How can we calculate the probability of measurement outcomes when the overall system is in
state ρAB? The answer is given by the following input from physics:

Axiom 2.6 (Measurement on a subsystem, part I). If the joint system is in state ρAB and we
apply a measurement µA : ΩA → PSD(HA) on A, the probability of outcomes is calculated as
follows:

Pr(outcome x) = Tr
[
ρAB

(
µA(x)⊗ IB

)]
. (2.6)

Note that Eq. (2.6) is precisely Born’s rule [Eq. (1.25)] for the following measurement on AB:

µA ⊗ IB : Ω → PSD(HA ⊗HB), x 7→ µA(x)⊗ IB.

What if we measure both on subsystem A and on subsystem B, as in the following figure?

µA
x ∈ ΩA

µB
y ∈ ΩB

ρAB
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In this case, we must use the following measurement on AB:

µA ⊗ µB : ΩA × ΩB → PSD(HA ⊗HB), (x, y) 7→ µA(x)⊗ µB(y).

Axiom 2.7 (Joint measurement). If the joint system is in state ρAB and we apply measurement
µA : ΩA → PSD(HA) on A and µB : ΩB → PSD(HB) on B, then the joint probability of outcomes
x ∈ ΩA and y ∈ ΩB is calculated as follows:

Pr(outcomes x and y) = Tr
[
ρAB

(
µA(x)⊗ µB(y)

)]
. (2.7)

It is clear how to generalize these rules to more than two subsystems.

2.3 Partial trace and reduced states

If p(x, y) is a joint probability distribution of two random variables, then we know that the
distribution of the first random variable is given by the marginal distribution p(x) =

∑
y p(x, y).

We are looking for the quantum counterpart of this definition.
Now suppose that we are given a quantum state ρAB on a quantum system AB composed of

two subsystems A and B, with overall Hilbert space HAB = HA ⊗HB. Which state ρA should
we use to describe the state of subsystem A alone? In other words, what is the quantum version
of a marginal distribution?

Clearly, we would like the state ρA to reproduce the statistics of all possible measurements
on A (but contain no information about B). In view of Axiom 2.6, this means it should satisfy

Tr
[
ρAB(µA(x)⊗ IB)

] !
= Tr

[
ρA µA(x)

]
(2.8)

for all possible Ω, measurements µA : Ω → PSD(HA), and outcomes x ∈ Ω? How can we find
such a ρA? We first give the solution and then verify that it does the job.

Definition 2.8 (Partial trace). The partial trace over B is the linear map

TrB : L(HA ⊗HB) → L(HA)

defined as follows: For every MAB ∈ L(HA ⊗HB),

TrB[MAB] :=
∑

b

(
IA ⊗ ⟨b|

)
MAB

(
IA ⊗ |b⟩

)
, (2.9)

where |b⟩ is an arbitrary orthonormal basis of HB (the result is independent of the choice of basis).
The operator TrB[MAB] ∈ L(HA) is called the partial trace of MAB over B.

See Eqs. (2.4) and (2.5) to remind yourself of the meaning of IA ⊗ ⟨b| and IA ⊗ |b⟩. Concretely,
the matrix entries of TrB[MAB] with respect to an arbitrary orthonormal basis |a⟩ of HA are:

⟨a|TrB[MAB]|a′⟩ =
∑

b

⟨a, b|MAB|a′, b⟩. (2.10)

Note that the partial trace not only sends operators to operators – but it is itself a linear
operator! Such maps are often called superoperators (we will learn more about them in Section 4.4).

The following lemma justifies the terminology partial trace:
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Lemma 2.9. Let MAB = XA ⊗ YB, where XA ∈ L(HA) and YB ∈ L(HB). Then,

TrB[XA ⊗ YB] = XATr[YB] = Tr[YB]XA.

Proof. Use Eq. (2.9) to see that

TrB[XA ⊗ YB] =
∑

b

(
IA ⊗ ⟨b|

)(
XA ⊗ YB

)(
IA ⊗ |b⟩

)
=
∑

b

XA⟨b|YB|b⟩ = XATr[YB].

Since Tr[YB] is a number, we can also write this as Tr[YB]XA.

We now list some important properties of the partial trace.

Lemma 2.10. For all XA ∈ L(HA) and MAB ∈ L(HA ⊗HB), we have:

(a) Tr
[
MAB(XA ⊗ IB)

]
= Tr

[
TrB[MAB]XA

]
.

(b) Tr[MAB] = Tr[TrB[MAB]].

(c) If MAB is positive semidefinite, then so is TrB[MAB].

Proof. (a) Let us give a careful proof of this crucial identity:

Tr
[
MAB(XA ⊗ IB)

]
=
∑

a,b

(
⟨a| ⊗ ⟨b|

)
MAB

(
XA ⊗ IB

)(
|a⟩ ⊗ |b⟩

)

=
∑

a,b

(
⟨a| ⊗ ⟨b|

)
MAB

(
XA|a⟩ ⊗ |b⟩

)

=
∑

a,b

⟨a|
(
IA ⊗ ⟨b|

)
MAB

(
IA ⊗ |b⟩

)
XA|a⟩

=
∑

a

⟨a|
∑

b

(
IA ⊗ ⟨b|

)
MAB

(
IA ⊗ |b⟩

)
XA|a⟩

=
∑

a

⟨a| TrB[MAB]XA|a⟩ = Tr
[
TrB[MAB]XA

]
.

Here, we first evaluate the trace in an arbitrary product basis, next we use Eq. (2.3), then
Eqs. (2.4) and (2.5), and after moving the sum over b inside we recognize the definition of
the partial trace from Eq. (2.9).

(b) This follows directly from (a) by choosing XA = IA (the identity operator).

(c) To see this, note that if XA ∈ PSD(HA) then XA ⊗ IB ∈ PSD(HA ⊗HB), so

Tr
[
TrB[MAB]XA

]
= Tr

[
MAB(XA ⊗ IB)

]
≥ 0.

The equality is (a), and the inequality holds since MAB is PSD using the criterion in
Lemma 1.4 (e). This in turn implies that TrB[MAB] is PSD (by the same criterion).

The following lemma gives some further useful properties. You can prove it in Exercise 2.4.

Lemma 2.11. For all XA ∈ L(HA), YB ∈ L(HB), MAB ∈ L(HA ⊗HB), NBC ∈ L(HB ⊗HC),
and OABC ∈ L(HA ⊗HB ⊗HC), we have:

(a) TrB[(XA ⊗ IB)MAB] = XATrB[MAB] and TrB[MAB(XA ⊗ IB)] = TrB[MAB]XA.

(b) TrB[(IA ⊗ YB)MAB] = TrB[MAB(IA ⊗ YB)].

(c) TrAB[OABC ] = TrA[TrB[OABC ]] = TrB[TrA[OABC ]].
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(d) TrC [XA ⊗NBC ] = XA ⊗ TrC [NBC ].

From Lemma 2.10 we recognize that the partial trace solves our problem. Simply define

ρA := TrB[ρAB].

Then the desired property (2.8) is a direct consequence of part (a) of the lemma (choose
MAB = ρAB and XA = µA(x)), while parts (b) and (c) imply that ρA is a state, i.e., ρA ∈ D(HA).
This calls for its own definition and notation:

Definition 2.12 (Reduced states). Given a state ρAB on AB, we define its reduced state
on subsystem A by ρA := TrB[ρAB]. Similarly, we define the reduced state on subsystem B
by ρB := TrA[ρAB].

We use the same notation for three or more subsystems. For example, if ρABC is a state on three
subsystems ABC, then we denote its reduced states by ρAB := TrC [ρABC ], ρAC := TrB[ρABC ],
ρA := TrBC [ρABC ], etc.

It can be tempting to assume that all information about a state ρAB is contained in its
reduced states ρA and ρB , and that we can always reconstruct ρAB from ρA and ρB by computing
their tensor product ρA ⊗ ρB . However, this is not the case! Such reconstruction generally is not
possible – it works if only if ρAB itself happens to be a product state.

Lemma 2.13. Let ρAB ∈ D(HA⊗HB). Then, ρAB is a product state if and only if ρAB = ρA⊗ρB
(i.e., the product of its reduced states).

Proof. Clearly if ρAB = ρA ⊗ ρB then it is a product state. Conversely, suppose that ρAB is a
product state, which means ρAB = σA ⊗ ωB for some arbitrary states σA and ωB. Then,

ρA = TrB[ρAB] = TrB[σA ⊗ ωB] = σA,

where the first equality is the definition of the reduced state and the last equality holds thanks
to Lemma 2.9. Similarly, one can verify that ρB = ωB. This confirms that ρAB = ρA ⊗ ρB.

Let us discuss a concrete example. For a system of two qubits, HA = HB = C2, consider the
(standard) maximally entangled state, which is the pure state

ρAB = |Φ+
AB⟩⟨Φ+

AB|, where |Φ+
AB⟩ :=

1√
2
(|00⟩+ |11⟩) . (2.11)

The superscript “+” means nothing in particular, it is just a symbol to indicate this particular
vector. (Why is this state called “entangled”? We will discuss this in Lecture 3.) Note that

ρAB = |Φ+
AB⟩⟨Φ+

AB|

=
1

2

(
|00⟩⟨00|+ |11⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨11|

)

=
1

2

(
|0⟩⟨0| ⊗ |0⟩⟨0|︸ ︷︷ ︸

Tr=1

+|1⟩⟨0| ⊗ |1⟩⟨0|︸ ︷︷ ︸
Tr=0

+|0⟩⟨1| ⊗ |0⟩⟨1|︸ ︷︷ ︸
Tr=0

+|1⟩⟨1| ⊗ |1⟩⟨1|︸ ︷︷ ︸
Tr=1

)
. (2.12)

To compute the reduced state on A, we can simply use linearity and Lemma 2.9 for each of the
four terms. Using the traces indicated in (2.12), the result is

ρA =
1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
= ρB, (2.13)
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Correlated Product
Maximally entangled Maximally classically correlated Independent random bits

1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




1

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




rank = 1 rank = 2 rank = 4

Table 2.1: Summary of the four states from Eq. (2.12), Eq. (2.2), and Eq. (2.15). While in all
three cases the reduced states are maximally mixed, i.e., ρA = ρB = 1

2

(
1 0
0 1

)
, the global state

encodes different types of correlations: entanglement, classical correlations, and no correlations.
We will come back to these three states again in Example 8.4 of Lecture 8.

where the second equality follows by symmetry between the A and B systems in |Φ+
AB⟩.

Note that something remarkable has happened: We started with a pure state ρAB, but
nevertheless its reduced states ρA and ρB were mixed! This is an important reason for considering
mixed states – they naturally arise when describing the state of a subsystem.

Remark 2.14. It is instructive to write down the maximally entangled state with respect to the
product basis |00⟩, |01⟩, |10⟩, |11⟩:

|Φ+
AB⟩ =

1√
2




1
0
0
1


 , ρAB =

1

2




1
0
0
1



(
1 0 0 1

)
=

1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 . (2.14)

The right-hand side matrix can also be read off directly from Eq. (2.12). Note that ρAB cannot
be rebuilt back from its reduced states ρA and ρB from Eq. (2.13). Indeed,

ρA ⊗ ρB =
1

2

(
1 0
0 1

)

A

⊗ 1

2

(
1 0
0 1

)

B

=
1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ̸= ρAB. (2.15)

This is a feature common to all correlated states, quantum or classical. Note that compared to
the classical correlated state (2.2), the maximally entangled state in addition also has 1s in the
top right and bottom left corners. This is a crucial difference! For example, the latter is a pure
state (has rank one), while Eq. (2.2) is mixed (its rank is two). The product state in Eq. (2.15)
is even more mixed since it has rank 4 (see Table 2.1 for a summary).

You can discuss some other examples in Exercises 2.5 and 2.7.

Equipped with the partial trace, we can also address another question that you might have
had. Let us return to the situation of Section 2.2, where discussed measurements on part of a
quantum system, as in the following figure:

µA
x ∈ ΩA

ρAB

In Axiom 2.6, we specified the probabilities of measurement outcomes in such a situation. But
what state should we assign to B after the measurement? This is given in the following rule.
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Axiom 2.15 (Measurement on a subsystem, part II). Suppose a quantum system is in state ρAB ,
and we apply a measurement µA : ΩA → PSD(HA) on A and obtain outcome x ∈ ΩA. Then the
state of the remaining system B after the measurement is given by

ρB,x =
TrA

[
ρAB

(
µA(x)⊗ IB

)]

Tr
[
ρAB

(
µA(x)⊗ IB

)] . (2.16)

This state is called the post-measurement state on B corresponding to this outcome.

Observe that the denominator in Eq. (2.16) is precisely the probability of outcome x according
to Axiom 2.6. It is also the trace of the numerator. Therefore, if this probability is nonzero,
Eq. (2.16) is a well-defined quantum state.

It is a pleasant exercise to verify that if one first measures subsystem A and then subsystem B,
the joint probability of outcomes is given exactly by Axiom 2.7, see Exercise 2.8.

Remark 2.16. If we average the state of B over all possible measurement outcomes, we obtain

∑

x∈ΩA

pxρB,x =
∑

x∈ΩA

TrA

[
ρAB

(
µA(x)⊗ IB

)]
= TrA[ρAB] = ρB.

This is completely reasonable: if someone carries out a measurement on system A, but you only
have access to system B and receive no information about the outcome, your description of
system B should not change (otherwise this could be used to signal instantaneously, at a speed
faster than the speed of light).

2.4 Purifications

It is natural to ask whether we can also go the other way around. Suppose we start with a mixed
state σA – can we always find a pure state on a larger system so that σA is its reduced state?
Indeed, this can always be done.

Lemma 2.17 (Existence of purifications). Let σA ∈ D(HA) be a state and HB a Hilbert space of
dimension dimHB ≥ rankσA. Then there exists a vector |ΨAB⟩ ∈ HA ⊗HB such that

TrB
[
|ΨAB⟩⟨ΨAB|

]
= σA. (2.17)

Any vector |ΨAB⟩ or pure state |ΨAB⟩⟨ΨAB| with this property is called a purification of σA.

Note that any vector |ΨAB⟩ that satisfies (2.17) is automatically a unit vector, By Lemma 2.10 (b).

∥ΨAB∥2 = Tr[|ΨAB⟩⟨ΨAB|] = Tr[TrB[|ΨAB⟩⟨ΨAB|]] = Tr[σA] = 1.

Proof. Using an eigendecomposition (1.6), we can write

σA =
r∑

i=1

pi|ei⟩⟨ei|, (2.18)

where r := rankσA, {pi}ri=1 is the probability distribution formed by the nonzero eigenvalues
of σA (pi > 0 and

∑r
i=1 pi = TrσA = 1), and |ei⟩ are corresponding orthonormal eigenvectors.
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Since dimHB ≥ r, we can choose orthonormal |f1⟩, . . . , |fr⟩ ∈ HB. We claim that the following
vector is a purification of σA:

|ΨAB⟩ :=
r∑

i=1

√
pi |ei⟩ ⊗ |fi⟩. (2.19)

Indeed,

TrB
[
|ΨAB⟩⟨ΨAB|

]
= TrB

[ r∑

i,j=1

√
pipj |ei⟩⟨ej | ⊗ |fi⟩⟨fj |

]

=
r∑

i,j=1

√
pipj |ei⟩⟨ej | Tr

[
|fi⟩⟨fj |

]
︸ ︷︷ ︸

=δi,j

=
r∑

i=1

pi|ei⟩⟨ei| = σA

by virtually the same calculation that we used to deduce Eq. (2.13) from Eq. (2.11).

The construction in the proof of Lemma 2.17 is quite important and also works in a more
general situation. Suppose that we are given a quantum state σA =

∑k
i=1 pi|ψi⟩⟨ψi|, where the |ψi⟩

are still unit vectors but not assumed to be pairwise orthogonal (so k can now be larger than the
rank of σA). Then it is still true that for any orthonormal set of vectors |f1⟩, . . . , |fk⟩ ∈ HB,

|ΨAB⟩ :=
k∑

i=1

√
pi |ψi⟩ ⊗ |fi⟩

is a purification of σA. This follows by the same calculation as in the proof of Lemma 2.17 (we
never used that the |ei⟩ were orthogonal). You can practice this construction in Exercise 2.9.

Are purifications unique? In the proof of Lemma 2.17 we chose an arbitrary orthonormal
basis of HB, so clearly they are not unique. However, this is the only source of ambiguity:

Lemma 2.18 (Uniqueness of purifications). Let |ΨAB⟩ ∈ HA ⊗HB, |ΦAC⟩ ∈ HA ⊗HC be two
purifications of σA ∈ D(HA). If dimHB ≤ dimHC , then there is an isometry VB→C : HB → HC

such that

|ΦAC⟩ = (IA ⊗ VB→C)|ΨAB⟩.

In particular, if dimHB = dimHC then the two purifications are related by a unitary on the
purifying system!

Recall that an operator V ∈ L(H,K) is called an isometry if V †V = IH. Isometries preserve inner
products, so they map orthonormal sets to orthonormal sets. This implies that dimH ≤ dimK.
We denote the set of all isometries from H to K by

U(H,K) := {V ∈ L(H,K) : V †V = IH}. (2.20)

If dimH = dimK then any isometry U is a unitary, which means that it also satisfies UU † = IK.
Equivalently, an operator is unitary if its adjoint is its inverse. We denote the set of unitary
operators on H = K by

U(H) := U(H,H) = {U ∈ L(H) : U †U = IH, UU
† = IK}. (2.21)

You can prove Lemma 2.18 in Exercise 2.13.
There is a particularly convenient way to construct a purification.
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Definition 2.19 (Standard purification). For any state σA ∈ D(HA) on HA = Cd, the standard
purification is defined as

|Ψstd
AB⟩ :=

(√
σA ⊗ IB

)∑

x

|x⟩ ⊗ |x⟩, (2.22)

where HB := HA and {|x⟩} denotes the standard basis of HA.

The square root
√
σA in Eq. (2.22) is the PSD operator defined by taking the square roots of the

eigenvalues of σA, while keeping the eigenvectors the same. See Eq. (1.10) for more details and
see Definition 1.6 for how to define general functions of Hermitian operators.

To see that Eq. (2.22) defines a purification, simply compute the partial trace:

TrB

[
|Ψstd

AB⟩⟨Ψstd
AB|
]
=
∑

x,y

TrB

[(√
σA ⊗ IB

)(
|x⟩⟨y| ⊗ |x⟩⟨y|

)(√
σA ⊗ IB

)]

=
√
σA
∑

x,y

TrB

[
|x⟩⟨y| ⊗ |x⟩⟨y|

]√
σA

=
√
σA
∑

x,y

|x⟩⟨y| Tr
[
|x⟩⟨y|

]

︸ ︷︷ ︸
=δx,y

√
σA =

√
σA
∑

x

|x⟩⟨x|
︸ ︷︷ ︸

=IA

√
σA = σA.

To go from the first to the second line, use Lemma 2.11 (a).

2.5 Schmidt decomposition

States of the form (2.19) are quite pleasant to work with, since both sets {|ei⟩} and {|fj⟩} consist
of orthonormal vectors. For example, it is easy to calculate their reduced states. In fact, any
bipartite pure state (i.e., pure state of two systems) can be written in this form – this is called
the Schmidt decomposition.

Theorem 2.20 (Schmidt decomposition). Any |ΨAB⟩ ∈ HA ⊗HB can be written as

|ΨAB⟩ =
r∑

i=1

si|ei⟩ ⊗ |fi⟩,

where the si > 0, the |ei⟩ ∈ HA are orthonormal, and the |fi⟩ ∈ HB are orthonormal.
A decomposition of this form is called a Schmidt decomposition of |ΨAB⟩, r is called the

Schmidt rank, and the si are called the Schmidt coefficients of |ΨAB⟩.

Using the Schmidt decomposition, we see as before that the reduced states are given by

ρA =
r∑

i=1

s2i |ei⟩⟨ei|, ρB =
r∑

i=1

s2i |fi⟩⟨fi|. (2.23)

This is a very important fact which has important consequences, such as the following.

Corollary 2.21 (Reduced states of pure states). If ρAB = |ΨAB⟩⟨ΨAB| is a pure state, then ρA
and ρB have the same rank (namely r) and the same nonzero eigenvalues (namely, the {s2i }).
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Corollary 2.22 (When is a pure state a product state?). Let ρAB = |ΨAB⟩⟨ΨAB| be a pure state.
Then, ρA is pure if and only if ρB is pure if and only if ρAB is a product state.

Proof. Clearly, ρA is pure if and only if ρB is pure since both have the same rank (Corollary 2.21).
If ρA is pure then there is only one nonzero Schmidt coefficient (s1 = 1), so |ΨAB⟩ = |e1⟩⊗|f1⟩

and so ρAB = |e1⟩⟨e1| ⊗ |f1⟩⟨f1| is a product state.
Conversely, suppose that ρAB is a product state, so ρAB = ρA⊗ ρB (Lemma 2.13). Since ρAB

is pure, we have 1 = rank ρAB = rank ρA rank ρB. Thus, both ρA and ρB have rank one, hence
are pure states.

It is crucially important in Corollary 2.22 that the global state ρAB is pure. For mixed ρAB, it
still holds that if ρA is pure then ρAB is a product state – you will prove this in Exercise 2.10 –
but the converse is patently false. That is, there exist many (mixed) product states ρAB such
that ρA or ρB are not pure.

The Schmidt decomposition is a mild restatement of the singular value decomposition of
operators, which we recall in the following. You can prove the latter using the former in
Exercise 2.12. For completeness, we sketch a proof of the singular value decomposition (but you
have probably seen this before and it is also somewhat outside the scope of this class).

Theorem 2.23 (Singular value decomposition). Any operator M ∈ L(H,K) has a singular value
decomposition (SVD): That is, we can write

M =
r∑

i=1

si|ei⟩⟨gi|, (2.24)

where r = rankM , si > 0, the |ei⟩ are orthonormal in K, and the |gi⟩ are orthonormal in H.
The numbers si are called the singular values of M , and the |ei⟩ and |gi⟩ are called left and right
singular vectors of M , respectively.

Proof. Consider the operator MM †, which is always positive semidefinite (part (c) of Lemma 1.4),
so it has an eigendecomposition

MM † =
∑

i

ti|ei⟩⟨ei|,

where |ei⟩ is an orthonormal basis in K. Suppose that t1, . . . , tr > 0, while ti = 0 for i > r. Note
that the latter means that ∥M †|ei⟩∥2 = ⟨ei|MM †|ei⟩ = 0, so M †|ei⟩ = 0 for all i > r. Define
si :=

√
ti. For i = 1, . . . , r, set |gi⟩ = M†|ei⟩

si
∈ H. Then the |gi⟩ are orthonormal, since

⟨gi|gj⟩ =
⟨ei|MM †|ej⟩

sisj
=
tj⟨ei|ej⟩
sisj

=
tj
sisj

δi,j = δi,j .

For i = 1, . . . , r, it holds that

M |gi⟩ =
MM †|ei⟩

si
=
ti|ei⟩
si

= si|ei⟩.

This shows that M acts as in Eq. (2.24) for all vectors in the span of |g1⟩, . . . , |gr⟩. It remains to
prove that M |ψ⟩ = 0 for every |ψ⟩ that is orthogonal to |g1⟩, . . . , |gr⟩. Indeed

⟨ei|M |ψ⟩ =
(
M †|ei⟩

)†|ψ⟩ =
{
si⟨gi|ψ⟩ = 0 if i = 1, . . . , r, since then ⟨gi|ψ⟩ = 0,

0 if i > r, since then M †|ei⟩ = 0.
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We still need to check that r equals the rank of M . This follows from

r = rankM †M ≤ rankM ≤ r,

where we first used that r is the rank of M †M (the number of nonzero ti’s), then that the rank
of a product is no larger than the rank of the factors, and finally Eq. (2.24), noting that its
right-hand side has rank no larger than r.

How can we find the singular values in practice?

• We see directly from Eq. (2.24) (but also from the proof) that the singular values {si} are
necessarily the square roots of the nonzero eigenvalues of MM † (equivalently, of M †M).
In other words, the singular values are the nonzero eigenvalues of

√
M †M (or of

√
MM †).

• If M =M †, then its singular values are simply the absolute values of its nonzero eigenvalues
(Exercise 2.11).

2.6 Exercises

Throughout, A, B, C denote quantum systems with Hilbert spaces HA, HB, HC . The sets
{|a⟩} and {|b⟩} denote arbitrary orthonormal bases of HA and HB ; |a, b⟩ = |a⟩ ⊗ |b⟩ denotes the
product basis of HA ⊗HB.

2.1 Product means independent: For i ∈ {1, . . . , n}, let pi be a probability distribution on
some finite set Σi and ρi the corresponding classical state (see Definition 1.10). Show that
ρ = ρ1 ⊗ · · · ⊗ ρn is the classical state corresponding to the joint distribution p(x1, . . . , xn) =
p1(x1) · · · pn(xn) where each xi ∈ Σi is picked independently from the distribution pi.

2.2 Not product: Show that the maximally correlated state (2.2) and the maximally entangled
state (2.14) are indeed correlated, i.e., they are not product states.

2.3 Nayak’s bound: Alice wants to communicate m bits to Bob by sending n qubits. She
chooses one state ρx ∈ D(H), where H = (C2)⊗n, for each possible message x ∈ {0, 1}m
that she may want to send. Bob uses a measurement µ : {0, 1}m → PSD(H) to decode the
message.

(a) Write down a formula for the probability that Bob successfully decodes Alice’s message,
assuming the latter is drawn from a known probability distribution p(x) on {0, 1}m.

(b) Show that if the message is drawn uniformly at random, then the probability that Bob
successfully decodes the bitstring is at most 2n−m.

2.4 Partial trace trickery: Prove Lemma 2.11.

2.5 Reduced states of classical states: Consider the classical state

ρXY =
∑

x,y

p(x, y) |x, y⟩⟨x, y|

on HX ⊗ HY , where HX = CΣX , HY = CΣY , and p(x, y) is an arbitrary probability
distribution on ΣX × ΣY . Compute the reduced states ρX and ρY .
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2.6 Partial trace of any two-qubit operator: Let HA = HB = C2. Compute the partial
traces TrA and TrB of

MAB =




a b c d
e f g h
i j k l
m n o p


 .

The matrix is written in the basis {|00⟩, |01⟩, |10⟩, |11⟩}.

2.7 Reduced states of a pure state: Compute the reduced states ρA and ρB of the two-qubit
pure state ρAB = |ΨAB⟩⟨ΨAB| given by |ΨAB⟩ = 1

3 |0, 0⟩+ 2
3 |0, 1⟩+ 2

3 |1, 0⟩.

2.8 Parallel vs. sequential: Consider a system in state ρAB. Imagine you first apply a
measurement µA on A and then a measurement µB on B. Use Axioms 2.6 and 2.15 to verify
that the joint probability of the two measurement outcomes is given by Axiom 2.7.

2.9 Purification:

(a) Find a purification |ψAB⟩ of the single-qubit state ρA = 1
2 |0⟩⟨0|+ 1

2 |+⟩⟨+|.
(b) Find a purification |ϕABC⟩ of the two-qubit state ρAB = 1

2 |00⟩⟨00|+ 1
2 |1+⟩⟨1+|.

(c) Compute the reduced state of system B for your purification |ϕABC⟩.

2.10 Extensions of pure states: Let HA, HB, HC be arbitrary Hilbert spaces.

(a) Let ρAB ∈ D(HA ⊗HB) such that ρA is pure. Show that ρAB = ρA ⊗ ρB.
Hint: In class we proved this when ρAB is pure. Use a purification to reduce to this case.

(b) Let ρABC ∈ D(HA ⊗HB ⊗HC) such that ρAB is pure. Show that ρAC = ρA ⊗ ρC and
ρBC = ρB ⊗ ρC .

(c) Let ρABC ∈ D(HA ⊗HB ⊗HC) such that ρAB and ρAC are pure. Show that ρABC =
ρA ⊗ ρB ⊗ ρC .

2.11 Singular values and eigenvalues: Show that if M is Hermitian then its singular values
are equal to the absolute values of its nonzero eigenvalues.

2.12 Schmidt decomposition from SVD: Let ρAB = |ΨAB⟩⟨ΨAB| be an arbitrary pure state.
Fix orthonormal bases |a⟩ and |b⟩, write |ΨAB⟩ =

∑
a,bMab|a, b⟩, and define a corresponding

operator M =
∑

a,bMab|a⟩⟨b|.

(a) Verify that ρA =MM † and ρB =MTM . Here the transpose and the complex conjugate
are computed with respect to the fixed bases.

(b) Let M =
∑

i si|ei⟩⟨fi| be a singular value decomposition. Show that |ΨAB⟩ =
∑

i si|ei⟩⊗
|fi⟩ is a Schmidt decomposition. Thus you have proved Theorem 2.20.

(c) Explain how to find a Schmidt decomposition of the following two-qubit pure state:

|Ψ⟩ =
√
2 + 1√
12

(
|00⟩+ |11⟩

)
+

√
2− 1√
12

(
|01⟩+ |10⟩

)
.

2.13 Uniqueness of purifications: Let ρA =
∑r

i=1 pi|ei⟩⟨ei|, where pi are the nonzero eigenvalues
of ρA and |ei⟩ corresponding orthonormal eigenvectors. If some eigenvalue appears more
than once then this decomposition is not unique.

(a) Show that, nevertheless, any purification |ΨAB⟩ of ρA has a Schmidt decomposition of
the form |ΨAB⟩ =

∑r
i=1 si|ei⟩ ⊗ |fi⟩, with the same |ei⟩ as above.

Hint: Start with an arbitrary Schmidt decomposition and rewrite it in the desired form.
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(b) Prove Lemma 2.18.

2.14  Practice: Consider the following 2× 2-matrix M :

M =

(
−0.2422 + 0.07118i −0.1689− 0.6927i
−0.1108− 0.19192i −0.6045 + 0.1161i

)

Let |ΨAB⟩ =
∑

a,bMab |ab⟩ ∈ C2 ⊗ C2 and let ρAB denote the corresponding pure state.

(a) Compute the Schmidt coefficients of |ΨAB⟩.
(b) Compute the reduced states ρA and ρB.
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Lecture 3

Entanglement

Today we will discuss the phenomenon of quantum entanglement, which is one of the most
profound phenomena of quantum information. Recall that last week we defined the maximally
entangled state (2.11) of two qubits. Today, we will first give a general definition of entanglement
(and maximal entanglement). Then we will discuss three examples that show that the state |Φ+⟩
is a remarkable resource that can be used to achieve things that are not possible otherwise.

3.1 Separable and entangled states

Recall that we defined a quantum state to be correlated if it is not a product, ρAB ≠ ρA ⊗ ρB.
This has nothing to do with quantum mechanics per se, since correlations also exist in probability
theory. For example, the state (2.2) describes correlations between two bits that are random but
always equal to each other.

How can we distinguish classical from quantum correlations? The following definition gives
us one way to do so:

Definition 3.1 (Separable and entangled states). Let HA and HB be two Hilbert spaces. A
quantum state ρAB ∈ D(HA⊗HB) is called separable or unentangled (between systems A and B)
if it is a convex combination of product states, i.e., if there is a probability distribution (pi)i∈I
and states ρA,i ∈ D(HA), ρB,i ∈ D(HB) such that

ρAB =
∑

i∈I
pi ρA,i ⊗ ρB,i. (3.1)

We let SepD(HA : HB) denote the convex set of separable states on HA ⊗HB.
A state that is not separable is called entangled.

As an example, note that any classical state ρXY on CΣX ⊗ CΣY is separable, since we recall
from Definition 1.10 that in this case

ρXY =
∑

x,y

p(x, y) |x, y⟩⟨x, y| =
∑

x,y

p(x, y) |x⟩⟨x| ⊗ |y⟩⟨y|.

for some joint distribution p ∈ P(ΣX × ΣY ). This is clearly of the form (3.1). This example
justifies the idea that entanglement captures only the non-classical part of correlations.

In fact, the separable states are precisely the states which can be created in the following
way: We have two protagonists, Alice and Bob, each in their separate laboratory. Alice draws a
random index i ∈ I according to a probability distribution p, and sends this index i over to Bob.
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Finally, Alice prepares some quantum state ρA,i in her laboratory, while Bob creates some other
state ρB,i. Clearly, their joint state at the end of this process is described by Eq. (3.1). We can
visualize this protocol in the following diagram:

A
ρA,i•

B
ρB,i•Bob

Alice
i∼ p

Note that before the final step of the protocol, the two parties are classically correlated, since
they share the random variable i. As the final step is purely local, we should not think of it as
creating any additional correlations. Accordingly, the entangled states are those that cannot be
prepared by only using classical correlations. This gives a satisfying motivation for Definition 3.1.

Remark 3.2. For the notion of entanglement to make sense in the first place, you need a system
consisting of (at least) two distinguished subsystems, say A and B. In other words, it does not
make sense to talk about the entanglement of a state on a general Hilbert space H – we must
always refer to a tensor product factorization H = HA ⊗HB.

What do entangled states look like? For pure states, the situation simplifies considerably.

Lemma 3.3. Let ρAB = |ΨAB⟩⟨ΨAB| ∈ D(HA ⊗HB) be a pure state. Then ρAB is separable if
and only if it is a product state.

Proof. Clearly, any product state is separable. For the converse, note that any separable state ρAB
can be written in the form

ρAB =
∑

i∈I
pi |ψA,i⟩⟨ψA,i| ⊗ |ϕB,i⟩⟨ϕB,i| =

∑

i∈I
pi
(
|ψA,i⟩ ⊗ |ϕB,i⟩

)(
⟨ψA,i| ⊗ ⟨ϕB,i|

)

with pi > 0 and unit vectors |ψAi⟩ ∈ HA and |ϕB,i⟩ ∈ HB . (Indeed, if any of the ρA,i or ρB,i are
mixed we can expand them into a convex combination of pure states by using the spectral theorem,
see Eq. (1.14), and we can always leave out terms with pi = 0.) Since ρAB = |ΨAB⟩⟨ΨAB|, it
follows that

1 = ⟨ΨAB|ρAB|ΨAB⟩ =
∑

i∈I
pi ⟨ΨAB|

(
|ψA,i⟩ ⊗ |ϕB,i⟩

)(
⟨ψA,i| ⊗ ⟨ϕB,i|

)
|ΨAB⟩

=
∑

i∈I
pi |⟨ΨAB|ψA,i ⊗ ψB,i⟩|2.

Using the Cauchy-Schwartz inequality,1 this implies that, for all i ∈ I,

|⟨ΨAB|ψA,i ⊗ ψB,i⟩| = 1

and hence that |ΨAB⟩ is proportional to |ψA,i⟩⊗ |ψB,i⟩. Since these are all unit vectors, it follows
that ρAB = |ψA,i⟩⟨ψA,i| ⊗ |ψB,i⟩⟨ψB,i| for all i ∈ I. Thus, ρAB is a product state.

Thus we can use the criteria from Corollary 2.22 to test if a pure state is entangled or not.

1Recall that the Cauchy-Schwartz inequality states that |⟨α|β⟩| ≤ ∥α∥ ∥β∥, with equality if and only if |α⟩
and |β⟩ are proportional.
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Corollary 3.4. Let ρAB = |ΨAB⟩⟨ΨAB| ∈ D(HA ⊗HB) be a pure state. Then ρAB is separable
if and only if ρA is pure if and only if ρB is pure.

For example, we can now quickly confirm that the maximally entangled two-qubit state (2.11),

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

is entangled, since we know that ρA is not pure. In fact, ρA = I
2 is maximally mixed. We now

give a general definition of maximally entangled states:

Definition 3.5 (Maximally entangled states). Let HA and HB be two Hilbert spaces. A state ρAB
is called maximally entangled if HA and HB have the same dimension d and ρAB is of the form

ρAB = |ΦAB⟩⟨ΦAB|, |ΦAB⟩ =
1√
d

d∑

i=1

|ei⟩ ⊗ |fi⟩, (3.2)

where {|ei⟩}di=1 and {|fi⟩}di=1 are orthonormal bases of HA and HB , respectively. If HA = HB = Cd
or CΣ and we take the standard basis, we always have the (standard) maximally entangled states

|Φ+
AB⟩ :=

1√
d

∑

x

|x, x⟩ = 1√
d

∑

x

|x⟩ ⊗ |x⟩. (3.3)

We will often leave out “standard” and simply call |Φ+
AB⟩ “the” maximally entangled state.

Analogously to the two-qubit example we have the following observation, which you can verify in
Exercise 3.5:

Lemma 3.6. Let HA and HB be two Hilbert spaces and ρAB a state. Then ρAB is maximally
entangled if and only if ρAB is pure and both ρA and ρB are maximally mixed.

Since a pure state ρAB is separable if and only if ρA is pure (Corollary 3.4), and since
the maximally mixed state is as far from being pure as possible, Lemma 3.6 gives some first
justification the term “maximally entangled”. We will return to this point and give some stronger
reasons in later lectures.

The maximally entangled state has several useful properties, as you can verify in Exercise 3.6:

Lemma 3.7. Let |Φ+⟩ denote the standard maximally entangled state (3.3) for HA = HB = H,
where H = Cd or CΣ. Then:

(a) Transpose trick: (M ⊗ I)|Φ+⟩ = (I ⊗MT)|Φ+⟩ for all M ∈ L(H).

(b) (U ⊗ U)|Φ+⟩ = |Φ+⟩ for all unitaries U ∈ U(H).

(c) ⟨Φ+|(M ⊗N)|Φ+⟩ = 1
d Tr[M

†N ] for all M,N ∈ L(H).

(d) TrB
[
(M ⊗N)|Φ+⟩⟨Φ+|(P ⊗Q)

]
= 1

dMNTQTP for all M,N,P,Q ∈ L(H).

The transpose and complex conjugate are taken with respect to the standard basis of H.

These definitions raise many interesting and deep questions:

• What is so special about |Φ+
AB⟩ or other entangled states? We will spend the remainder of

today’s lecture on this topic.
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• How can we detect if a given state is entangled? For pure states we saw that this is quite
easy, but for mixed states this is generally very hard (in fact, NP-hard). In Exercise 3.7
you can explore a useful criterion for mixed states.

• How much entanglement is there in a given state ρAB?

• How can we manipulate entanglement?

We will discuss the last two questions in subsequent lectures (Lectures 10 and 12).

3.2 Bell states and superdense coding

For two qubits, the maximally entangled state is the first of the four Bell states:

|Φ+⟩ = |Φ(00)⟩ = 1√
2
(|00⟩+ |11⟩), |Φ(10)⟩ = 1√

2
(|01⟩+ |10⟩),

|Φ(01)⟩ = 1√
2
(|00⟩ − |11⟩), |Φ(11)⟩ = 1√

2
(|01⟩ − |10⟩).

(3.4)

These four vectors form an orthonormal basis of C2 ⊗ C2, called the Bell basis.
They are all maximally entangled in the sense of Definition 3.5. In particular, their reduced

states on a single qubit are all the same: ρA = I
2 = ρB. Accordingly the four Bell states are

locally indistinguishable – if two parties Alice and Bob each have one qubit of a Bell state, neither
Alice or Bob can tell the four states apart by a measurement of their qubit.

For this reason it is perhaps surprising that the Bell states enjoy the following local conversion
property: For all x, z ∈ {0, 1},

|Φ(x,z)⟩ = (ZzXx ⊗ I)|Φ+⟩ = (I ⊗XxZz)|Φ+⟩, (3.5)

where X and Z are two of the Pauli matrices (1.15). This is easy to verify, and you can do so in
Exercise 3.10. Thus, if Alice and Bob each possess one qubit of a Bell state, any of them can
apply a suitable combination of Pauli X or Z matrices to convert their joint state to any of the
other four Bell states.

We can use this for a first application of entanglement. Suppose that Alice wants to
communicate n bits to Bob (without any error), but she is only allows to send a single qubit. We
know from Exercise 2.3 that this is possibly only for n = 1. Interestingly, entanglement allows
them to do better. Consider the following protocol, which is known as superdense coding :2

µBell

X Z

x z

|Φ+
AB〉

Alice

Bob z

x

|Φ(x,z)
AB 〉

A

B

Let us describe the protocol more formally: Alice and Bob start out in a maximally entangled
state |Φ+

AB⟩, where system A belongs to Alice and system B belongs to Bob. Now suppose Alice
wans to communicate two bits x, z ∈ {0, 1}. First, if x = 1 then she applies a Pauli X operator

2Confusingly, in quantum protocols and circuits time goes from left to right, so the order of operations is
reversed compared to symbolic expressions.
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on her system. Next, if z = 1 then she applies a Pauli Z operator on her system.3 Finally, Alice
sends over her qubit to Bob. Now both qubits belong to Bob, so he can perform a Bell basis
measurement, that is,

µBell : {0, 1}2 → PSD(C2 ⊗ C2), (x, z) 7→ |Φ(x,z)
AB ⟩⟨Φ(x,z)

AB |. (3.6)

We claim that Bob’s measurement outcome is precisely Alice’s message. Indeed, by Eq. (3.5),
the joint state of the system when Alice sends over her qubit is precisely the Bell state |Φ(x,z)⟩,
as indicated in the picture. Thus the Bell basis measurement can perfectly identify the state.

The superdense coding protocol allows us to communicate two bits by sending a single qubit.
Of course, the protocol also consumes one maximally entangled qubit state, so there is no
contradiction to Exercise 2.3. This gives us some first insight into the power of entanglement as
a resource for communication.

3.3 Teleportation

We now discuss another interesting protocol known as teleportation. Teleportation is dual to
superdense coding since it achieves the opposite task: it lets you transfer one qubit by sending
two bits.

Wait, does this even make sense? This is clearly impossible, since there are many more
quantum states than bit strings. Indeed, there uncountably many quantum states of any given
dimension (think of the Bloch ball for a single qubit), while there are only finitely many bitstrings
of any given length.
Remark 3.8. If Alice wants to classically send a qubit state ρ to Bob, the only thing she can
do is to send him a “recipe” for preparing this state. For example, she could send him the four
matrix entries of ρ with respect to the standard basis. However, since the matrix entries are
complex numbers, they can only be specified to a finite precision by sending bitstrings, so this
would describe ρ only approximately. And even if they went through this trouble, the state
reconstructed by Bob would not preserve the correlations Alice’s state might have had with
another system. For example, if ρA = TrR[|ΨAR⟩⟨ΨAR|] where R is some reference system that
is not accessible to Bob, the state he reconstructs would not be correlated with R.

In Section 3.2, we saw that a similar “no go” result could be overcome by using entanglement.
Thus we can ask if our task here can in fact be achieved if Alice and Bob share some entanglement,
say a maximally entangled state. Surprisingly, in this scenario it is indeed possible to perfectly
transmit a quantum state by sending only classical information. The protocol that achieves
this is known as the teleportation protocol. We first describe the protocol and then argue its
correctness:

µBell

X Z

x

z

|Φ+
AB〉

Alice

Bob

•
•

?

ρ

ρ

A

B

M

3Note that X and Z are unitary operators. For any state ρ and unitary U , the operator UρU† is again a state.
If ρ = |ψ⟩⟨ψ| is a pure state, then UρU† is the pure state corresponding to the unit vector U |ψ⟩. It turns out that
the operation ρ 7→ UρU† can be implemented physically – this is what we mean by the boxes labeled X and Z in
the picture. In Lecture 4 we will discuss in detail what are the allowed operations in quantum theory.
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As visualized in the picture,4 Alice and Bob start out in a state ρM ⊗ |Φ+
AB⟩⟨Φ+

AB|, where ρM is
some arbitrary qubit state (which can be unknown to Alice). First, Alice performs a Bell basis
measurement (3.6) on both her qubits (M and A). The measurement outcome are two bits x
and z, which she sends over to Bob. Finally, if x = 1 then Bob applies a Pauli X operator, and
if z = 1 he applies a Pauli Z operator.

We claim that after the protocol has completed, the state of Bob’s qubit is ρ – that is, exactly
the same state that started out in Alice’s M qubit! To verify this claim, we wish to calculate the
post-measurement state on Bob’s qubit for any possible measurement outcome (x, z). We claim:5

TrMA

[(
µBell,MA(x, z)⊗ IB

)(
ρM ⊗ |Φ+

AB⟩⟨Φ+
AB|
)]

=
1

4
XxZzρBZ

zXx, (3.7)

where ρB denote the same state as ρM , except that we consider it as a state on system B (recall
that HM = C2 = HB, so this makes sense)! Comparing with Axiom 2.15, we see that each
outcome (x, z) occurs with probability 1

4 , and that the corresponding post-measurement state is

XxZzρBZ
zXx.

Using X2 = Z2 = I, we see that Bob’s operations precisely undo the Pauli operators (cf.
Footnote 3), and hence the final output state is ρB. Thus the teleportation protocol indeed
behaves correctly.

In fact, the teleportation protocol not only transmits Alice’s state to Bob, but it also preserves
any correlations it might have had with some other system. In other words, if we start with
ρRM ⊗ |Ψ+

AB⟩⟨Ψ+
AB|, where R is some arbitrary other quantum system and ρRM an arbitrary

quantum state, and we apply the teleportation protocol to MAB as above, then the resulting
joint state on systems R and B will be ρRB. This is visualized in the following figure:

µBell

X Z

x

z

|Φ+
AB〉

Alice

Bob

•
•

ρRM

ρRB

A

B

M

R

This follows from the following equation, which generalizes Eq. (3.7) and which you will show in
Exercise 3.11, together with the same reasoning as above:

TrMA

[(
IR ⊗ µBell,MA(x, z)⊗ IB

)(
ρRM ⊗ |Φ+

AB⟩⟨Φ+
AB|
)]

=
1

4
(I ⊗XxZz)ρRB(I ⊗ ZzXx),

(3.8)

where ρRB denotes the same state as ρRM , except that we consider it as a state on system RB
(completely analogously to above).

4In the picture, we labeled the initial state of system AB by |Φ+
AB⟩ instead of the more correct |Φ+

AB⟩⟨Φ
+
AB |,

in line with the very customary but somewhat imprecise way of referring to unit vectors as pure “states”. We also
left out the tensor product sign “⊗” between this state and ρM . We did so only for brevity to make the pictures
not too overloaded – the mathematical formulas given in the text are always precise.

5Note that the two tensor product symbols “⊗” in the left-hand side of Eq. (3.7) do not refer to the same
tensor factors. The first one refers to (HM ⊗HA)⊗HB , while the second refers to HM ⊗ (HA ⊗HB). Our use of
subscripts make this completely unambiguous.
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Remark 3.9. Quantum teleportation is analogous to the classical one-time pad, a protocol for
transmitting a private probabilistic bit from Alice to Bob by using only public communication
and a secret shared random bit.

The maximally entangled state of two qubits is also called EPR pair, for Einstein, Podolsky,
and Rosen who wrote a famous paper about it, or also ebit, for “entangled pair of qubits”.
Teleportation and superdense coding can be summarized by the following two resource inequalities :

teleportation: ebit + 2[c→ c] ≥ [q → q],

superdense coding: ebit + [q → q] ≥ 2[c→ c],

where [c → c] denotes one bit of classical communication and [q → q] denotes one qubit of
quantum communication. You can read the inequality sign as “is at least as good as” or “can be
used to implement”.

3.4 CHSH game (optional)

We will now discuss another way by which we can compare classical and quantum correlations.
Namely, we will play a so-called nonlocal game!

In a nonlocal game, we imagine that a number of players play against a referee. The referee
hands them questions and the players attempt to reply with answers that win them the game.
The players’ goal is to maximize their chances of winning. Before the game starts, the players
meet and agree upon a joint strategy – but then they are placed far apart from each other and
cannot communicate with each other while the game is being played (this can be ensured by
the laws of special relativity). The point is the following: Since the players are constrained by
the laws of physics, we can design games where players utilizing quantum theory may have an
advantage.

The CHSH game is a famous example of a nonlocal game that was invited by Clauser, Horne,
Shimony, and Holt. It involves two players – Alice and Bob. As questions, they each receive a
bit (q for Alice and r for Bob), and their answers are likewise bits (denoted a for Alice and b for
Bob). The following figure illustrates the setup:

Alice Bob

referee

{0, 1} 3 q r ∈ {0, 1}

{0, 1} 3 a b ∈ {0, 1}
referee

time

The win the game according to the following rules:

q r winning condition
0 0 a = b
0 1 a = b
1 0 a = b
1 1 a ̸= b
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The winning condition can be succinctly stated as follows:

a⊕ b = qr, (3.9)

where “⊕” means addition modulo 2 (also known as the XOR operation).6 We will always assume
that the referee picks the questions (q, r) with equal probability 1

4 . Then we can speak of the
winning probability of a given strategy.

Classical strategies

It is easy to see that the CHSH game does not have a perfect winning strategy in a world that
is “local” and “realistic”. Here, “local” means that each player’s answer only depends on its
immediate surroundings, and “realistic” means that the player’s strategy must assign a definite
answer to any possible question – before that question is being asked. In other words, in a local
and realistic world we assume that

a = f(q), b = g(r)

for functions f, g : {0, 1} → {0, 1}. When we say that the players may jointly agree on a strategy
before the game is being played, we mean they may select these answer functions f, g in a
correlated way.7 In mathematical terms, the functions f and g are allowed to be correlated
random variables.

If the players’ strategy can be described by classical mechanics then the above would provide
an adequate model. Thus, strategies of this form are usually referred to as classical strategies or
also a local hidden variable models.8

Suppose now for sake of finding a contradiction that Alice and Bob can win the CHSH game
perfectly using such a classical strategy. Then,

1 = 0⊕ 0⊕ 0⊕ 1

=
(
f(0)⊕ g(0)

)
⊕
(
f(0)⊕ g(1)

)
⊕
(
f(1)⊕ g(0)

)
⊕
(
f(1)⊕ g(1)

)

= 0.

The second equality follows from Eq. (3.9), since we assumed that the strategy is perfect, and the
last equality holds because each term f(q), g(r) appears twice, but x⊕ x = 0 for any x ∈ {0, 1}.
This contradiction shows that there is no perfect classical winning strategy for the CHSH game.

More quantitatively, if we imagine that the referee picks the questions (q, r) with equal
probability 1

4 , then the winning probability is bounded by

pwin,classical ≤
3

4
(3.10)

for any classical strategy, since the players must get at least one of the four possible answers
wrong! This winning probability can be achieved, e.g., by the trivial strategy f(q) = g(r) = 0 for
all q, r ∈ {0, 1}.
Remark 3.10. Eq. (3.10) can be thought of as a so-called Bell inequality. Perhaps you have seen
Bell inequalities before in a different form. If so, do you see the connection?

6That is, 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.
7For example, when the players meet before the game is being played, they could flip a coin, resulting in some

random λ ∈ {0, 1}, and agree on the strategy given by f(q) = q + λ mod 2 and g(r) = r + λ mod 2.
8Where does this name come from? In our example above, we can think of λ as a “hidden variable”. Once its

value is revealed, the behavior of the parties is purely deterministic. This is just like the behavior of a mechanical
system, which can look very complex or even chaotic, but is in fact deterministic given the initial conditions at
some point in time.
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Quantum strategies

In a quantum strategy, we imagine that the two players are described by quantum theory. Thus
they start out by sharing an arbitrary joint state ρAB ∈ D(HA ⊗HB), where HA describes a
quantum system in Alice’s possession and HB describes a quantum system in Bob’s possession.
Upon receiving her question q ∈ {0, 1}, Alice will perform a measurement µA,q : {0, 1} →
PSD(HA) and uses the measurement outcome as her answer a. Likewise, when Bob receives
his question r ∈ {0, 1}, he performs a measurement µB,r : {0, 1} → PSD(HB) and uses the
measurement outcome as his answer b.

It is not hard to see that any classical strategy is also a quantum strategy. But the
crucial question is: Can players following a quantum strategy do better and “beat” the classical
bound (3.10)? Remarkably, this is indeed possible to achieve

pwin,quantum =
1

2

(
1 +

1√
2

)
≈ 0.85, (3.11)

and the key is to use entanglement!
We will now discuss how this can be achieved. Suppose that Alice and Bob share the

maximally entangled state of two qubits, |Φ+
AB⟩ = 1√

2
(|00⟩+ |11⟩). Let us study what happens

if they perform arbitrary basis measurements on their qubits, like in the following picture:

µA

A a

|Φ+
AB〉

µB

B b

For a single qubit, we can parameterize any basis measurement by a unit vector r⃗ ∈ R3. Indeed,
any such vector is the Bloch vector of a pure state |ψ0⟩⟨ψ0|, see Lemma 1.13, and hence determines
a basis measurement

µ : {0, 1} → PSD(C2),

{
µ(0) = |ψ0⟩⟨ψ0| = 1

2 (I + rxX + ryY + rzZ) ,

µ(1) = I − |ψ0⟩⟨ψ0| = 1
2 (I − rxX − ryY − rzZ) .

(3.12)

Now suppose Alice’s basis measurement is described by a unit vector r⃗, and Bob’s basis measure-
ment is described by a unit vector s⃗. What is the joint probability p(a, b) of Alice’s measurement
outcome a and Bob’s measurement outcome b? For a = b = 0,

p(0, 0) =
1

4

〈
Φ+| (I + rxX + ryY + rzZ)⊗ (I + sxX + syY + szZ) |Φ+

〉

=
1

4
(1 + rxsx − rysy + rzsz) , (3.13)

where the first step is Axiom 2.7 and the second step follows from a short calculation using the
transpose trick (Lemma 3.7) and the algebraic properties of the Pauli operators, as you can verify
in Exercise 3.13. In view of Eq. (3.12), p(1, 1) is calculated by substituting r⃗ 7→ −r⃗ and s⃗ 7→ −s⃗
in Eq. (3.13); since this leaves the result invariant it is clear that p(1, 1) = p(0, 0). Thus, the
probability that the two measurement outcomes a, b agree is given by:

Prr⃗,s⃗(a = b) = p(0, 0) + p(1, 1) =
1

2
(1 + rxsx − rysy + rzsz) , (3.14)

where we use the subscript to indicate the ‘measurement axes’ r⃗ and s⃗. This means that the
measurement outcomes can be strongly correlated or anticorrelated, depending on the alignment
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of the measurement axes! See also Exercise 3.14. This becomes even more clear if we restrict to
the x-z-plane (i.e., ry = sy = 0), so that the formula simplifies to

Prr⃗,s⃗(a = b) =
1

2
(1 + r⃗ · s⃗) = 1

2
(1 + cos θ) , (3.15)

where θ is the angle between r⃗ and s⃗.
How can we use this? We wish to find measurement axes r⃗(q) for Alice (one for each

question q ∈ {0, 1} that she receives) and s⃗(r) for Bob (one for each question r ∈ {0, 1} he
receives) such that the winning probability

pwin =
1

4
Prr⃗(0),s⃗(0)(a = b) +

1

4
Prr⃗(0),s⃗(1)(a = b) +

1

4
Prr⃗(1),s⃗(0)(a = b) +

1

4
Prr⃗(1),s⃗(1)(a ̸= b)

=
1

2
+

1

8
(r⃗(0) · s⃗(0) + r⃗(0) · s⃗(1) + r⃗(1) · s⃗(0)− r⃗(1) · s⃗(1))

is as large as possible. The second formula holds assuming we restrict to the x-z-plane. Thus, we
want to choose the axes such that the angle between r⃗(q) and s⃗(r) is minimized for all q and r –
except when q = r = 1, in which case we want to maximize the angle. The following picture
shows a particular symmetric choice of axes:

~r(1)

~r(0) ~s(0)~s(1)

z

x

−~s(1)

Clearly, the three inner products are 1√
2
, while the last is − 1√

2
. Thus, this strategy achieves

pwin =
1

2
+

1

8
· 4 · 1√

2
=

1

2

(
1 +

1√
2

)
,

which is exactly what we wanted to show, see Eq. (3.11). This shows that in a precise and
quantitative sense, quantum theory enables stronger correlations than what is possible using a
classical (hidden variable) theory!

It is natural to ask if we can do even better. Is it perhaps even possible to win the game with
certainty using a quantum strategy? It turns out that this is not the case: The Tsirelson bound
asserts that, for any quantum strategy:

pwin,quantum ≤ 1

2

(
1 +

1√
2

)

Thus the strategy that we derived above is optimal. Moreover, it is essentially unique – any
other strategy that saturates the bound coincides with our strategy, except for a choice of bases
(roughly speaking). This is known as the rigidity property of the CHSH game.
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3.5 Exercises

3.1 Pure or mixed, entangled or separable: Let HA = HB = C2 and consider the following
two-qubit state given with respect to the basis |00⟩, |01⟩, |10⟩, |11⟩:

ρAB =
1

2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 .

(a) Is ρAB pure or mixed? Justify your answer.
(b) Is ρAB entangled or separable? Justify your answer.

3.2 Can correlations be shared?

(a) Let p ∈ P(ΣX × ΣY ) be a joint distribution of two random variables X, Y . Show
that there always exists a joint distribution q ∈ P(ΣX × ΣY × ΣY ′) of three random
variables X,Y, Y ′ such that ΣY ′ = ΣY and both the marginal distribution of X, Y as
well as the marginal distribution of X, Y ′ are equal to p.

(b) Let ρAB ∈ D(HA ⊗HB) be an entangled pure state. Show that it is impossible to find a
state σABB′ ∈ D(HA ⊗HB ⊗HB′) such that HB′ = HB and σAB = σAB′ = ρAB.
Hint: Exercise 2.10.

This exercise shows that pure state entanglement is monogamous in a very strong sense. We
will come back to this idea in Lecture 13.

3.3 Two-qubit entanglement: For any pure state |Ψ⟩ = Ψ00|00⟩+Ψ01|01⟩+Ψ10|10⟩+Ψ11|11⟩
of two qubits, define the following determinant-like quantity:

∆ := Ψ00Ψ11 −Ψ01Ψ10.

Show that ∆ = 0 if and only if |Ψ⟩ is a product state.

3.4 Maximally entangled states:

(a) Let |ΦAB⟩ ∈ HA ⊗ HB be a maximally entangled state, and |ΨAB⟩ ∈ HA ⊗ HB an
arbitrary pure state. Show that |ΨAB⟩ is maximally entangled if and only if there exist
unitaries UA ∈ U(HA) and VB ∈ U(HB) such that (UA ⊗ VB)|ΦAB⟩ = |ΨAB⟩.

(b) Let |ΦA1B1⟩ ∈ HA1 ⊗HB1 and |Φ′
A2B2

⟩ ∈ HA2 ⊗HB2 be two maximally entangled states.
Show that |ΦA1B1⟩ ⊗ |Φ′

A2B2
⟩ is maximally entangled between systems A1A2 and B1B2.9

3.5 Maximal entanglement criterion: Prove Lemma 3.6.

3.6 Maximally entangled state tricks: Prove Lemma 3.7.

3.7 Partial transpose test I: Given a linear operator MAB ∈ L(HA ⊗HB) and a choice of
orthonormal basis of HA, we define the partial transpose MTA

AB of MAB on system A as the
following operator in L(HA ⊗HB): If MAB =MA ⊗MB, we set

MTA
AB :=MT

A ⊗MB,

9By this we mean that it is maximally entangled with respect to the tensor product HA ⊗ HB , where
HA = HA1 ⊗HA2 and HB = HB1 ⊗HB2 .
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where the transpose is taken with respect to the chosen basis (just for the ordinary transpose,
the result will depend on this choice). Since any MAB can be written as linear combination
of operators of the form MA ⊗MB, we can extend the definition to all of L(HA ⊗HB) by
linearity. One can similarly define the partial transpose on system B.

(a) Show that if ρAB is a separable state then ρTA
AB is PSD.

Thus we obtain an important criterion for entanglement, which is known as the partial
transpose test : if ρTA

AB has a negative eigenvalue, then the state ρAB must be entangled.

(b) Use this to show that the maximally entangled state 1√
2
(|00⟩+ |11⟩) is entangled.

It is important to realize that the partial transpose test only gives a sufficient criterion for
entanglement. In other words, there are entangled states with PSD partial transpose (except
in dimensions 2× 2, 2× 3, and 3× 2).

3.8 Partial transpose test II: Let ρ0 = |Φ+⟩⟨Φ+| denote the maximally entangled state
on Cd ⊗ Cd, and let ρ1 =

I⊗I−|Φ+⟩⟨Φ+|
d2−1

.

(a) Show that ρ(t) := (1− t)ρ0 + tρ1 is a quantum state for all t ∈ [0, 1].
(b) Show that ρTA

0 = 1
dF , where F ∈ L(Cd ⊗ Cd) is the swap operator defined by

F (|x⟩ ⊗ |y⟩) = |y⟩ ⊗ |x⟩,

for all x, y ∈ {0, . . . , d− 1}.
(c) For what range of t does the partial transpose test show that ρ(t) is entangled?

3.9  Practice In this problem you can experiment with the partial transpose test. In the
files 03-state-A.txt, 03-state-B.txt and 03-state-C.txt, you will find three density
matrices of the following dimensions:

α ∈ D(C2 ⊗ C2), β ∈ D(C2 ⊗ C3), γ ∈ D(C2 ⊗ C4).

For each of the three states, compute the partial transpose, and output the smallest eigenvalue
of the resulting matrix. For each state, output whether the state is entangled, or separable,
or whether the partial transpose test was inconclusive.

Hint: You may use that the partial transpose test is necessary and sufficient when the total
dimension is at most 6.

3.10 Local conversion of Bell states: Verify Eq. (3.5).

3.11 Teleportation: Here you can fill in the gaps left in the lecture notes in the analysis of
teleportation, where we asserted Eq. (3.7) and its generalization Eq. (3.8) without proof.

(a) Let IB→M denote the identity operator HB → HM (this make sense as HM = HB = C2).
Show that

(
IM ⊗ ⟨Φ+

AB|
)(
|Φ+
MA⟩ ⊗ IB

)
= 1

2IB→M .
(b) Deduce that

(
IM ⊗ ⟨Φ+

AB|
)(
|Φ(x,z)
MA ⟩ ⊗ IB

)
= 1

2IB→MZ
zXx for any x, z ∈ {0, 1}.

(c) Verify Eq. (3.8).

3.12 Entanglement swapping: Consider the following scenario involving three friends Alice,
Bob, and Charlie: Alice has one qubit A, Bob has two qubits B and B′, and Charlie has one
qubit C. The joint state of the four qubits is |Φ+

AB⟩ ⊗ |Φ+
B′C⟩, as in the following picture:
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• •• •
A B B′ C

Alice Bob Charlie

|Φ+〉 |Φ+〉

(a) Compute the reduced state of subsystem AC (i.e., the qubits shared by Alice and Charlie).
Is this state correlated or not? If it is correlated, is it entangled?

(b) Explain in one or two sentences how the three friends can use teleportation to create a
maximally entangled state between Alice and Charlie.

3.13 Transpose trick: For any r⃗, s⃗ ∈ R3, show that
〈
Φ+| (I + rxX + ryY + rzZ)⊗ (I + sxX + syY + szZ) |Φ+

〉
= 1 + rxsx − rysy + rzsz.

3.14 Measuring a maximally state: Suppose that Alice and Bob each have one qubit, and
their joint state is the maximally entangled state |Φ+⟩. Use Eq. (3.14) to compute the
probability that their measurement outcomes coincide in each of the following situations:

(a) Both perform a standard basis measurement (1.26).
(b) Both perform a Hadamard basis measurement (1.27).
(c) Alice performs a standard basis measurement and Bob a Hadamard basis measurement.
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Lecture 4

Trace distance and fidelity, classical and
quantum channels

Today, we are concerned with two separate topics. First, we discuss ways of quantifying the
similarity of two quantum states. For this we introduce two quantities: the trace distance, which
is defined in terms of generalization of the ℓ1-norm of vectors, and the fidelity, which generalizes
the overlap |⟨ϕ|ψ⟩| of pure states. Both are useful and we discuss their most important properties.

We then switch gears and spend the remainder of the lecture to work towards the definition
of a quantum channel. Roughly speaking, channels describe the most general way by which we
can modify (or ‘process’) quantum states. We first discuss the classical situation and then turn
towards the quantum case – motivating and defining quantum channels as completely positive
and trace-preserving superoperators. We will continue the discussion of channels next week. At
that point, we will have fully developed the basic formalism of quantum information theory.

4.1 Norms of operators

Since quantum states are operators, we can in principle use any norm or metric on L(H) to
define a distance measure. What are useful norms to consider?

There is a general procedure to define the norm of an operator by considering the ℓp-norm of
its singular values (Theorem 2.23). Recall that the ℓp-norm of a vector x ∈ Cn is defined by

∥x∥p :=





(∑n
j=1|xj |p

)1/p
if p ∈ [1,∞),

maxnj=1|xj | if p = ∞.
(4.1)

Note that ∥x∥∞ = limp→∞∥x∥p. We can define corresponding norms of operators as follows:

Definition 4.1 (Schatten p-norm, trace norm, Frobenius norm, operator norm). For any p ∈ [1,∞],
we define the Schatten p-norm of an operator M ∈ L(H,K) by

∥M∥p := ∥
( s1

...
sr

)
∥p,

where s1, . . . , sr > 0 are the singular values of M .
The cases p ∈ {1, 2,∞} are particularly important and have special names: ∥M∥1 is called the

trace norm (or nuclear norm), ∥M∥2 is the Frobenius norm (or Hilbert-Schmidt norm), and ∥M∥∞
is the operator norm (or spectral norm).
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The Schatten p-norms are norms on L(H,K) for any p ∈ [1,∞]. This is not obvious for
general p, but easy to verify for p ∈ {1, 2,∞} by using properties discussed below. If M is Hermi-
tian, then the singular values are the absolute values of the nonzero eigenvalues (Exercise 2.11),
so ∥M∥p is the ℓp-norm of the eigenvalues.

Let us write down explicit formulas for the three important special cases: The trace norm of
an operator M ∈ L(H,K) is given by

∥M∥1 =
r∑

i=1

si = Tr
√
M †M = Tr

√
MM †. (4.2)

To see the right-hand side expressions, recall that the singular values are the nonzero eigenvalues of
the operator

√
M †M or

√
MM †. If M is PSD then ∥M∥1 = Tr[M ], since

√
M †M =

√
M2 =M .

Similarly, the Frobenius norm of an operator M ∈ L(H,K) is given by

∥M∥2 =
(

r∑

i=1

s2i

)1/2

=
(
TrM †M

)1/2
=
(
TrMM †

)1/2
. (4.3)

Just like the ℓ2-norm of vectors, the Frobenius norm is induced by an inner product – namely
the so-called Hilbert-Schmidt inner product on L(H,K), which is defined by

⟨M,N⟩ := Tr[M †N ] ∀M,N ∈ L(H,K). (4.4)

Thus, L(H,K) is itself a Hilbert space if we use this inner product. In fact, under the natural
isomorphism L(H,K) ∼= H∗ ⊗K, the Frobenius norm and Hilbert-Schmidt inner product simply
corresponds to the norm and inner product of the Hilbert space H∗ ⊗K. Concretely, this means
the following: For an operator M , denote by Mab = ⟨ea|M |fb⟩ its matrix elements with respect to
arbitrary fixed orthonormal bases of |ea⟩ of K and |fb⟩ of H. Then, Eqs. (4.3) and (4.4) become

∥M∥22 =
∑

a,b

|Mab|2 and ⟨M,N⟩ =
∑

a,b

MabNab.

This shows that the Frobenius norm and Hilbert-Schmidt inner product are simply the ℓ2-norm
and inner product of the matrix entries, thought of as vectors in Cd2 .

Finally, we can write the operator norm as follows:

∥M∥∞ = maxri=1si = max
|ϕ⟩∈H, ∥|ϕ⟩∥≤1

∥M |ϕ⟩∥. (4.5)

The right-hand side expression follows since its square is the maximal eigenvalue of M †M . It
shows that ∥·∥∞ is the operator norm induced by the norms of H and K, which justifies its name.

Lemma 4.2. The Schatten norms satisfy the following properties for all M ∈ L(H,K):

(a) Invariance under taking adjoints, conjugation, and transposition (the latter with respect to
any orthonormal basis): ∥M∥p = ∥M †∥p = ∥M∥p = ∥MT∥p.

(b) Invariance under isometries: ∥M∥p = ∥VMW †∥p for all V ∈ U(K,K′), W ∈ U(H,H′). In
particular, they are invariant under left and right multiplication by unitaries.

(c) They are monotonically decreasing in p. In particular: ∥M∥1 ≥ ∥M∥2 ≥ ∥M∥∞.

Proof. Parts (a) and (b) follows directly from the corresponding properties of the singular values.
Part (c) is a direct consequence of the same property for the ordinary ℓp-norms.
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The Schatten norms also satisfy a version of the Hölder inequality : For 1
p +

1
q = 1,

|Tr[M †N ]| ≤ ∥M∥p∥N∥q ∀M,N ∈ L(H,K).

In fact, if 1
p +

1
q = 1 then the norm ∥·∥q is dual to ∥·∥p.1 This means that

∥M∥q = max
N∈L(H,K),
∥N∥p≤1

|Tr[M †N ]| ∀M ∈ L(H,K).

We record and prove two important special cases to give you a flavor of the reasoning:

Lemma 4.3 (Cauchy-Schwarz and Hölder). For any M ∈ L(H,K), we have

∥M∥2 = max
N∈L(H,K),
∥N∥2≤1

|Tr[M †N ]|, (4.6)

∥M∥1 = max
N∈L(H,K),
∥N∥∞≤1

|Tr[M †N ]|. (4.7)

In particular, we have the following Cauchy-Schwarz and Hölder inequality: For M,N ∈ L(H,K),

|Tr[M †N ]| ≤ ∥M∥2∥N∥2, (4.8)

|Tr[M †N ]| ≤ ∥M∥1∥N∥∞. (4.9)

Proof. The Cauchy-Schwarz inequality holds for any inner product, so in particular for (4.4). Thus
we obtain Eq. (4.8), which also shows ‘≥’ in Eq. (4.6). For the other direction choose N = M

∥M∥2 .
To prove Eq. (4.7) and hence Eq. (4.9), let M =

∑
i si|ei⟩⟨gi| be a singular value decomposition

of M . Then:

|Tr[M †N ]| =
∣∣∣Tr
[∑

i

si|gi⟩⟨ei|N
]∣∣∣ =

∣∣∣
∑

i

si⟨ei|N |gi⟩
∣∣∣ ≤

∑

i

si |⟨ei|N |gi⟩|︸ ︷︷ ︸
≤∥N∥∞

≤ ∥M∥1∥N∥∞,

where we estimated the underbraced inner product by using the Cauchy-Schwarz inequality for
vectors in K and then Eq. (4.5). For N =

∑
i|ei⟩⟨gi|, the above inequalities hold with equality.

The case that H = K is so important that we re-state Eq. (4.7) with a slight extension.

Lemma 4.4. For all M ∈ L(H), we have

∥M∥1 = max
N∈L(H),
∥N∥∞≤1

|Tr[MN ]| = max
U∈U(H)

|Tr[MU ]| ≥ |Tr[M ]|.

Proof. The first equality is just Eq. (4.7) for H = K and M substituted by M † (which has
the same trace norm). For the second equality, note that ‘≥’ holds since ∥U∥∞ = 1 for any
unitary U ∈ U(H), while for ‘≤’ we note that, since H = K, we can extend the map N from the
proof of Eq. (4.7) to a unitary. The final inequality is obvious: simply choose U = I.

We can also prove other variants of the Hölder inequalities, such as the following. It generalizes
and strengthens Eq. (4.9), since by Lemma 4.4 the trace norm is never smaller than the trace.

1In finite dimensions, this is true for all p ∈ [1,∞].
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Lemma 4.5. For all M ∈ L(K,L), N ∈ L(H,K), we have ∥MN∥1 ≤ ∥M∥1∥N∥∞.

Proof. By Eq. (4.7),

∥MN∥1 = max
X∈L(H,L),
∥X∥∞≤1

∣∣Tr[(MN)†X]
∣∣ = max

X∈L(H,L),
∥X∥∞≤1

∣∣Tr[MNX†]
∣∣.

To estimate the right-hand side, observe that
∣∣Tr[MNX†]

∣∣ ≤ ∥M∥1∥NX†∥∞ ≤ ∥M∥1∥N∥∞∥X∥∞ ≤ ∥M∥1∥N∥∞,

where we first use (4.9), then submultiplicativity of the operator norm, and finally ∥X∥∞ ≤ 1.

Finally, we note that the Schatten p-norms are all submultiplicative, which means that

∥MN∥p ≤ ∥M∥p∥N∥p ∀M ∈ L(K,L), N ∈ L(H,K).

For p ∈ {1, 2,∞} this is easy to verify directly using the properties established above.

4.2 Trace distance and fidelity

We can use the norms from Section 4.1 to define distance measures between quantum states.
One particular important such distance measure is the trace distance, which is simply one half
times the metric induced by the trace norm. In particular, the trace distance is a metric.

Definition 4.6 (Trace distance). The (normalized) trace distance between states ρ, σ ∈ D(H) is

T (ρ, σ) :=
1

2
∥ρ− σ∥1.

In Exercise 4.2, you can prove Helstrom’s theorem, which gives an important operational
interpretation to the trace distance. Namely, it shows that the optimal probability of distinguishing
two quantum states ρ and σ is 1

2 +
1
2T (ρ, σ) assuming you are given one of the two with equal

probability. This follows readily from the following lemma, which you get to prove in Exercise 4.1.

Lemma 4.7 (Variational characterization). For any two states ρ, σ ∈ D(H),

T (ρ, σ) = max
0≤Q≤I

Tr[Q(ρ− σ)].

Moreover, the maximum is achieved by a projection Q.

We now list some useful properties of the trace distance:

Lemma 4.8. (a) T (ρ, σ) ∈ [0, 1] for ρ, σ ∈ D(H). Moreover, T (ρ, σ) = 0 if and only if ρ = σ.

(b) Invariance under isometries: T (ρ, σ) = T (V ρV †, V σV †) for ρ, σ ∈ D(H) and V ∈ U(H,K).

(c) Monotonicity: T (ρA, σA) ≤ T (ρAB, σAB) for all states ρAB, σAB ∈ D(HA ⊗HB).

(d) Joint convexity: T (
∑

x∈Σ px ρx,
∑

x∈Σ px σx) ≤ ∑
x∈Σ pxT (ρx, σx), where p ∈ P(Σ) is an

arbitrary probability distribution and ρx, σx are arbitrary states for x ∈ Σ.
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You can prove this in Exercise 4.4. Property (c) is quite intuitive, since it means that two states
can only get closer if we discard a subsystem.

For pure states ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|, the trace distance is directly related to the
overlap |⟨ϕ|ψ⟩| of the corresponding vectors (Exercise 4.5):

T (ρ, σ) =
√
1− |⟨ϕ|ψ⟩|2 (4.10)

Is there also a useful general definition of an ‘overlap’ of mixed states? This leads us to our
second definition, which is the following.

Definition 4.9 (Fidelity). The fidelity between two states ρ, σ ∈ D(H) is defined as

F (ρ, σ) := ∥√ρ√σ∥1 = Tr[

√√
σρ

√
σ ] = Tr[

√√
ρ σ

√
ρ ].

For the second and third equality, see Eq. (4.2). Clearly, F is symmetric, i.e., F (ρ, σ) = F (σ, ρ).
If ρ = |ψ⟩⟨ψ| is pure then √

ρ = ρ, so

F (ρ, σ) = Tr[
√
|ψ⟩⟨ψ|σ|ψ⟩︸ ︷︷ ︸

≥0

⟨ψ|] =
√
⟨ψ|σ|ψ⟩Tr[

√
|ψ⟩⟨ψ|]︸ ︷︷ ︸

=Tr|ψ⟩⟨ψ|=1

=
√
⟨ψ|σ|ψ⟩. (4.11)

If both states are pure, ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|, then

F (ρ, σ) =
√
⟨ψ|ϕ⟩⟨ϕ|ψ⟩ = |⟨ψ|ϕ⟩|. (4.12)

Thus, the fidelity indeed generalizes the overlap of pure states.
The fidelity is a similarity measure rather than a distance measure, i.e., it is maximized if

the two states are the same.2 This follows from the first item in the following lemma.

Lemma 4.10. (a) F (ρ, σ) ∈ [0, 1] for ρ, σ ∈ D(H). Moreover, F (ρ, σ) = 1 if and only if ρ = σ.

(b) Invariance under isometries: F (ρ, σ) = F (V ρV †, V σV †) for ρ, σ ∈ D(H) and V ∈ U(H,K).

(c) Monotonicity: F (ρA, σA) ≥ F (ρAB, σAB) for all states ρAB, σAB ∈ D(HA ⊗HB).

(d) Joint concavity: F (
∑

x∈Σ px ρx,
∑

x∈Σ px σx) ≥
∑

x∈Σ pxF (ρx, σx), where p ∈ P(Σ) is an
arbitrary probability distribution and ρx, σx are arbitrary states for x ∈ Σ.

You can prove the lemma in Exercise 4.6. Part (b) is easy to see directly; for the rest it is useful
to use Uhlmann’s theorem, which we discuss below. Note that the inequality in (c) and (d)
go the opposite way than for the trace distance. This is intuitive, since the trace distance is a
distance measure, while the fidelity is a similarity measure.

Remark 4.11 (Why so complicated?). Why don’t we simply use
√

Tr[ρσ] to generalize the overlap?
The problem is that this quantity does not attain its maximum for when ρ = σ. Indeed, Tr[ρ2]
can be any number in [1/d, 1], where d = dimH, so the above is not a good definition.

Remark 4.12 (Tricky conventions). Around half of the quantum information community defines
the fidelity as the square of our F (ρ, σ). This is good to keep in mind when consulting the
literature (including textbooks).

We now come to a central result, Uhlmann’s theorem, which gives a nice interpretation of
the fidelity. Namely, the fidelity is simply the maximal overlap between two purifications!

2Thus, the fidelity is not a metric. However, P (ρ, σ) :=
√

1− F 2(ρ, σ) is a metric, called the purified distance.
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Theorem 4.13 (Uhlmann). Let ρA, σA ∈ D(HA) be states and let HB be a Hilbert space such
that both states admit purifications on HA ⊗HB.3 Then,

F (ρA, σA) = max
{
|⟨ΨAB|ΦAB⟩| : |ΨAB⟩, |ΦAB⟩ ∈ HA ⊗HB purifications of ρA, σA

}
.

Since any two purifications on the same Hilbert space are related by a unitary (Lemma 2.18),
Theorem 4.13 can equivalently be stated as follows:

F (ρA, σA) = max
UB∈U(HB)

|⟨Ψfix
AB|(IA ⊗ UB)|Φfix

AB⟩|, (4.13)

where |Ψfix
AB⟩ and |Φfix

AB⟩ are arbitrary fixed purifications of ρA and σA, respectively.
We first give a proof under the simplifying assumption that HA = HB. See below for a

general proof, which is slightly more technical.

Proof of Theorem 4.13 (if HA = HB). Then, without loss of generality, HA = HB = Cd, so we
can use the standard purifications of ρA and σA, respectively (Definition 2.19). That is:

|Ψstd
AB⟩ :=

(√
ρA ⊗ IB

)∑

x

|x⟩ ⊗ |x⟩, |Φstd
AB⟩ :=

(√
σA ⊗ IB

)∑

x

|x⟩ ⊗ |x⟩. (4.14)

We will now prove Eq. (4.13), using these as the ‘fixed’ purifications. For UB ∈ U(HB),

|⟨Ψstd
AB|(IA ⊗ UB)|Φstd

AB⟩| =
∑

x,y

(
⟨x| ⊗ ⟨x|

)(√
ρA

√
σA ⊗ UB

)(
|y⟩ ⊗ |y⟩

)

=
∑

x,y

⟨x|√ρA
√
σA|y⟩⟨x|U |y⟩

=
∑

x,y

⟨x|√ρA
√
σA|y⟩⟨y|UT|x⟩

=
∑

x

⟨x|√ρA
√
σAU

T
A |x⟩ = Tr

[√
ρA

√
σAU

T
A

]
.

In the first step we inserted Eq. (4.14), next we used Eq. (2.3), then we perform the transpose,
and finally we use Eqs. (1.3) and (1.4). (The unitaries UB = U = UA are all the same objects;
the subscripts are just notation to help us emphasize on which system the operator acts.) By
maximizing the left and right hand side of this equality, we obtain

max
UB∈U(HB)

|⟨Ψstd
AB|(IA ⊗ UB)|Φstd

AB⟩| = max
UA∈U(HA)

Tr
[√

ρA
√
σAU

T
A

]

= max
UA∈U(HA)

Tr [
√
ρA

√
σAUA]

= ∥√ρA
√
σA∥1 = F (ρA, σA).

The second step uses that U 7→ UT is a bijection of the set of unitaries and the third equality
is precisely the second characterization in Lemma 4.4. Thus we have proved Eq. (4.13), and
thereby the theorem.

We now show how to adapt the preceding proof in the general case that HA and HB are not
necessarily the same. The key difference is that we can no longer use the standard purification.

3Recall from Lemma 2.17 that this means that dimHB ≥ max{rank ρA, rankσA}.
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Proof of Theorem 4.13 (general case). Let HR = Cr be an auxiliary system of dimension r =
max{rank(ρA), rank(σA)}. We consider the following purifications:

|Ψfix
AB⟩ :=

(√
ρA VR→A ⊗XR→A

) r∑

x=1

|x⟩ ⊗ |x⟩, (4.15)

|Φfix
AB⟩ :=

(√
σAWR→A ⊗XR→A

) r∑

x=1

|x⟩ ⊗ |x⟩. (4.16)

The operator VR→A is an isometry that maps the first rank(ρA) many standard basis vectors |x⟩
to orthonormal eigenvectors of ρA corresponding to the nonzero eigenvalues. Likewise, the
operator WR→A is an isometry that maps the first rank(σA) many standard basis vectors |x⟩
to orthonormal eigenvectors of σA corresponding to the nonzero eigenvalues. (This is possible
since dimHA ≥ r.) Finally, the operator XR→B is an arbitrary isometry. (Such isometries exist
we assumed that both ρA and σA have purifications to HA ⊗HB, so dimHB ≥ r.) It is easy to
verify that Eq. (4.15) defines purifications of ρA and σA.

We now proceed as before and consider the right-hand side of Eq. (4.13), but now using
Eq. (4.15) as the fixed purifications. Now, abbreviating V = VR→A, W =WR→A, X = XR→B,

|⟨Ψfix
AB|(IA ⊗ UB)|Φfix

AB⟩| =
r∑

x,y=1

(
⟨x| ⊗ ⟨x|

)(
V †√ρA

√
σAW ⊗X†UBX

)(
|y⟩ ⊗ |y⟩

)

=

r∑

x,y=1

⟨x|V †√ρA
√
σAW |y⟩⟨x|X†UBX|y⟩

=

r∑

x,y=1

⟨x|V †√ρA
√
σAW |y⟩⟨y|(X†UBX)T|x⟩

= Tr[V †√ρA
√
σAW (X†UBX)T]

What kind of object are X†UBX and its transpose? This is an operator on HR = Cr which we
can think of as the restriction of the unitary UB to a subspace (namely the image im(X) of the
isometry X). As such, it is clear that ∥X†UBX∥∞ ≤ 1, which can also be seen formally by using
submultiplicativity and the fact that unitaries and (more generally isometries) have operator
norm at most one. This means that

max
UB∈U(HB)

|⟨Ψfix
AB|(IA ⊗ UB)|Φfix

AB⟩| ≤ max
Y ∈L(HR),
∥Y ∥∞≤1

Tr[V †√ρA
√
σAWY ] = ∥V †√ρA

√
σAW∥1 (4.17)

using the first characterization in Lemma 4.4. On the other hand, we can write any unitary
matrix in U(HR) as X†UBX for some unitary UB ∈ U(HB) (simply choose UB to be a direct
sum of the desired unitary on HR

∼= im(X) and the identity on the orthogonal complement).
Hence:

max
UB∈U(HB)

|⟨Ψfix
AB|(IA ⊗ UB)|Φfix

AB⟩| ≥ max
Z∈U(HR)

Tr[V †√ρA
√
σAWZ] = ∥V †√ρA

√
σAW∥1 (4.18)

Combining Eqs. (4.17) and (4.18), we find that

max
UB∈U(HB)

|⟨Ψfix
AB|(IA ⊗ UB)|Φfix

AB⟩| = ∥V †√ρA
√
σAW∥1. (4.19)

We are almost done – but we still have to get rid of V and W on the right-hand side. To do so,
note that

∥√ρA
√
σA∥1 = ∥V V †√ρA

√
σAWW †∥1 ≤ ∥V †√ρA

√
σAW∥1 ≤ ∥√ρA

√
σA∥1 (4.20)
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The equality holds, because V V † projects onto the support of ρA, hence of √ρA, so V V †√ρA =√
ρA; and likewise for WW † and

√
σA. The inequalities follow from Lemma 4.5, since the

isometries V and W and their adjoints satisfy have operator norm bounded by one. (In the fact,
the first inequality is an equation thanks to Lemma 4.2 (b).) Since the left and the right hand
side of Eq. (4.20) are the same, it follows that we must have equality throughout, so that

∥√ρA
√
σA∥1 = ∥V †√ρA

√
σAW∥1.

In view of Eq. (4.19) this concludes the proof. Phew!

Finally, we mention that the trace distance and fidelity are related by the so-called Fuchs-van
de Graaf inequalities: For all ρ, σ ∈ D(H),

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√
1− F 2(ρ, σ). (4.21)

You can prove the upper bound in Exercise 4.7. For pure states, we see from comparing Eqs. (4.10)
and (4.12) that the upper bound is an equality.

4.3 Channels in probability theory

So far, the only way to manipulate a quantum state has been to measure it – but apart from
Footnote 3 we have not discussed at all how quantum states can evolve or be manipulated. In the
remainder of today’s lecture we will start developing the mathematical formalism that describes
the most general way by which quantum states can be manipulated. Before considering the
quantum situation, it is instructive to consider the classical situation.

Suppose we are given a ‘box’ such that we can input a value x ∈ ΣX and receive as output
some value y ∈ ΣY , as in the following figure:

ΣX 3 x ? y ∈ ΣY

How should we describe this mathematically? Let us imagine that the box has no memory, i.e.,
it acts the same way if we use it repeatedly. Then the most straightforward description might be
to assume that there exists a function,

f : ΣX → ΣY

such that y = f(x) for every input x. This is an excellent description if we have engineered the
box ourselves to perform a given operation deterministically. But what about if there is some
random process happening inside the box? (Or perhaps we have some uncertainty about the
inner workings of the box?) In this case, it is natural to allow the output to be random, i.e.,
described by a probability distribution. Mathematically, this means that we should describe the
box by a function

p(y|x) such that

{
p(y|x) ≥ 0 ∀x, y∑

y p(y|x) = 1 ∀x.
(4.22)

The right-hand side condition means that p(y|x) is a probability distribution in y for every
fixed x. The interpretation is that if the input to the box is x, then the output y is random, with
probabilities given by the p(y|x). That is,

p(y|x) = Pr(output y|input x).
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For this reason we might call p(y|x) a conditional probability distribution (but note that we do
not presuppose the existence of a joint distribution). In information theory, p(y|x) is called a
(memoryless) channel. We will mostly use these two terms. Other terms are (column) stochastic
matrix, transition operator, or Markov operator.
Remark 4.14 (Functions as channels). Note that given a function f : ΣX → ΣY , we can always
define

p(y|x) =
{
1 if y = f(x),

0 otherwise.

Then, if x is the input then y = f(x) is the output with certainty. This shows that channels are
a generalization of deterministic functions.

What if the input is also random, say, given by some probability distribution p(x)? In this
case, the joint probability of input and output is given by p(x, y) = p(y|x)p(x), so the distribution
of the output is the marginal distribution of y,

p(y) =
∑

x

p(y|x)p(x). (4.23)

Here we used the slightly terrible (but concise and rather standard) convention of writing p(x)
and p(y) for the input and output distribution, respectively, only distinguishing them by the
symbol used for the argument. It would be more precise to use subscripts – writing, say, pX and
pY for the input and output distribution, and PY |X for the channel. Then, Eq. (4.23) reads

pY (y) =
∑

x

PY |X(y|x)pX(x). (4.24)

Note that this is precisely the formula for matrix-by-vector multiplication – provided we think of
the probability distributions pX ∈ RΣX and pY ∈ RΣY as vectors, and of the channel as a matrix
PY |X ∈ RΣY ×ΣX (the entry in row y and column x is PY |X(y|x)). The conditions in Eq. (4.22)
mean that all entries are nonnegative and that the entries in each column sum to one – such
matrices are called (column) stochastic. Then, the formula Eq. (4.24) for computing the output
distribution given a channel and input distribution can be succinctly written as follows:

pY = PY |X pX

The mapping pX 7→ pY is evidently linear (since it is implemented by left multiplication with the
channel matrix PY |X). Conversely, any linear mapping that sends probability distributions to
probability distributions is of this form for some channel PY |X .

Let us discuss two families of channels that are very important in classical information theory.

(a) A binary symmetric channel is a channel which flips a bit with some probability ε ∈ [0, 1].
That is, ΣX = ΣY = {0, 1} and

p(0|0) = p(1|1) = 1− ε,

p(1|0) = p(0|1) = ε

We can visualize this as follows:

0 0

1 1

x y
1− ε

1− ε

ε ε
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Note that output y does not contain any information about whether the bit has been
flipped. This is perhaps the most straightforward way of modeling an unreliable digital
information transmission line.

(b) A binary erasure channel is a channel where the input bit is lost (‘erased’) with some
probability ε ∈ [0, 1]. Mathematically, ΣX = {0, 1}, ΣY = {0, 1,⊥} and

p(0|0) = p(1|1) = 1− ε,

p(⊥|0) = p(⊥|1) = ε.

That is, the output is either equal to the input (it never gets flipped), or a new symbol ⊥
(‘perp’) that indicates that the bit has been lost. This is illustrated in the following picture:

0

1

x y
1− ε

1− ε

ε

ε ⊥
1

0

You could for example use this to describe a situation where you send a (physical or digital)
packet from a sender to a receiver which sometimes gets lost.

From these examples we see that the formalism of channels can not only describe arbitrary
deterministic functions, but it is also very well suited to describing ‘uncertain’ or ‘noisy’ behavior.
To understand how to communicate reliably in the presense of uncertainty and noise is one of
the central goals of information theory.

4.4 Quantum channels

We now discuss how the preceding gets modified in quantum information theory. As before, we
would like to model a ‘box’ – but now the box should map quantum states to quantum states:

D(HA) 3 ρA ? ρB ∈ D(HB)

Since quantum states are operators, this should be described by a map

Φ: L(HA) → L(HB).

What additional properties should such a map satisfy? First of all, we want to demand that Φ is
linear. This ensures that if {pi, ρi} is an ensemble of input states then4

T [
∑

i

piρi] =
∑

i

piT [ρi].

The fact that Φ should be linear can be succinctly written as follows:

Φ ∈ L(L(HA),L(HB)). (4.25)

Thus, Φ is an operator that maps operators to operators! Such maps are called often called
superoperators, and we will follow this terminology. We will visualize superoperators by pictures
such as the following:

4You might wonder why we do not rather model Φ by a map D(HA) to D(HB) that preserves convex
combinations. The reason is that any such map has a unique extension to linear map from L(HA) to L(HB), and
linear maps are easier to work with.
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Φ
A B

As for states and operators, we will often use subscripts to indicate the labels of systems. Thus,
we will write ΦA→B for a superoperator as in Eq. (4.25) and

MB = ΦA→B[MA]

to apply a superoperator to some MA ∈ L(HA), the result of which is an operator MB ∈ L(HB).
We will consistently use square brackets [. . . ] to apply superoperators to operators.

We still have to discuss which conditions we should impose to Φ to be a quantum channel,
but let us first discuss some generalities.

• First, we always have an identity superoperator, denoted

IA : L(HA) → L(HA), IA[MA] =MA ∀MA ∈ L(HA). (4.26)

This naturally describes the situation where our box does not change the input at all – or
where there is no box. Accordingly, we will visualize IA as follows:

AA

• Second, given two superoperators ΦA→B, ΨC→D, we can always form their tensor product.
This is the superoperator

ΦA→B ⊗ΨC→D ∈ L(L(HA ⊗HC),L(HB ⊗HD)),

which is defined as follows on tensor product operators,

(ΦA→B ⊗ΨC→D)[MA ⊗NC ] := ΦA→B[MA]⊗ΨC→D[NC ], (4.27)

extended by linearity – in precise analogy to how we defined the tensor product of operators
in terms of the tensor product of vectors (Remark 2.3). The tensor product of two
superoperators naturally describes the situation of two boxes where the first is applied to
one subsystem and the second to the other, as in the following picture:

Φ
A B

Ψ
C D

What conditions to we want to impose on Φ to legitimately call it a ‘quantum channel’? Clearly,
we would like Φ to map quantum states to quantum states:

ρA ∈ D(HA) ⇒ ΦA→B[ρA] ∈ D(HB)

We can equivalently split this up into two conditions and ask that Φ is both

(a) Positive, meaning it maps PSD operators to PSD operators: Φ[MA] ≥ 0 for all MA ≥ 0,

(b) Trace-preserving: Tr[Φ[MA]] = Tr[MA] for all MA.

Let us try to come up with maps that satisfy these properties:
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• Unitaries and isometries: ΦA→A[ρA] = UρAU
† for a fixed unitary U ∈ U(HA). More

generally, we can take ΦA→B[ρA] = V ρAV
† for an isometry V ∈ U(HA,HB). In our

pictures, we will often denote these superoperators simply by “U ” or “V ”:

U
A A

V
A B

(4.28)

Careful: It is important to keep in mind that these pictures refer not to U and V , but to
the corresponding channels Φ.

We already saw examples of unitary superoperators in Lecture 3 when we applied Pauli
operators (which are unitaries) in the superdense coding and teleportation protocols. See
footnote 3 on p. 41.

• Add state: ΦA→AB[ρA] = ρA ⊗ σB for a fixed state σB . This superoperator corresponds to
a source that emits an additional quantum system in state σB – as in the figure:

A

B
σB

• Partial trace: ΦAB→A = TrA. Indeed, the partial trace is a superoperator that maps states
to states, as we discussed above Definition 2.12. This corresponds to the situation where
we simply discard a subsystem A:

A

B

It is very instructive to note that we can write

TrA = Tr⊗IB,

as can be seen by comparing Eq. (4.27) and Lemma 2.9. This shows that our method for
drawing pictures makes sense. In fact, it can be developed into a well-defined graphical
calculus.

• Measurement: We can also represent measurements by superoperators. If µA : Ω →
PSD(HA) is an arbitrary measurement on A then we can define

ΦA→X [ρA] =
∑

x∈Ω
Tr
[
µA(x)ρA

]
|x⟩⟨x| ∀ρA, (4.29)

where X is a new system with Hilbert space HX = CΣ. By Born’s rule, Tr[µA(x)ρA] is the
probability of outcome x using the measurement µA. Thus, for any state ρA, the output
state ΦA→X [ρA] is a classical state (Definition 1.10) that describes the probabilities of
measurement outcomes. We use the following picture to denote this superoperator:

µ
A X

(Recall that, by convention, single lines correspond to quantum systems, while double lines
denote classical data.)
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• Measure and prepare: This superoperator is defined by

ΦA→B[ρA] =
∑

x∈Ω
Tr[ρAµA(x)]σB,x,

where µA : Ω → PSD(HA) is an arbitrary measurement on A and σB,x a state on B for each
possible outcome x ∈ Ω. This superoperator corresponds to performing a measurement
and then preparing a state according to the measurement outcome:

µ
A B

σB,xx

Note that we recover the previous example by taking σB,x = |x⟩⟨x|.

This is encouraging – we found many superoperators that seem reasonable and satisfy condi-
tions (a) and (b), that is, they map states to states.

However, we will now see that there is a problem – these two conditions are not sufficient to
give a good definition of quantum channels. The reason is that there are superoperators Φ such
that the two conditions hold for Φ but fail for Φ⊗ IR, i.e., there exists a system R and state
ρAR such that (ΦA→B ⊗ IR)[ρAR] is not a state!

Φ

ρAR

R

A B

This is clearly nonsensical, since we want to interpret ΦA→B ⊗IR as applying Φ on the A system
while leaving the R-system untouched.

For an example of such a superoperator, consider the transpose map that sends an operator
to its transpose (in some fixed basis):

T [M ] =MT. (4.30)

For concreteness, let us consider the qubit case, i.e., T : L(C2) → L(C2).

• It is clear that T sends states to states, i.e., is positive and trace-preserving. Indeed, the
transpose of a PSD operator is PSD, and the trace is likewise invariant under transposition.

• Consider the maximally entangled state of two qubits:

ρAR = |Φ+
AR⟩⟨Φ+

AR| =
1

2
(|00⟩⟨00|+ |11⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨11|)

=
1

2
(|0⟩⟨0| ⊗ |0⟩⟨0|+ |1⟩⟨0| ⊗ |1⟩⟨0|+ |0⟩⟨1| ⊗ |0⟩⟨1|+ |1⟩⟨1| ⊗ |1⟩⟨1|)

=
1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




If we apply the transpose channel on the A-subsystem (this is called a partial transpose, in
analogy to the partial trace), we obtain

(T ⊗ IR)[ρAR] =
1

2

(
|0⟩⟨0|T ⊗ |0⟩⟨0|+ |0⟩⟨1|T

::::::
⊗ |0⟩⟨1|+ |1⟩⟨0|T

::::::
⊗ |1⟩⟨0|+ |1⟩⟨1|T ⊗ |1⟩⟨1|

)
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=
1

2

(
|0⟩⟨0| ⊗ |0⟩⟨0|+ |1⟩⟨0|

:::::
⊗ |0⟩⟨1|+ |0⟩⟨1|

:::::
⊗ |1⟩⟨0|+ |1⟩⟨1| ⊗ |1⟩⟨1|

)

=
1

2




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




We see immediately from the matrix representation that ρBR is not a state. Indeed, while
the trace is still one, the right-hand side matrix has an eigenvector (0, 1,−1, 0) with negative
eigenvalue −1/2. You have already seen this calculation in case you solved Exercise 3.7.

Thus we recognize that ‘positivity’ alone is not enough, we need to demand the stronger condition
that even when we tensor with an identity channel we obtain a ‘positive’ map. This property is
called ‘complete positivity’. The problem identified above turns out to be the only issue – so we
arrive at the following definition of a quantum channel.5

Definition 4.15 (Quantum channel). A superoperator ΦA→B ∈ L(L(HA),L(HB)) is called a
(quantum) channel if it is

(a) Completely positive: For all HR and MAR ≥ 0, it holds that (ΦA→B ⊗ IR)[MAR] ≥ 0,

(b) Trace-preserving : Tr[ΦA→B[MA]] = Tr[MA] for all MA.

We write CP(HA,HB) and C(HA,HB) for the sets of all completely positive maps ΦA→B and
quantum channels, respectively, and we set CP(HA) := CP(HA,HA) and C(HA) := C(HA,HA).

What are some examples of quantum channels? Clearly, the superoperator IA defined in Eq. (4.26)
is a quantum channel according to this definition, so we will call it the identity channel. In fact,
all examples given above – except for the transpose map – are quantum channels. You can show
this in Exercises 4.10 and 4.11, which also gives some further examples.

We can also build new channels from old ones. For one, the set of quantum channels is a
convex set. That is, if (pi)i∈I is a probability distribution and ΦA→B,i ∈ C(HA,HB) are channels
for i ∈ I, then

∑
i∈I piΦA→B,i is again a quantum channel. This follows easily from the definition.

Moreover, if ΦA→B is a channel then so is ΦA→B⊗IR for anyR. This holds almost by definition,
and it implies that channels can be composed in parallel and sequentially (Exercise 4.12):

Lemma 4.16. If ΦA→B and ΨB→C are channels, then so is ΨB→C ◦ΦA→B. If ΦA→B and ΞC→D

are channels, then so is ΦA→B ⊗ ΞC→D.

Perhaps you still feel a bit uneasy with this definition – could there be another problem that
we might have missed in our analysis? Next week we will see that this is not so. Indeed, we will
find that any quantum channel according to the above definition can be written as a three-step
procedure: first add a system in a fixed state, then apply a unitary, and finally trace over a
system. Since quantum physics tells us that these three building blocks are all ‘physical’, this
justifies the mathematical definition. See the discussion surrounding Axiom 5.6 for more details.

Remark 4.17 (Complete positivity for classical channels?). In classical information theory the
above problem does not appear. Indeed, if p(y|x) is a conditional probability distribution then
so is p(yz′|xz) = p(y|x)δz,z′ (the latter is the same as tensoring the transition matrix with IZ).
Thus, in a classical world, ‘complete positivity’ is automatic.

5Note that the second condition is unchanged. Indeed, unlike for positivity, it holds automatically that if
ΦA→B is trace-preserving then so is ΦA→B ⊗ IR for any system R.
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4.5 Exercises

4.1 Variational characterization of the trace distance: Prove Lemma 4.7.

Hint: Consider the spectral decomposition of ρ− σ.

4.2 Helstrom’s theorem: Suppose that we have a source that emits states ρ0, ρ1 ∈ D(H) with
50% probability each. Your goal is to determine a measurement µ : {0, 1} → PSD(H) that
identifies the correct state as best as possible, as in the following picture:

µ
ρ0 or ρ1

0 or 1
(50% each)

source

By convention, outcome ‘0’ corresponds to state ρ0, while outcome ‘1’ corresponds to state ρ1.
Thus, the probability of success using µ is given by

psuccess =
1

2
Tr[ρ0µ(0)] +

1

2
Tr[ρ1µ(1)].

Show that maximal probability of success over all possible measurements is 1
2+

1
2T (ρ0, ρ1) and

can be achieved by a projective measurement. This result is known as Helstrom’s theorem.

4.3  Practice: Here you can verify that the measurement from Exercise 1.20 is ‘pretty good’
at distinguishing the states ρ = |0⟩⟨0| and σ(t) = (1 − t)|0⟩⟨0| + t|1⟩⟨1|. Assuming both
states are equally likely, plot the following two quantities as functions of t ∈ (0, 1]:

(a) The optimal probability of distinguishing ρ and σ(t) according to Helstrom’s theorem.
(b) The probability of distinguishing ρ and σ(t) by using the measurement from Exercise 1.20.

4.4 Properties of the trace distance: Verify Lemma 4.8.

4.5 Trace distance between pure states: Prove Eq. (4.10). Hint: ρ− σ has rank ≤ 2.

4.6 Properties of the fidelity: Prove Lemma 4.10.

Hints: Use Uhlmann’s theorem for (a), (c), (d). For (c) & (d), construct suitable purifications.

4.7 Fuchs-van de Graaf: Use Uhlmann’s theorem to prove the upper bound in (4.21).

4.8 Fidelity inequalities:

(a) Show that |⟨ψ1|ϕ⟩|2 + |⟨ψ2|ϕ⟩|2 ≤ 1 + |⟨ψ1|ψ2⟩| for all vector vectors |ψ1⟩, |ψ2⟩, |ϕ⟩ ∈ H.
Hint: Upper bound the left-hand side by the largest eigenvalue of some rank-2 matrix.

(b) Show that F (ρ1, σ)2 + F (ρ2, σ)
2 ≤ 1 + F (ρ1, ρ2) for all states ρ1, ρ2, σ ∈ D(H).

(c) Show the following ‘triangle inequality’: If F (α, β) ≥ 1− δ and F (β, γ) ≥ 1− δ for any
three states α, β, γ ∈ D(H), then F (α, γ) ≥ 1− 4δ.

4.9 Gentle measurement lemma: This useful technical result states that if ρ ∈ D(H) is a
state and 0 ≤ Q ≤ I an operator such that Tr[Qρ] ≥ 1− ε, then the following inequalities
hold:

F
(
ρ,

√
Qρ

√
Q

Tr[Qρ]

)
≥

√
1− ε and T

(
ρ,

√
Qρ

√
Q

Tr[Qρ]

)
≤ √

ε (4.31)

(a) Prove that Tr
√√

ρ
√
Qρ

√
Q
√
ρ = Tr[

√
Qρ] and

√
Q ≥ Q.
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(b) Prove the first inequality in Eq. (4.31) using part (a), and deduce the second inequality
from the first by using a result from an earlier exercise.

4.10 Quantum channels I: Show that the following superoperators Φ are channels by directly
verifying that they are trace-preserving and completely positive.

(a) Isometries: Φ[M ] = VMV † for an isometry V .
(b) Add state: Φ[MA] =MA ⊗ σB for a state σB.
(c) Partial trace: Φ[MAB] = TrB[MAB].
(d) Classical channel: Φ[M ] =

∑
x,y p(y|x) ⟨x|M |x⟩ |y⟩⟨y|, where p(y|x) is a conditional

probability distribution (i.e., p(y|x) is a probability distribution in y for each fixed x).

4.11 Quantum channels II: Show that the following superoperators Φ are channels by directly
verifying that they are completely positive and trace-preserving:

(a) Mixture of isometries: Φ[M ] =
∑n

i=1 piViMV †
i , where (pi)

n
i=1 is an arbitrary probability

distribution and U1, . . . , Un arbitrary unitaries.
(b) State replacement: Φ[M ] = Tr[M ]σ, where σ is an arbitrary state.
(c) Measure and prepare: Φ[M ] =

∑
x∈Σ⟨x|M |x⟩σx, where |x⟩ denotes the standard basis

of CΣ and σx is an arbitrary state for each x ∈ Σ.

4.12 Composing channels: Prove Lemma 4.16.

4.13 Transpose: Show that MTA
AB = (TA ⊗ IB)[MAB] for all MAB ∈ L(HA ⊗HB). Here, MTA

AB

denotes the partial transpose as defined in Exercise 3.7, and TA is the transpose superoperator
from Eq. (4.30) (for the same choice of orthonormal basis of HA).

4.14 No cloning: We say that a channel Φ ∈ C(H,H⊗H) clones a state ρ ∈ D(H) if Φ[ρ] = ρ⊗ρ.
For simplicity, let H = C2 be a qubit.

(a) Show that there exists no channel that clones all classical states ρ.
(b) Show that there exists no channel that clones all pure states ρ.
(c) Which states are both pure and classical? Find a channel Φ that clones all of them.

Hint: For (a) and (b), use that channels are linear to arrive at a contradiction.
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Lecture 5

Structure of quantum channels

Last week, we defined the notion of a quantum channel as a completely positive and trace-
preserving superoperator (see Definition 4.15). Today we will discuss several characterizations
of quantum channels. Those characterizations will give us better mathematical insight into the
notion of complete positivity, serve as important tools for what follows, and give us a more
satisfying explanation why last week’s definition is a sensible one.

5.1 Superoperators and complete positivity

Let ΦA→B ∈ L(L(HA),L(HB)) be a superoperator. It is easy to check when Φ is trace-preserving,
but how can we check complete positivity?

We start with a warning. Since L(HA) ∼= HA ⊗ H∗
A, we can always think of ΦA→B as an

operator in L(HA ⊗ H∗
A,HB ⊗ H∗

B). Now, despite the similarity of words, it is important to
keep in mind that ‘positivity’ or ‘complete positivity’ of Φ does not mean that ΦA→B is a PSD
operator. Indeed, the latter statement does not even make sense in general, since HA ⊗H∗

A and
HB ⊗H∗

B are not necessarily even the same spaces. Instead, our main tool will be to associate
with every superoperator an operator in L(HA ⊗HB) – such operators have the possibility of
being PSD, and we will see that this precisely characterizes when Φ is completely positive. We
use the following definition:

Definition 5.1 (Choi operator). We define the Choi operator associated with a superopera-
tor ΦA→B as

JΦ
AB :=

∑

x,y

|x⟩⟨y| ⊗ ΦA→B[|x⟩⟨y|] ∈ L(HA ⊗HB), (5.1)

where |x⟩ denotes an arbitrary orthonormal basis of HA.

You can think of JΦ
AB as a block matrix where the block at coordinates (x, y) contains the

output ΦA→B[|x⟩⟨y|] of the channel on input |x⟩⟨y|. This is indeed a complete description of Φ
since by linearity you can recover the output of Φ on any input.

We can also write

JΦ
AB =

∑

x,y

(IA ⊗ ΦA→B)[|x, x⟩⟨y, y|], (5.2)

which makes it clear that JΦ
AB is the result of applying ΦA→B to half of an unnormalized

maximally entangled state
∑

x|x, x⟩ ∈ HA ⊗HA, compare Definition 3.5. Note that the latter
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state depends on a choice of basis of HA, just like the Choi operator. The following figure
illustrates Eq. (5.2):

Φ

∑
x|xx〉 JΦ

AB
=

A

A B

For example, taking HA = HB = CΣ and the standard basis, the so-called completely
dephasing channel

∆[ρ] =
∑

x∈Σ
⟨x|ρ|x⟩ |x⟩⟨x| (5.3)

has the following Choi operator:

J∆
AB =

∑

x

|x⟩⟨x| ⊗ |x⟩⟨x|, (5.4)

an unnormalized maximally correlated state. You can verify this and more in Exercise 5.1.
In fact, the mapping Φ 7→ JΦ defines an isomorphism, known as the Choi-Jamiołkowski

isomorphism:

Lemma 5.2 (Choi-Jamiołkowski isomorphism). The following map is an isomorphism,

L(L(HA),L(HB)) → L(HA ⊗HB), ΦA→B 7→ JΦ
AB,

with inverse given by

ΦA→B[MA] = TrA
[
(MT

A ⊗ IB)J
Φ
AB

]
∀MA ∈ L(HA), (5.5)

where we take the transpose in the same basis as used to in the definition of the Choi operator.

Proof. The mapping is clearly linear and both spaces have the same dimension, so we only need
to show how the channel can be recovered from the Choi operator. For this we prove Eq. (5.5)
by a direct calculation:

TrA
[
(MT

A ⊗ IB)J
Φ
AB

]
=
∑

x,y

TrA
[
(MT

A ⊗ IB)(|x⟩⟨y| ⊗ ΦA→B[|x⟩⟨y|])
]

=
∑

x,y

TrA
[
MT
A |x⟩⟨y| ⊗ ΦA→B[|x⟩⟨y|]

]

=
∑

x,y

Tr[MT
A |x⟩⟨y|]︸ ︷︷ ︸

=⟨y|MT
A|x⟩=⟨x|MA|y⟩

ΦA→B[|x⟩⟨y|]

=
∑

x,y

ΦA→B[|x⟩⟨x|MA|y⟩⟨y|] = ΦA→B[MA].

It is a nice exercise to verify that this formula indeed recovers Eq. (5.3) from Eq. (5.4).
We now state the central theorem that gives four equivalent ways of characterizing when a

superoperator is completely positive.

67



Theorem 5.3 (When is a superoperator completely positive?). For a superoperator ΦA→B ∈
L(L(HA),L(HB)), the following statements are equivalent:

(a) ΦA→B is completely positive (i.e., for all HR and MAR ≥ 0 it holds that (ΦA→B ⊗
IR)[MAR] ≥ 0).

(b) ΦA→B ⊗ IA′ is positive where HA′ ∼= HA (i.e., for all MAA′ ≥ 0 it holds that (ΦA→B ⊗
IA′)[MAA′ ] ≥ 0).

(c) JΦ
AB ≥ 0, i.e., the Choi operator of ΦA→B is positive semidefinite.

(d) Kraus representation: There exist operators X1, . . . , Xr ∈ L(HA,HB) such that

Φ[M ] =
r∑

i=1

XiMX†
i (5.6)

for all M ∈ L(HA).

(e) Stinespring representation: There exists HE and V ∈ L(HA,HB ⊗HE) such that

Φ[M ] = TrE [VMV †] (5.7)

for all M ∈ L(HA).

Moreover, r in (d) and dimHE in (e) can be chosen as rank(JΦ
AB) ≤ dimHA dimHB (or larger).

Proof. The implications (a)⇒(b)⇒(c) are immediate. For the implication (d)⇒(e), simply define
HE = Cr and V :=

∑r
i=1Xi ⊗ |i⟩ and verify that Eq. (5.7) reduces to Eq. (5.6). (We can also go

the other way around and obtain Kraus operators from V by setting Xi := (IB ⊗ ⟨i|)V , showing
that (e)⇒(d).) The implication (e)⇒(a) is also easy – both M 7→ VMV † and TrE are completely
positive (see Exercise 4.10), hence so is their composition.

It remains to prove that (c)⇒(d) with r = rank JΦ
AB . Since JΦ

AB is PSD, we can use a spectral
decomposition (see Theorem 1.3) to write1

JΦ
AB =

r∑

i=1

|vi⟩⟨vi| (5.8)

for suitable vectors |vi⟩ ∈ HA ⊗HB that need not be normalized. We can construct operators
Xi ∈ L(HA,HB) from them similarly as in Exercise 2.12. Simply define

Xi :=
∑

a,b

⟨a, b|vi⟩ |b⟩⟨a| ∈ L(HA,HB). (5.9)

Then, using Eq. (5.5),

Φ[M ] = TrA
[
(MT

A ⊗ IB)J
Φ
AB

]
=
∑

i

TrA
[
(MT

A ⊗ IB)|vi⟩⟨vi|
]

=
∑

i

∑

a,b

∑

a′,b′

⟨a, b|vi⟩⟨vi|a′, b′⟩TrA
[
(MT

A ⊗ IB)|a, b⟩⟨a′, b′|
]

=
∑

i

∑

a,b

∑

a′,b′

⟨a, b|vi⟩⟨vi|a′, b′⟩TrA
[
MT
A |a⟩⟨a′| ⊗ |b⟩⟨b′|

]

1To get this form, restrict the decomposition of JΦ
AB to the positive eigenvalues λi > 0 and absorb their square

root
√
λi into the normalization of the eigenvectors |vi⟩.
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=
∑

i

∑

a,b

∑

a′,b′

⟨a, b|vi⟩⟨vi|a′, b′⟩ Tr[MT
A |a⟩⟨a′|]︸ ︷︷ ︸

=⟨a′|MT
A|a⟩=⟨a|MA|a′⟩

|b⟩⟨b′|

=
∑

i

∑

a,b

∑

a′,b′

⟨a, b|vi⟩|b⟩⟨a|MA|a′⟩⟨b′|⟨vi|a′, b′⟩

=
∑

i

XiMAX
†
i ,

which concludes the proof.

Theorem 5.3 is rather remarkable. Criterion (b) shows that complete positivity, which a
priori involves an auxiliary Hilbert space HR of unbounded dimension, to a single HR

∼= HA.
And criterion (c) shows that we do not even have to check that ΦA→B ⊗ IA′ sends every PSD
operator to a PSD operator – it suffices to check this condition just for an (unnormalized, if we
wish) maximally entangled state. You can practice this technique in Exercise 5.10.

Criteria (d) and (e) are also very useful in practice, since many quantum channels are naturally
given in this form. Indeed, Exercises 4.10 and 4.11 simplify tremendously using Theorem 5.3!

Remark 5.4 (Beyond completely positive maps). For superoperators that are not completely
positive, we can still find weak forms of Kraus and Stinespring representations. Namely, any
superoperator can be written in the form Φ[M ] =

∑
iXiMY †

i (where, in general, Xi ̸= Yi)
or Φ[M ] = VMW † (where, in general, V ̸= W ). This can be proved as above using the
singular value decomposition of the Choi operator (which need no longer be PSD) instead of the
eigendecomposition in Eq. (5.8). As these representations are much less useful we did not discuss
this in class.

5.2 Characterizing quantum channels

With Theorem 5.3 in hand, it is straightforward to characterize quantum channels since we only
need to determine when a completely positive map is trace-preserving. This is achieved by the
following lemma.

Lemma 5.5 (When is a completely positive superoperator trace-preserving?). For a completely
positive superoperator ΦA→B, the following statements are equivalent:

(a) ΦA→B is trace-preserving (hence a quantum channel).

(b) Choi operator: TrB[J
Φ
AB] = IA.

(c) Kraus representation:
∑

iX
†
iXi = IA for one/every Kraus representation.

(d) Stinespring representation: V †V = IA for one/every Stinespring representation. That is, V
is an isometry.

In fact, the equivalence between (a) and (b) holds for arbitary superoperators (completely positive
or not).

Proof. We will use the fact, which follows from Exercise 1.18, that for X,Y ∈ L(H) it holds that

Tr(XM) = Tr(YM) for all M ∈ L(H) ⇔ X = Y. (5.10)

By Eq. (5.5) for any MA ∈ L(HA)

Tr[ΦA→B(MA)] = Tr[TrA[(M
T
A ⊗ IB)J

Φ
AB]] = Tr[MT

A TrB[J
Φ
AB]]
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from which it clearly follows using Eq. (5.10) that (b) and (a) are equivalent since Tr(MT
A) =

Tr(MA). Next, consider a Kraus representation of the channel, and use the cyclicity of the trace
to see that for all MA ∈ L(HA)

Tr[ΦA→B(MA)] = Tr
[∑

i

XiMAX
†
i

]
= Tr

[
MA

(∑

i

X†
iXi

)]
.

So, again using Eq. (5.10), we see that (a) and (c) are equivalent. Finally, for a Stinespring
representation, again using the cyclicity of the trace we see that

Tr[ΦA→B(MA)] = Tr[TrE [VMAV
†]] = Tr[MAV

†V ]

allowing us to conclude the equivalence of (a) and (d).

It is worth stating again that if we put half of a normalized maximally entangled state into a
channel then we get a quantum state, which is nothing but the Choi operator normalized to be a
quantum state. This state is also known as the Choi state of ΦA→B, and it is given by

1

dA
JΦ
AB = (IA ⊗ ΦA→B)[|Φ+

AA⟩⟨Φ+
AA|], (5.11)

where |Φ+
AA⟩ = 1√

dA

∑
x|x, x⟩ is a maximally entangled state and dA = dimHA.

The Stinespring representation has a nice conceptual interpretation. It is by definition
a composition of applying an isometry and then forgetting a subsystem (partial trace). In
Exercise 5.5 you will show that you can reinterpret the isometry as a composition of first adding
a pure state in a reference system and then applying a unitary :2

Φ
A B

= V
A

B

E
= U

A B

E|0〉 C

That means that every quantum channel can be constructed as a composition of adding states,
applying unitaries and discarding subsystems, which shows that the formalism of quantum
channels is equivalent to unitary quantum mechanics on pure states where we may add and forget
subsystems, which is not at all clear from the original definition of a quantum channel. Thus we
may feel sufficiently confident to state the following axiom:

Axiom 5.6 (Channels). Any quantum channel ΦA→B can be realized physically. That is, in
principle, there exists a device that, given as input an arbitrary state ρA, outputs the state
ΦA→B[ρA].

Apart from being conceptually insightful, the Stinespring representation also often simplifies
proofs tremendously. Indeed, to show a certain property holds for quantum channels it suffices
to show that it holds for isometries (which is often trivial) and for partial traces. In Exercise 5.8
you will use this proof strategy to show the following lemma:

2At first glance this “equation” seems to have a syntactical error: The left-hand side is a quantum channel (a
superoperator), while the middle and right-hand side are an isometry and unitary, respectively. However, we can
identify the latter with quantum channels, as explained in Eq. (4.28).
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Lemma 5.7 (Monotonicity of distance measures). For all states ρA, σA and channels ΦA→B,

T (ΦA→B[ρA],ΦA→B[σA]) ≤ T (ρA, σA) and F (ΦA→B[ρA],ΦA→B[σA]) ≥ F (ρA, σA).

Remark 5.8 (Uniqueness of the Stinespring and Kraus representations). It is interesting to ask
how much freedom we have in choosing the Stinespring and Kraus representations. Any two
Stinespring isometries VA→BE , ṼA→BE of a channel ΦA→B are related by a unitary UE on the
system E that is discarded, in the sense that

ṼA→BE = (IB ⊗ UE)VA→BE . (5.12)

This follows from Lemma 2.18, because |ΦABE⟩ := (IA ⊗ VA→BE)|Φ+
AA⟩ and |Φ̃ABE⟩ := (IA ⊗

ṼA→BE)|Φ+
AA⟩ are both purifications of the Choi state in Eq. (5.11) and hence they are related

by a unitary UE on E, so |Φ̃ABE⟩ = (IAB ⊗ UE)|ΦABE⟩. It is an exercise for the reader to check
that this indeed implies Eq. (5.12).

As a consequence, any two sets {Xi}ri=1, {Yi}ri=1 of Kraus operators for a channel ΦA→B are
related by a unitary matrix U ∈ U(Cr) in the sense that Xi =

∑
j UijYj for i = 1, . . . , r. This

can be seen by constructing the Stinespring isometries corresponding to these Kraus operators as
in the proof of Theorem 5.3.

One can also compare Stinespring isometries with different auxilliary systems or sets of Kraus
operators of different cardinalities, in which case the unitary on the reference system is replaced
by an isometry.

Recall from Eq. (4.4) that the Hilbert-Schmidt inner product on L(H) is given by ⟨M,N⟩ =
Tr[M †N ]. This allows us to define the adjoint of a superoperator:

Definition 5.9 (Adjoint superoperator). The adjoint Φ† ∈ L(L(HB),L(HA)) of a superopera-
tor Φ ∈ L(L(HA),L(HB)) is defined such that

⟨MA,Φ
†[NB]⟩ = ⟨Φ[MA], NB⟩ ∀MA ∈ L(HA), NB ∈ L(HB).

Like for any adjoint, it holds that (Φ†)† = Φ. The following lemma summarizes some properties
of the adjoint. You will prove it in Exercise 5.7.

Lemma 5.10 (Properties of the adjoint). Let Φ ∈ L(L(HA),L(HB)) be a superoperator.

(a) Φ is completely positive if and only if Φ† is completely positive.

(b) Φ is trace-preserving if and only if Φ† is unital (meaning that Φ†[IB] = IA).

5.3 Exercises

5.1 Depolarizing and dephasing channels: The completely depolarizing channel on L(H) is
given by

D[M ] = Tr[M ]
I

d
∀M ∈ L(H),

where d = dimH. For H = CΣ, the completely dephasing channel is defined by

∆[M ] =
∑

x

⟨x|M |x⟩ |x⟩⟨x| ∀M ∈ L(H).
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(a) Compute the Choi operator of either channel.
(b) What is the result of acting by either channel on half of a maximally entangled state?
(c) For qubits, H = C2, how does either channel act on Bloch vectors?

5.2 Kraus and Stinespring: Find Kraus and Stinespring representations for the following
quantum channels:

(a) Trace: Φ[M ] = Tr[M ]
(b) Add pure state: Φ[MA] =MA ⊗ |ϕ⟩⟨ϕ|B for a unit vector |ϕB⟩ ∈ HB.
(c) Completely dephasing channel: ∆[M ] =

∑
x⟨x|M |x⟩ |x⟩⟨x| (same as above).

5.3 Kraus and Stinespring composition: Given Kraus or Stinespring representations of two
channels ΦA→B and ΨB→C , explain how to obtain the same representation for ΨB→C ◦ΦA→B .

5.4 More channel representations:

(a) Find a Kraus representation of the following channel, which sends a single qubit to two
qubits: Φ[ω] = 1

2ω ⊗ |0⟩⟨0|+ 1
2 Tr[ω] |0⟩⟨0| ⊗ |1⟩⟨1|.

(b) Compute the Choi operator of the single-qubit channel with the following two Kraus
operators:

√
p

(
1 0
0 1

)
and

√
1− p

(
1 0
0 −1

)
.

5.5 Stinespring with unitaries: Use the Stinespring representation to prove that any quantum
channel ΦA→B can be written in the following form:

ΦA→B[MA] = TrE
[
UAC→BE(MA ⊗ σC)U

†
AC→BE

]
∀MA,

where HC , HE are auxiliary Hilbert spaces, σC ∈ D(HC) is a pure state, and UAC→BE a
unitary.

5.6 Entry-wise channels: Let H = Cd and fix an operator A ∈ L(H). Consider the superoper-
ator Φ: L(H) → L(H) defined as Φ[X] = A ⊙X for all X ∈ L(H), where A ⊙X denotes
the entry-wise product of A and X: (A⊙X)ij = AijXij for all i, j ∈ {0, . . . , d− 1}.

(a) Compute Φ[X] when A is the identity operator. Under what name did you encounter
this channel before?

(b) Show that if A is positive semidefinite then Φ is completely positive.
Hint: One possibility is by computing the Choi matrix of Φ.

(c) Show that if Φ is completely positive then A is positive semidefinite.
(d) Under what condition on A is Φ trace-preserving? Show that Φ is trace-preserving if

and only if your condition holds.

5.7 Adjoint superoperator:

(a) Given a Kraus representation of a completely positive map Φ, explain how to find a
Kraus representation for Φ†.

(b) Prove part (a) of Lemma 5.10.
(c) Prove part (b) of Lemma 5.10.

5.8 Monotonicity of distance measures: Prove Lemma 5.7.
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5.9 Fidelity and composition of channels: Let ΦA→B,ΨB→C be channels and let ρA, ρB, ρC
be states. Show that if F (ΦA→B[ρA], ρB) ≥ 1−δ and F (ΨB→C [ρB], ρC) ≥ 1−δ for some δ > 0
then F ((ΨB→C ◦ΨA→B)[ρA], ρC) ≥ 1− 4δ.

Hint: Exercise 4.8.

5.10 Depolarizing channel: Consider the following trace-preserving superoperator on L(H),
where dimH = d and λ ∈ R is a parameter:

Dλ[M ] = λM + (1− λ) Tr[M ]
I

d

(a) Compute the Choi operator of Dλ for any value of λ.
(b) For which values of λ is Dλ a quantum channel?

5.11 Kraus and Stinespring: Find Kraus and Stinespring representations for the following
quantum channels:

(a) Partial trace: Φ[MAE ] = TrE [MAE ]
(b) Add state: Φ[MA] =MA ⊗ σB for a state σB.
(c) Measure and prepare: Φ[M ] =

∑
x∈Σ⟨x|MA|x⟩σB,x, where |x⟩ denotes the standard basis

of HA = CΣ and σB,x is an arbitrary state for each x ∈ Σ.

5.12 Classical-quantum states and quantum-to-classical channels: Let HX = CΣ. We say
that a state ρXB is classical on subsystem X, or that it is a classical-quantum state on XB,
if it can be written in the form

ρXB =
∑

x∈Σ
p(x) |x⟩⟨x| ⊗ ρB,x

for a probability distribution p on Σ and states ρB,x on HB. By convention, we will always
denote subsystems by X, Y , . . . if we know them to be classical (and A, B, . . . otherwise).

(a) Discuss how this generalizes the notion of classical states.
(b) Show that the fidelity between two classical-quantum states ρXB =

∑
x∈Σ p(x) |x⟩⟨x| ⊗

ρB,x and σXB =
∑

x∈Σ q(x) |x⟩⟨x| ⊗ σB,x is

F (ρXB, σXB) =
∑

x∈Σ

√
p(x)q(x)F (ρB,x, σB,x).

(c) Show that ρXB is classical on subsystem X if and only if (∆X ⊗IB)[ρXB ] = ρXB , where
∆X [M ] =

∑
x∈Σ|x⟩⟨x|M |x⟩⟨x| is the completely dephasing channel on the X-system.

(d) Assume that ΦA→X is a quantum-to-classical channel, i.e. ΦA→X [ρA] is classical for every
state ρA. Show that there exists a measurement µA : Σ → PSD(HA) such that

ΦA→X [ρA] =
∑

x∈Σ
Tr
[
µA(x)ρA

]
|x⟩⟨x| ∀ρA.

Hint: Use Exercise 1.18.
(e) Let ΦA→X be the channel corresponding to a measurement µA, as in Exercise 5.12 (d).

Show that, for any system B and any state ρAB, the state ρXB = (ΦA→X ⊗ IB) [ρAB]
is a classical-quantum state and compute the probabilities p(x) and the states ρB,x.
Compare your result with Axiom 2.15.
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5.13 Complementary channels: Recall that any channel ΦA→B ∈ C(HA,HB) has a Stinespring
representation

ΦA→B[M ] = TrE [VMV †] ∀M ∈ L(HA),

where V : HA → HB⊗HE is an isometry and E is an auxiliary system that is discarded after
applying the isometry. If we instead discard the original output system B, we obtain the
following channel ΦcA→E ∈ C(HA,HE), which is called a complementary channel of ΦA→B:

ΦcA→E [M ] = TrB[VMV †] ∀M ∈ L(HA).

(a) Find a Stinespring representation and complementary channel of the completely dephasing
channel ΦA→B[M ] =

∑d
i=1⟨i|M |i⟩ |i⟩⟨i|, where HA = HB = Cd.

(b) Find a Stinespring representation and complementary channel of the channel ΦA→B[M ] =
Tr[M ]τB, which prepares the maximally mixed state τB ∈ D(HB).

(c) We say that a channel ΦA→B is degradable if there is another channel ΨE→B such
that ΦA→B = ΨE→B ◦ ΦcA→E . Which of the two channels discussed in (a) and (b) is
degradable? Justify your answer.

(d) So far we considered specific channels. Suppose now you are given a general channel ΦA→B

with Kraus representation ΦA→B[M ] =
∑r

i=1XiMX†
i . Find a Stinespring representation

of ΦA→B and a Kraus representation of the complementary channel ΦcA→E .

5.14  Practice: In the files 05-choi-matrix-1.txt, 05-choi-matrix-2.txt you will find
two Choi matrices, which represent superoperators from 5 qubits to 1 qubit.

(a) Apply these superoperators to the input state |00010⟩.
(b) Compute the fidelity between these two outputs of the two channels.
(c) Do these Choi matrices describe valid quantum channels?

5.15 Entanglement criteria: Let HA,HB be Hilbert spaces and let RB ∈ L(L(HB)) be an
arbitrary superoperator that is positive (recall that this means that it maps PSD operators
to PSD operators).

(a) Show that if ρAB is an arbitrary separable state, then (IA ⊗RB)[ρAB] is PSD.

For the remainder of this problem we make the following choice for RB:

RB[MB] := Tr[MB]IB −MB ∀MB ∈ L(HB).

(b) Show that the superoperator RB defined in this way is positive.
(c) Show that (IA ⊗RB)[IAB] = (dB − 1)IAB, where dB = dimHB.
(d) Assuming that HA = HB = Cd, show that (IA ⊗RB)[FAB] = IAB − FAB, where FAB

is the swap operator defined by FAB|x, y⟩ = |y, x⟩ for all x, y ∈ {0, . . . , d− 1}.
From (a) we obtain the following sufficient criterion for entanglement: If ρAB is a state such
that (IA ⊗RB)[ρAB ] is not PSD, then ρAB must be entangled. For our choice of RB , this is
known as the reduction criterion. Now consider the following family of states parameterized
by p ∈ [0, 1]:

ρAB :=
p

3
Π2 + (1− p)(IAB −Π2),

where HA = HB = C2 and Π2 = 1
2 (IAB + FAB) is the orthogonal projection onto the

symmetric subspace of C2 ⊗ C2.

(e) For which values of p ∈ [0, 1] does the reduction criterion show that ρAB is entangled?
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Lecture 6

Shannon entropy and data compression

Over the past month, we have learned the basic formalism and toolbox of quantum information
theory (e.g., note that all objects in the cartoon on p. 7 are now well-defined). From this week
on we will discuss information theory proper. Today we will discuss the classical theory of data
compression due to Shannon. Next week, we will generalize Shannon’s results and learn how to
optimally compress quantum information. For more information on classical information theory
see, e.g., the lecture notes at https://staff.fnwi.uva.nl/m.walter/iit19/.

6.1 Shannon entropy

Today we will work with classical probability distributions a lot. Recall that

P(Σ) =

{
p : Σ → R≥0 :

∑

x∈Σ
p(x) = 1

}

denotes the set of all probability distributions on a finite set Σ. If X is a random variable then
write X ∼ p to say that X is distributed according to p, i.e., Pr(X = x) = p(x) for all x ∈ Σ. As
usual, we write E[X] =

∑
x∈Σ p(x)x for the expectation value and Var(X) = E[X2]− E[X]2 for

the variance of a numerical random variable X. We now define the Shannon entropy.

Definition 6.1 (Shannon entropy). The Shannon entropy of a probability distribution p ∈ P(Σ)
is defined by

H(p) :=
∑

x∈Σ
p(x) log

1

p(x)
= −

∑

x∈Σ
p(x) log p(x). (6.1)

Throughout these lecture notes, log always denotes the logarithm to base 2 (i.e., log 2 = 1).

As stated, Eq. (6.1) is only well-defined if all p(x) > 0. However, note that q log 1
q = −q log q is

continuous in q > 0 and tends to 0 as q → 0, as illustrated in Fig. 6.1 (a). We can thus extend
the definition of H(p) by continuity, i.e., defining

p(x) log
1

p(x)
= −p(x) log p(x) = 0 for p(x) = 0

in Eq. (6.1). Then H(p) is a continuous function of p ∈ P(Σ). This definition is also compatible
with the interpretation that the Shannon entropy can be written as

H(p) = E
[
log

1

p(X)

]
= −E[log p(X)], (6.2)

where X ∼ p, since probability-zero outcomes do not impact the expectation value.
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Figure 6.1: (a) The function f(q) = q log 1
q . As is apparent, f(q) → 0 as q → 0. (b) The binary

entropy function h(p) = H({p, 1− p}) defined as in Eq. (6.3).

Example 6.2 (Binary entropy function). The Shannon entropy of a probability distribution with
two possible outcomes is given by the so-called binary entropy function,

h(p) := H({p, 1− p}) = p log
1

p
+ (1− p) log

1

1− p
, (6.3)

where p is the probability of one of the outcomes. This function is visualized in Fig. 6.1 (b). Note
that it is continuous, but not Lipschitz continuous (you can prove this in Exercise 6.7).

We will now list some further properties of the Shannon entropy. Before we state these properties,
recall that a function f : D → R defined on a convex set D ⊆ Rn (e.g., an interval if n = 1)
is called concave if it holds that qf(a) + (1 − q)f(b) ≤ f(qa + (1 − q)b) for any q ∈ [0, 1] and
a, b ∈ D. It is called strictly concave if equality only holds for a = b or q ∈ {0, 1}. If D is an
interval and f is twice differentiable on its interior with f ′′ ≤ 0 then f is concave. If f ′′ < 0 then
f is strictly concave.

Jensen’s inequality states that, for any concave function f as above,
∑

x∈Σ
p(x)f(a(x)) ≤ f

(∑

x∈Σ
p(x)a(x)

)
(6.4)

for any probability distribution p ∈ P(Σ) and function a : Σ → D. (If |Σ| = 2 then this simply
restates the definition of concavity.) Moreover, if f is strictly concave then equality in Eq. (6.4)
holds if and only if a is constant on the set {x ∈ Σ : p(x) > 0}. We can also state Eq. (6.4) in
probabilistic terms. If f is a concave function on D and A a random variable on D then

E[f(A)] ≤ f(E[A]),

and for a strictly concave function we have equality iff A is constant.

Lemma 6.3 (Properties of the Shannon entropy).

(a) Nonnegativity: H(p) ≥ 0. Moreover, H(p) = 0 if and only if p is deterministic (i.e.,
p(x) = 1 for one x and all other probabilities are zero).

(b) Upper bound: H(p) ≤ log
∣∣{x : p(x) > 0}

∣∣ ≤ log |Σ|. Moreover, H(p) = log |Σ| if and only
if p is uniform, i.e., p(x) = 1/|Σ| for all x ∈ Σ.

(c) Concavity: The Shannon entropy is a strictly concave function of p ∈ P(Σ).
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Proof.

(a) The lower bound holds since f(q) = q log 1
q ≥ 0 for any q ∈ [0, 1]. Moreover, f(q) = 0 iff

q ∈ {0, 1}, which implies the second claim. See also the figure above.

(b) This follows from Jensen’s inequality, applied to the concave log function and a(x) = 1/p(x).
Indeed,

H(p) =
∑

x∈Σ,p(x)>0

p(x) log
1

p(x)
≤ log

∑

x∈Σ,p(x)>0

p(x)
1

p(x)
= log

∣∣{x : p(x) > 0}
∣∣,

with equality if and only if all nonzero p(x) are equal. Now the rest is clear.

(c) This follows if we can show that

f(q) = q log
1

q
= − 1

ln 2
q ln q

is strictly concave on q ∈ [0, 1]. Indeed, for q > 0,

f ′(q) = − 1

ln 2
(ln q + 1) and so f ′′(q) = − 1

ln 2

1

q
< 0.

Definition 6.4 (Subscripts, entropy of subsystems). When dealing with joint distributions, it is
often useful to use subscripts to denote the distribution of a random variable. Thus, if X and Y
are random variables then we might write pXY for their joint distribution and pX , pY for their
marginal distributions, etc. That is,

pXY (x, y) = Pr(X = x, Y = y),

pX(x) = Pr(X = x) =
∑

y pXY (x, y),

pY (y) = Pr(Y = y) =
∑

x pXY (x, y).

We already discussed and used this convention in Eq. (4.24). It will also be useful to write ΣX for
the space of outcomes of a random variable X, i.e., if pX ∈ P(ΣX). This is completely analogous
to our notation and conventions in the quantum case, see Definitions 2.5 and 2.12.

Similarly, we will denote the entropies of subsets of the random variables by

H(XY ) := H(pXY ), H(X) := H(pX), H(Y ) := H(pY ).

Sometimes we will also write H(XY )p, H(X)p, etc. if we want to be explicit about the underlying
probability distribution.

Today we only use this notation to state the following lemma, which you can prove in Exercise 6.6.

Lemma 6.5 (Monotonicity and subadditivity of the Shannon entropy). Given random variables
X and Y , the following inequalities for the Shannon entropy hold:

(a) Monotonicity: H(XY ) ≥ H(Y ).

(b) Subadditivity: H(X) +H(Y ) ≥ H(XY ).

We now turn towards today’s main goal, which is to give an interpretation of the Shannon
entropy in the context of compression.
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6.2 Lossy and lossless compression

Consider a data source modeled by a random variable X ∼ p ∈ P(Σ). We would like to compress
one sample from X into a bitstring of length ℓ. By this we mean that we would like to come
up with an encoder E and a decoder D such that X̃ := D(E(X)) is equal to X (i.e., first
compressing and then decompressing does recover the original input). This is illustrated in the
following picture:

E {0, 1}` DX

message
decompressed

X̃
!
= X

message
source

after compression
bitstringcompressor decompressor

(6.5)

How small can we choose ℓ to be? The answer is given by the raw bit content of p, which is
defined as follows:

H0(p) := log
∣∣{x ∈ Σ : p(x) > 0}

∣∣.

Indeed, the encoder E needs to assign a distinct bitstring in {0, 1}ℓ to each element x that occurs
with nonzero probability – this can be done if and only if ℓ ≥ H0(p). Clearly, this is not a very
interesting result – we are not doing any compression at all. How can we do better? There are
two main options:

(a) Lossy fixed-length compression: We could allow a small probability of error, i.e., only
demand that Pr(X̃ ̸= X) ≤ δ for some δ > 0.

(b) Lossless variable-length compression: We could use bitstrings of different lengths ℓ = ℓ(x)
depending on the element x that is sampled and try to minimize the average length.

Here is a concrete example:

Example 6.6. Consider the following distribution on Σ = {A,B,C}:

p(A) = 0.98, p(B) = 0.01, p(C) = 0.01

Clearly, H0(p) = log 3 ≈ 1.58, so we need at least ℓ = 2 bits to achieve (6.5). Let us discuss the
two options: (a) If we are willing to tolerate a probability of error δ = 0.01 then we can compress
into a single bit (ℓ = 1). For example, we might define the encoder and decoder by

x E(x)
A 0
B 1
C 1

s D(s)
0 A
1 B

(b) If we are willing to use bitstrings of varying length then the following encoder and decoder

x E(x)
A 0
B 10
C 11

s D(s)
0 A
10 B
11 C

achieves an average length of 0.98× 1 + 0.02× 2 = 1.02 with no error.
Note that none of the ‘codewords’ E(x) is a prefix of any other – this ensures that we can

decode a given bitstring without having to use an additional ‘end of input’ symbol.
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This goes already in the right direction but is still not very impressive. For example, suppose
that we have a source that emits two symbols A and B with probabilities

p(A) = 0.75, p(B) = 0.25.

There should clearly be some potential for savings, since this situation seems much less random
than if the two probabilities were the same. But neither of the two options above seem very
helpful – for a lossy protocol we would need to allow a probability of failure of δ = 25%, while
for a lossless protocol there is no better way than sending ℓ = 1 bit for both messages (since we
cannot send partial bitstrings).

How can we do better? The key idea is to try to compress not a single symbol at a time but
to focus on blocks of many symbols. We will discuss how this can be done in detail for lossy
compression and defer a discussion of the lossless case to Exercise 6.4.

6.3 Block codes, Shannon’s source coding theorem, typical sets

The basic assumption will be that our data source is IID (or memoryless), which means that it
emits symbols

X1, X2, . . . , Xn
IID∼ p

for some p ∈ P(Σ). This notation means that the Xi are independent and identically distributed
(IID) random variables such that each Xi has distribution p.

Remark 6.7. While the IID assumption may not necessarily be a realistic assumption when
it comes to a concrete data source (e.g., typical data sources may exhibit correlations or may
change over time), it is a very useful base case. For more sophisticated compression schemes, see
https://staff.fnwi.uva.nl/m.walter/iit19/.

Schematically, what we would like to achieve is the following. We would like to find an encoder
and decoder, now operating on a block or sequence of n symbols, as in the following figure,

E D
{0, 1}`

X1

X2

Xn

...

X̃1

X̃2

X̃n

...

...
assume
i.i.d.

such that

Pr(X̃n ̸= Xn) ≤ δ.

Here and below we use the notation Xn = (X1, . . . , Xn) for sequences of length n if we want to
emphasize their length. Note that for n = 1 the above reduces to Eq. (6.5). Our goal now is to
minimize the compression rate

ℓ

n
=

number of bits
block length

.

We now formalize the above in a definition and state Shannon’s central theorem, which shows
that the optimal compression rate is directly related to the Shannon entropy (if we allow n→ ∞).
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Definition 6.8 (Code). An (n,R, δ)-code for p ∈ P(Σ) is a pair of functions

E : Σn → {0, 1}⌊nR⌋ and D : {0, 1}⌊nR⌋ → Σn

such that

Pr
(
D(E(Xn)) ̸= Xn

)
≤ δ (6.6)

for Xn IID∼ p.

Note that the left-hand side of Eq. (6.6) can also be written as

Pr
(
D(E(Xn)) ̸= Xn

)
=

∑

xn∈Σn:D(E(xn))̸=xn

p(xn) =
∑

xn∈Σn:D(E(xn))̸=xn

p(x1) · · · p(xn),

where we write p(xn) := p(x1) · · · p(xn) for the joint distribution of a sequence xn ∈ Σn.

Theorem 6.9 (Shannon’s source coding). Let p ∈ P(Σ) and δ ∈ (0, 1). Then:

(a) If R > H(p) then there exists n0 such that there exists an (n,R, δ)-code for all n ≥ n0.

(b) If R < H(p) then there exists n0 such that no (n,R, δ)-codes exist for n ≥ n0.

That is, the optimal asymptotic compression rate for an IID source described by a probability
distribution is given by its Shannon entropy.

To prove Theorem 6.9, we need to make use of the fact that not all sequences xn are equally
likely. For example, for large n, we might expect that with high probability the number of times
that any given symbol x appears in Xn is ≈ n(p(x) ± ε). The following definition captures a
closely related property of ‘typical’ sequences:

Definition 6.10 (Typical set). For p ∈ P(Σ), n ∈ N, and ε > 0, define the typical set

Tn,ε(p) :=
{
xn ∈ Σn :

∣∣∣ 1
n
log

1

p(xn)
−H(p)

∣∣∣ ≤ ε
}

=
{
xn ∈ Σn :

∣∣∣ 1
n

n∑

i=1

log
1

p(xi)
−H(p)

∣∣∣ ≤ ε
}

The following lemma summarizes the most important properties of the typical sets.

Lemma 6.11 (Asymptotic Equipartition Property, AEP). The following properties hold:

(a) 2−n(H(p)+ε) ≤ p(xn) ≤ 2−n(H(p)−ε) for all xn ∈ Tn,ε(p).

(b) |Tn,ε(p)| ≤ 2n(H(p)+ε).

(c) For Xn IID∼ p, it holds that Pr
(
Xn ̸∈ Tn,ε(p)

)
≤ σ2

nε2
. Here, σ2 = Var(log 1

p(Xi)
) is a constant

that only depends on p.

Proof. (a) This is just restating the definition.

(b) This follows from

1 ≥ Pr
(
Xn ∈ Tn,ε(p)

)
≥ |Tn,ε(p)| 2−n(H(p)+ε),

where the last step is the lower bound in part (a).
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(c) Define the random variables Ri := log 1
p(Xi)

. Then the R1, . . . , Rn are IID, with expectation
value µ = E[Ri] = H(p) (Eq. (6.2)) and variance Var(Ri) = σ2. Now,

Pr
(
Xn ̸∈ Tn,ε(p)

)
= Pr

(∣∣∣ 1
n

n∑

i=1

log
1

p(Xi)
−H(p)

∣∣∣ > ε
)
= Pr

(∣∣∣ 1
n

n∑

i=1

Ri − µ
∣∣∣ > ε

)
.

The weak law of large number states that the right-hand side converges to zero for large n.
Let us recall its proof to get a concrete bound. For this, define Y := 1

n

∑n
i=1Ri. Then,

E[Y ] = µ and Var(Y ) =
1

n2
Var(R1 + · · ·+Rn) =

1

n
Var(Ri) =

σ2

n
,

using that the variance of a sum of independent random variables is simply the sum of the
individual variances. Now we can use the Chebyshev inequality, which states that

Pr(|Y − E[Y ]| > ε) ≤ Var(Y )

ε2

to conclude the proof.

We are now in a good position to prove Shannon’s source coding theorem.

Proof of Theorem 6.9. To prove part (a), let us choose ε = R−H(p)
2 , noting that ε > 0. Then,

using part (b) of Lemma 6.11,

|Tn,ε(p)| ≤ 2n(H(p)+ε) = 2n(R−ε) ≤ 2⌊nR⌋;

the final inequality holds provided we assume that n ≥ 1
ε . The above implies that there exists an

injective map E : Tn,ε → {0, 1}⌊nR⌋. Let us denote by D : {0, 1}⌊nR⌋ → Σn its left inverse (i.e.,
D(E(xn)) = xn for xn ∈ Tn,ε). Finally, extend E arbitrarily to all of Σn. Then,

Pr
(
D(E(Xn)) ̸= Xn

)
≤ Pr(Xn ̸∈ Tn,ε(p)) ≤

σ2

nε2
≤ δ,

where we first used that only sequences outside the typical set can lead to errors (sinceD(E(xn)) =
xn for xn ∈ Tn,ε) and then part (c) of Lemma 6.11; the final inequality holds if we assume that
n ≥ σ2

ε2δ
. Thus we have proved that there exists an (n,R, δ)-code for any n ≥ n0 := max{1

ε ,
σ2

ε2δ
}.

We emphasize that n0 only depends on p, δ, and R, as it should.
How about the proof of part (b)? This is your Exercise 6.8!

In Exercise 6.3 you can reflect on the practicalities of using typical sets for compression. In
Exercise 6.4 you can discuss how to translate an (n,R, δ)-code into a corresponding lossless
variable-length compression protocol.
Remark 6.12. The typical sets constructed in the proof are in general not the smallest sets Sn
with the property that Pr(Xn ∈ Sn) ≥ 1− δ. However, they are easy to handle mathematically
as n→ ∞ and still small enough (this is the content of part (b) of Theorem 6.9).

To obtain the smallest possible Sn, we could sort the strings xn by decreasing probability
and add one string after the other until we reach probability 1− δ.

Next week we will discuss how to translate the above ideas into the quantum realm. Here there
are many challenges, e.g., the states emitted by a quantum data source need not be orthogonal,
so cannot be perfectly distinguished by the encoder, and at any rate the encoder is not allowed
to measure the information as we typically destroy quantum information when we measure it –
but we will see that all these challenges can be overcome!
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6.4 Exercises

6.1 Joint distributions and entropies: Consider the following joint distribution of two random
variables X and Y over {0, 1, 2} and {0, 1}, respectively:

x y p(x, y)

0 0 1/2
0 1 0
1 0 0
1 1 1/4
2 0 0
2 1 1/4

(a) Compute the joint entropy H(X,Y ).
(b) Compute the marginal probability distributions p(x) and p(y).
(c) Compute the entropies H(X) and H(Y ).
(d) Are X and Y independent?

6.2 Entropy and typical sets: Let p be the probability distribution with three possible
outcomes 0, 1, 2 and probabilities p(0) = 1/2, p(1) = 1/4, p(2) = 1/4. Let X1, X2 be
independent and identically distributed (IID) according to p.

(a) Compute H(X1) = H(X2) = H(p). What is H(X1, X2)?
(b) Make a table that lists the joint probability p(x1, x2) and the quantity 1

2 log
1

p(x1,x2)
for

all possible outcomes x1 and x2.
(c) Write down all elements of the typical set T2,ε(p) for ε = 0.12345.

6.3 How to compress it? Suppose you would like compress an IID source. In class we showed
how such a source can in principle be compressed by using typical sets. Discuss how this can
be applied in practice. What parameters have to be fixed? How do the encoder and decoder
work? What if you don’t know the distribution of symbols emitted by the source? Is this a
practical way of compressing?

6.4 Lossy vs. lossless compression: Given an (n,R, δ)-code defined as in Definition 6.8, can
you construct a lossless compression protocol with average rate ≈ R? You may assume that n
is large and δ is small.

6.5 Typical sets: Let p be a probability distribution on an set Σ. For t ≥ 0, define

Sn,t = {xn ∈ Σn : p(xn) ≥ 2−nt}.

(a) Show that Sn,t contains no more than 2nt strings.
(b) Show that, if t > H(p), then Sn,t contains a typical set Tn,ε(p) for some ε > 0.

6.6 Properties of the Shannon entropy: Prove Lemma 6.5. Can you interpret the two
inequalities in the context of compression? Hint: For both (a) and (b), write the left-hand
side minus the right-hand side of the inequality as a single expectation value. For (b), use
Jensen’s inequality.

6.7 Binary entropy function: Is the binary entropy (Example 6.2) Lipschitz continuous? That
is, is there a constant L > 0 such that |h(p)− h(q)| ≤ L|p− q| for all 0 ≤ p, q ≤ 1?
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6.8 Optimality of the Shannon entropy: In this problem, you will prove the converse part
of Shannon’s source coding theorem which states that it is impossible to compress at rates
below the entropy of the source. Given a probability distribution p on a finite set Σ, recall
that an (n,R, δ)-code consists of functions E : Σn → {0, 1}⌊nR⌋ and D : {0, 1}⌊nR⌋ → Σn such
that

∑
xn∈Σn:D(E(xn))=xn p(x1) · · · p(xn) ≥ 1− δ. Show that:

(a) For any (n,R, δ)-code, there are at most 2nR many strings xn such that D(E(xn)) = xn.
(b) For fixed δ ∈ (0, 1) and R < H(p), (n,R, δ)-codes can only exist for finitely many n.

Hint: Distinguish between typical and atypical sequences.

6.9 Lexicographic order (for the bonus problem): The lexicographic order ≤lex on {0, 1}n
is defined as follows: Given bitstrings xn and yn, we let xn ≤lex y

n if either xn = yn or
xi < yi for the smallest i such that xi ̸= yi. For example, 001 ≤lex 010. The lexicographic
order defines a total order on {0, 1}n, hence also on the bitstrings of length n with k ones,
which we denote by B(n, k).

(a) Write down B(5, 2) in lexicographic order (smallest element first).
(b) How can you recursively compute the m-th element of B(n, k)?
(c) How can you recursively compute the index of a given element in B(n, k)?

Hint: |B(n, k)| =
(
n
k

)
. Moreover,

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for all 1 ≤ k ≤ n− 1.

6.10  Practice: A binary image of size r × s can be represented by a bitstring of length rs,
where we list the pixel values (0=black pixel, 1=white pixel) row by row, starting with the
top row. We can thus compress the image in the following lossless fashion: First, compute
the number k of ones in the bitstring. Next, compute the index m ∈ {0, 1, . . . ,

(
rs
k

)
− 1} of

the bitstring in the lexicographically sorted list of all bitstrings of length rs that contain
k ones. The quadruple (r, s, k,m) defines the compression of the image.

For example, the 2 × 3-image corresponds to the bitstring 000100. There are six
strings with k = 1 ones. In lexicographic order: 000001, 000010, 000100, 001000, 010000,
and 100000. The index of our bitstring in this list is m = 2. Thus, we would compress this
picture by (2, 3, 1, 2).

(a) What is the bitstring corresponding to the following image? What is its compression?

(b) Can you decompress the image given by (r, s, k,m) = (7, 8, 8, 243185306)?
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Lecture 7

From classical to quantum compression

Last week we discussed how to compress a classical data source which emits a symbol IID
according to a known probability distribution. We discussed two paradigms for compression –
lossy fixed-length compression and lossless variable-length compression – and their relation. We
then zoomed into the lossy paradigm and proved Shannon’s source coding theorem, which states
that, in the limit of large block lengths, the optimal compression rate of a source is computed by
its Shannon entropy (see Theorem 6.9 for a precise statement). Today, we will see the quantum
analogs of these results. We will define the von Neumann entropy of quantum states, the notion
of a quantum code, and prove Schumacher’s theorem that computes the optimal compression
rate in the quantum scenario.

7.1 Von Neumann Entropy

As last week, we will first define the entropy and then discuss how it naturally arises in the
context of compression.

Definition 7.1 (von Neumann entropy). The von Neumann entropy of a quantum state ρ ∈ D(H)
is defined as the Shannon entropy of its eigenvalues (cf. Definition 6.1). That is,

H(ρ) := H(p) (7.1)

where p = (p(1), . . . , p(d)) is a probability distribution whose entries are the eigenvalues of ρ,
repeated according to their multiplicity, and d = dimH.

We can also write the von Neumann entropy more intrinsically in the following way:

H(ρ) = −Tr[ρ log ρ]. (7.2)

Let us discuss how “ρ log ρ” is defined. In general, if Q is positive definite then its logarithm,
denoted logQ or log(Q), is the Hermitian operator with the same eigenvectors but eigenvalues
the logarithm of those of Q. That is, if Q =

∑
i λi|ei⟩⟨ei| is an eigendecomposition then

logQ =
∑

i log(λi)|ei⟩⟨ei|. This is a special case of Definition 1.6 and completely analogous to
the definition of the square root

√
Q. Note that logQ is always Hermitian but typically not PSD.

You can practice this definition in Exercises 7.1 and 7.2. If ρ is positive definite then we can use
this definition to define log ρ and hence ρ log ρ.

If ρ has some zero eigenvalues then log ρ is ill-defined. However, recall from the discussion
below Definition 6.1 that the function f(q) = q log q can be extended to q ≥ 0 by continuity.
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Thus we can still define ρ log ρ for all ρ ∈ D(H). If ρ is positive definite then this definition
coincides with the one given above. Thus, Eq. (7.2) is well-defined and holds for all ρ ∈ D(H).

We now state some properties of the von Neumann entropy that are analogous to Lemma 6.3
for Shannon entropy.

Lemma 7.2 (Properties of von Neumann entropy).

(a) Nonnegativity: H(ρ) ≥ 0. Moreover, H(ρ) = 0 if and only if ρ is pure (i.e., ρ = |ψ⟩⟨ψ| for
some unit vector |ψ⟩ ∈ H).

(b) Upper bound:

H(ρ) ≤ log rank(ρ) ≤ log dimH.

Moreover, H(ρ) = log(dimH) if and only if ρ is maximally mixed (i.e., ρ = I
dimH).

(c) Invariance under isometries: H(ρ) = H(V ρV †) for any isometry V .

(d) Continuity: The von Neumann entropy is continuous.

(e) Concavity: The von Neumann entropy is a strictly concave function of ρ ∈ D(H).

Proof. The first two follow immediately from the corresponding properties of the Shannon entropy
in Lemma 6.3. The invariance under isometries holds since the entropy only depends on the
nonzero eigenvalues – but the latter are the same for ρ and V ρV †. The continuity follows because
the Shannon entropy is continuous and the sorted eigenvalues of a Hermitian operator depend
continuously on the operator (but we will not prove this). A quantative bound is stated below in
Theorem 7.3. You will prove concavity in Exercise 7.10 (c) and strict concavity in Exercise 8.4.
See p. 76 in Lecture 6 for the definition of concavity and strict concavity.

The following theorem, which we do not prove, gives a quantitive bound for the continuity of
the von Neumann entropy:

Theorem 7.3 (Fannes–Audenaert). For all ρ, σ ∈ D(H),

|H(ρ)−H(σ)| ≤ t log(dimH− 1) + h(t),

where t = T (ρ, σ) is the trace distance between the two states and h(t) denotes the binary Shannon
entropy discussed in Example 6.2 and Exercise 6.7.

7.2 Motivation: Classical compression and correlations

Before we turn to compressing quantum data, let us briefly revisit the classical case. Recall from
Definition 6.8 that an (n,R, δ)-code for a probability distribution p ∈ P(Σ) consists of functions
E : Σn → {0, 1}⌊nR⌋ and D : {0, 1}⌊nR⌋ → Σn such that

Pr
(
X̃n ̸= Xn

)
≤ δ (7.3)
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for X1, . . . , Xn
IID∼ p, where X̃n := D(E(Xn)). Pictorially:

E D
{0, 1}bnRc

X1

X2

Xn

...

X̃1

X̃2

X̃n

...

...∼ p
i.i.d.

X1

X2

Xn

...
!
=

with probability ≥ 1− δ

(7.4)

Shannon’s source coding theorem asserts that H(p) is the optimal rate R for compression in this
context (see Theorem 6.9 for the precise statement).

How about if Xn is correlated to another random variable Y ? For example, suppose
that Y = X1, or Y = X1 ⊕ . . . ⊕ Xn or even Y = Xn. Are these correlations preserved if
we replace Xn by X̃n? To state this question precisely, let pXnY denote the joint distribution of
(Xn, Y ) and let pX̃nY denote the joint distribution of (X̃n, Y ). Then we would like to ask if it
is true that pXnY ≈ pX̃nY . This can be quantified by using the trace distance for probability
distributions which is defined as follows:

Definition 7.4 (Trace distance). Given probability distributions p, q ∈ P(Σ), their (normalized)
trace distance or total variation distance is defined as

T (p, q) :=
1

2

∑

z∈Σ
|p(z)− q(z)| = 1

2
∥p− q∥1,

where ∥x∥1 =
∑

z∈Σ|xz| denotes the ℓ1-norm of vector x.

Note that this is nothing but the trace distance (see Definition 4.6) of the corresponding classical
states. In Exercise 7.3, you will prove the following two properties:

(a) If Z, Z̃ are random variables over Σ with distributions p, q, respectively, then

T (p, q) = max
S⊆Σ

(
Pr(Z ∈ S)− Pr(Z̃ ∈ S)

)
. (7.5)

(b) If Z and Z̃ are as above and have a joint distribution then it holds that

T (p, q) ≤ Pr(Z ̸= Z̃). (7.6)

Eq. (7.6) is known as the coupling inequality. This is because, in probability theory, a joint
distribution of a given pair of marginal distributions is often called a coupling.

Then we have the following lemma, which shows that not only are correlations preserved in a
precise quantitative sense but that this in fact characterizes a reliable code!

Lemma 7.5. Let p ∈ P(Σ) and E : Σn → {0, 1}⌊Rn⌋, D : {0, 1}⌊Rn⌋ → Σn be an arbitrary pair of
functions. Then, (E,D) is an (n,R, δ)-code for p if and only if

T (pXnY , pX̃nY ) ≤ δ

for any joint distribution pXnY of random variables X1, . . . , Xn
IID∼ p and Y , where pX̃nY denotes

the joint distribution of X̃n = D(E(Xn)) and Y .
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Proof. (⇒): Using the coupling inequality Eq. (7.6) for Z = (Xn, Y ) and Z̃ = (X̃n, Y ),

T (pXnY , pX̃nY ) ≤ Pr(Z ̸= Z̃) = Pr(Xn ̸= X̃n) ≤ δ,

where the last inequality is Eq. (7.3), using that (E,D) is by assumption an (n,R, δ)-code.
(⇐): Choose Y = Xn. Then,

Pr(X̃n ̸= Xn) = Pr(X̃n ̸= Y ) = Pr(X̃n ̸= Y )− Pr(Xn ̸= Y )︸ ︷︷ ︸
=0

≤ T (pX̃nY , pXnY ) ≤ δ,

where the first inequality is Eq. (7.5) for the event S = {(xn, y) : xn ̸= y}.

7.3 Quantum codes and compression

We just saw that good codes are characterized by the property that they approximately preserve
all correlations. We will take this as the definition in the quantum case. Recall from Definition 4.15
that C(HA,HB) denotes the set of all quantum channels from HA to HB.

Definition 7.6 (Quantum code). An (n,R, δ)-quantum code for ρ ∈ D(HA) is a pair of channels

E ∈ C
(
H⊗n
A , (C2)⊗⌊nR⌋) and D ∈ C

(
(C2)⊗⌊nR⌋,H⊗n

A

)

such that

F
(
σAnB, (D ◦ E ⊗ IB)[σAnB]

)
≥ 1− δ (7.7)

for all finite-dimensional HB and states σAnB ∈ D(H⊗n
A ⊗HB) such that σAn = ρ⊗nA .

Here we use the fidelity rather than the trace distance – otherwise Definition 7.6 is completely
analogous to the condition in Lemma 7.5. The following pictures illustrates the definition:

E D
(C2)⊗bnRc

A1

A2

An

...
...

s. th.

!≈

B
σAn = ρ⊗nA

σAnB
σAnB

...

Definition 7.6 is perhaps surprising and raises three immediate questions:

(1) What does the definition have to do with compression in the ‘ordinary’ sense of compressing
the output of a source?

(2) Is there any way to simplify the condition in Eq. (7.7) so that it no longer refers to infinitely
many options for σAnB?

(3) What is the optimal rate of compression – is there an analog to Shannon’s theorem?

We will address these questions one after the other.
First, let us relate Definition 7.6 to compression of a source. In analogy to the discussion

in Lecture 6, we imagine that a quantum source emits states ρx ∈ D(HA) for x ∈ Σ according
to a known probability distribution p ∈ P(Σ). We will further imagine the source to be
IID (or memoryless), which means that it emits states ρx1 ⊗ · · · ⊗ ρxn according to the IID
distribution p(xn) = p(x1) · · · p(xn). What would it mean to compress such a quantum source?

Clearly, we would like to have
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E D
(C2)⊗bnRc

x1

xn

ρx1

ρxn

...
...

!≈
⊗

⊗

ρx1

ρxn

...

⊗

⊗
∼ p
i.i.d. ...

on average or even with high probability. For example, we might like to show that

∑

xn∈Σn

p(x1) · · · p(xn)F
(
ρx1 ⊗ · · · ⊗ ρxn ,D[E [ρx1 ⊗ · · · ⊗ ρxn ]]

)
≥ 1− δ. (7.8)

This looks similar to Eqs. (7.3) and (7.4), except that we are now happy to recover ρx1 ⊗· · ·⊗ρxn
approximately (since we are dealing with quantum states it turns out that we cannot in general
hope for equality).

We will now show that Eq. (7.8) can indeed be achieved by using quantum codes. For this,
suppose that (E ,D) is an (n,R, δ)-quantum code for the average output state of the source, i.e.,

ρ =
∑

x∈Σ
p(x)ρx.

Why does this help? To make use of Eq. (7.7), we need to construct a state that extends ρ⊗n.
We will consider the following state

σAnXn :=
∑

xn∈Σn

p(xn) ρx1 ⊗ · · · ⊗ ρxn ⊗ |xn⟩⟨xn|,

on D(H⊗n
A ⊗H⊗n

X ), where HX = CΣ. Both the state σAnXn and

(D ◦ E ⊗ IXn)[σAnXn ] =
∑

xn∈Σn

p(xn)D[E [ρx1 ⊗ · · · ⊗ ρxn ]]⊗ |xn⟩⟨xn|

are classical on the Xn-system, with the same probability distribution. Thus,

∑

xn∈Σn

p(xn)F
(
ρx1 ⊗ · · · ⊗ ρxn ,D[E [ρx1 ⊗ · · · ⊗ ρxn ]]

)
= F

(
σAnXn , (D ◦ E ⊗ IXn)[σAnXn ]

)
≥ 1− δ,

where the equality holds thanks to Exercise 5.12 (b) and the inequality is simply by Eq. (7.7) in
the definition of a quantum code, applied to the state σAnXn .

Thus we have proved that Eq. (7.7) implies Eq. (7.8), meaning that a quantum code for ρ
can be used for compressing any quantum source with average output state ρ. In Exercise 7.7
you will show that in general the converse is not true. This makes sense, since Eq. (7.8) refers to
a single source, while we just proved that Eq. (7.7) ensures that any source with average output
state ρ can be compressed reliably.

We close this section with some warnings to avoid some common traps that one can fall into
when thinking about compressing quantum sources:

• In general, there is no relation between the number of states ρx and the Hilbert space
dimension (i.e., in general |Σ| ≠ dimHA).

• The states ρx for x ∈ Σ need not be pure nor pairwise orthogonal.

• The p(x) need not be the eigenvalues of the average state ρ =
∑

x p(x)ρx.
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7.4 Channel fidelity

We now turn to the second question raised above – how can we check the condition in Eq. (7.7)
without having to consider all possible states σAnB? We start with a definition that abstracts
the situation.

Definition 7.7 (Channel fidelity). Given a channel TA ∈ C(HA,HA) and a state ρA, define the
channel fidelity as

F (TA, ρA) := inf
{
F
(
σAB, (TA ⊗ IB)[σAB]

)
: HB, σAB ∈ D(HA ⊗HB) such that σA = ρA

}
.

Given this definition, we can rephrase Eq. (7.7) in the definition of a quantum code as

F (D ◦ E , ρ⊗n) ≥ 1− δ. (7.9)

Why is this progress? It turns out that we can always compute the channel fidelity by considering
an arbitrary purification.

Lemma 7.8. Let σAB = |ΨAB⟩⟨ΨAB| be an arbitrary purification of ρA. Then,

F (TA, ρA) = F
(
σAB, (TA ⊗ IB)[σAB]

)
.

Proof. This follows readily from the fidelity’s monotonicity and invariance under isometries.

As a consequence we find a simple expression in terms of a Kraus representation.

Corollary 7.9. Let TA[MA] =
∑

iXiMAX
†
i be a Kraus representation. Then,

F (TA, ρA) =
√∑

i

∣∣Tr[XiρA]
∣∣2.

Proof. Let σAB = |ΨAB⟩⟨ΨAB| be an arbitrary purification of ρA. Then,

F (TA, ρA)2 = F
(
σAB, (TA ⊗ IB)[σAB]

)2

=
〈
ΨAB

∣∣(TA ⊗ IB)
[
|ΨAB⟩⟨ΨAB|

]∣∣ΨAB

〉

=
∑

i

〈
ΨAB

∣∣(Xi ⊗ IB)|ΨAB⟩⟨ΨAB|(X†
i ⊗ IB)

∣∣ΨAB

〉

=
∑

i

|⟨ΨAB|Xi ⊗ IB|ΨAB⟩|2 =
∑

i

|Tr[XiρA]|2,

where we first used Lemma 7.8, then Eq. (4.11) to evaluate the fidelity, and finally the Kraus
representation of TA.

7.5 Schumacher’s theorem and typical subspaces

With the preceding theory in hand we shall now address the third and main question of today’s
lecture – what is the optimal rate of quantum compression? The following theorem due to
Schumacher gives a precise solution.
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Theorem 7.10 (Schumacher compression). Let ρ ∈ D(HA) and δ ∈ (0, 1). Then:

(a) If R > H(ρ) then there exists n0 such that there exists an (n,R, δ)-quantum code for
all n ≥ n0.

(b) If R < H(ρ) then there exists n0 such that no (n,R, δ)-quantum codes exist for n ≥ n0.

Just like Shannon’s theorem was proved using typical sets, we will prove Schumacher’s theorem
by using the closely related notion of a typical subspace.

Definition 7.11 (Typical subspace and projector). For ρ ∈ D(HA), n ∈ N, and ε > 0, define the
typical subspace

Sn,ε(ρ) = span {|ey1⟩ ⊗ · · · ⊗ |eyn⟩ : yn ∈ Tn,ε(q)},

where ρ =
∑d

y=1 q(y) |ey⟩⟨ey| is an eigendecomposition of ρ and d = dimHA.
Moreover, we define the typical projector Πn,ε(ρ) as the orthogonal projection onto the typical

subspace Sn,ε(ρ) ⊆ H⊗n
A . We will often abbreviate it by Πn,ε.

To motivate this definition, note that

ρ⊗n =
∑

yn

q(y1) · · · q(yn) (|ey1⟩ ⊗ · · · ⊗ |eyn⟩) (⟨ey1 | ⊗ · · · ⊗ ⟨eyn |)

=
∑

yn

q(y1) · · · q(yn) |ey1⟩⟨ey1 | ⊗ · · · ⊗ |eyn⟩⟨eyn |,
(7.10)

so we recognize that the eigenvalues of ρ⊗n are precisely given by the IID probabilities q(yn) :=
q(y1) · · · q(yn). It is useful to note that the typical projector is diagonal in the same basis, since

Πn,ε =
∑

yn∈Tn,ε(q)

|ey1⟩⟨ey1 | ⊗ · · · ⊗ |eyn⟩⟨eyn |. (7.11)

In particular, Πn,ε and ρ⊗n commute with each other. The following lemma summarizes the
most important properties of the typical subspaces.

Lemma 7.12 (Quantum Asymptotic Equipartition Property, QAEP). With notation as above,
the following properties hold:

(a) The nonzero eigenvalues of Πn,ερ⊗nΠn,ε = Πn,ερ
⊗n = ρ⊗nΠn,ε are within 2−n(H(ρ)±ε),

(b) rankΠn,ε = dimSn,ε(ρ) = |Tn,ε(q)| ≤ 2n(H(ρ)+ε),

(c) Tr[Πn,ερ
⊗n] ≥ 1− σ2

nε , where σ2 is a constant that only depends on the eigenvalues of ρ.

Proof. These properties follow from the corresponding properties in Lemma 6.11. For property (b),
this is immediate. To prove the other properties, note that Eqs. (7.10) and (7.11) imply that

Πn,ερ
⊗nΠn,ε = Πn,ερ

⊗n = ρ⊗nΠn,ε =
∑

yn∈Tn,ε(q)

q(yn) |ey1⟩⟨ey1 | ⊗ · · · ⊗ |eyn⟩⟨eyn |.

This is an eigendecomposition, so we obtain property (a) from the corresponding property in
Lemma 6.11. And since the preceding implies that

Tr[Πn,ερ
⊗n] =

∑

yn∈Tn,ε(q)

q(yn) = Pr(Y n ∈ Tn,ε(q)),

where Y1, . . . , Yn
IID∼ p, property (c) likewise follows from Lemma 6.11.
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We now prove Schumacher’s theorem.

Proof of Theorem 7.10. To prove part (a), we start as in the proof of Shannon’s source coding
theorem and choose ε = R−H(q)

2 = R−H(ρ)
2 , which is ε > 0 by assumption. Then, using part (b)

of Lemma 7.12,

rankΠn,ε ≤ 2n(H(ρ)+ε) = 2n(R−ε) ≤ 2⌊nR⌋ = dim
(
(C2)⊗⌊nR⌋); (7.12)

the final inequality holds for large enough n (e.g., if n ≥ 1
ε ). Eq. (7.12) implies that there exists

a linear map V : H⊗n
A → (C2)⊗⌊nR⌋ such that

V †V = Πn,ε.

Indeed, we can simply set V =
∑D

i=1|ψi⟩⟨φi|, where D = rankΠn,ε, {|φi⟩}Di=1 is a basis of the
typical subspace and {|ψi⟩}Di=1 some arbitrary set of orthonormal vectors in (C2)⊗⌊nR⌋.1 Finally,
define the compressor and decompressor by

E [M ] := VMV † +Tr[
√
I − V †VM

√
I − V †V ]α,

D[M ] := V †MV +Tr[
√
I − V V †M

√
I − V V †]β,

where α and β are arbitrary states. Note that I −V †V and I −V V † are PSD (since V †V = Πn,ε
and V V † have the same nonzero eigenvalues and the former is a projection), so that the square
roots are well-defined PSD operators. It follows that E and D are completely positive and it is also
easy to see that they are trace-preserving. Thus, we have defined channels E ∈ C(H⊗n

A , (C2)⊗⌊nR⌋)
and D ∈ C((C2)⊗⌊nR⌋,H⊗n

A ).
It remains to verify Eq. (7.7) or, equivalently, Eq. (7.9). For this, note that E has a Kraus

representation that includes the operator V , and D has a Kraus representation that includes the
operator V †. By Exercise 5.3, this means that D ◦ E has a Kraus representation starting with
V †V = Πn,ε. Hence, Corollary 7.9 implies that

F (D ◦ E , ρ⊗n) ≥
∣∣Tr[V †V ρ⊗n]

∣∣ = Tr[Πn,ερ
⊗n].

But now property (c) in Lemma 7.12 shows that the right-hand side is ≥ 1− δ if we choose n
sufficiently large. This concludes the proof of part (a).

We now prove part (b). Fix δ ∈ (0, 1) and R < H(ρ). First, note that if P is an arbitrary
orthogonal projection of rank ≤ 2nR then

Tr[Pρ⊗n] = Tr[PΠn,ερ
⊗n] + Tr[P (I −Πn,ε)ρ

⊗n]

≤ ∥P∥1︸ ︷︷ ︸
≤2nR

∥Πn,ερ⊗n∥∞︸ ︷︷ ︸
≤2−n(H(ρ)−ε)

+Tr[(I −Πn,ε)ρ
⊗n]︸ ︷︷ ︸

1−Tr[Πn,ερ⊗n]

≤ 2−nε +
(
1− Tr[Πn,ερ

⊗n]
)

(7.13)

if we choose ε = H(ρ)−R
2 . Here we estimated the left-hand side term using the Hölder inequality

for operators from Eq. (4.9) and the operator norm using property (a) in Lemma 7.12. For the
right-hand side term, we simply used that P ≤ I and rewrote the result. In view of property (c)
in Lemma 7.12, the expression Eq. (7.13) converges to 0 as n→ ∞.

1For example, we can use V =
∑

yn∈Tn,ε(q)
|E(yn)⟩ (⟨ey1 | ⊗ · · · ⊗ ⟨eyn |), where E : Tn,ε → {0, 1}⌊nR⌋ is an

arbitrary injective map and |E(yn)⟩ denotes the standard basis vector in (C2)⊗⌊nR⌋ corresponding to E(yn) ∈
{0, 1}⊗⌊nR⌋.
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Now suppose that (E ,D) is an (n,R, ε)-code. If {Xi} are Kraus operators for E and {Yj}
are Kraus operators for D, then {Zk} = {YjXi} are Kraus operators for D ◦ E . Since Xi ∈
L(H⊗n

A , (C2)⊗⌊nR⌋), it has necessarily rank ≤ 2nR. Thus the same is true for the Kraus operators
Zk of D ◦ E . Finally, let Pk denote the orthogonal projections onto the range of Zk, so that the
rank of Pk is likewise ≤ 2nR. We now evaluate the channel fidelity using Corollary 7.9 and obtain

F (D ◦ E , ρ⊗n)2 =
∑

k

∣∣Tr[Zkρ⊗n]
∣∣2 =

∑

k

∣∣Tr[PkZkρ⊗n]
∣∣2

=
∑

k

∣∣Tr[Zk
√
ρ⊗n

√
ρ⊗nPk]

∣∣2 ≤
∑

k

Tr[Z†
kZkρ

⊗n] Tr[Pkρ
⊗n],

where the inequality is by the Cauchy-Schwarz inequality for operators [Eq. (4.8)]. Since D ◦ E is
a quantum channel, it is trace-preserving, so

∑
k Z

†
kZk = I by Lemma 5.5. This implies that

r(k) := Tr[Z†
kZkρ

⊗n] is a probability distribution. But then,

F (D ◦ E , ρ⊗n)2 ≤
∑

k

r(k) Tr[Pkρ
⊗n] ≤ 2−nε +

(
1− Tr[Πn,ερ

⊗n]
)

by Eq. (7.13). By property (c) in Lemma 7.12, the right-hand side converges to 0 as n → ∞.
As a consequence, F (D ◦ E , ρ⊗n) ≥ 1 − δ can only hold for finitely many n. In other words,
(n,R, δ)-codes can only exist for finitely many values of n.

7.6 Exercises

7.1 Operator logarithm: Compute the logarithm of the following matrix: ( 5 3
3 5 ).

Hint: Hadamard basis.

7.2 Operator logarithm: Verify the following properties:

(a) log(cI) = log(c)I for every c ≥ 0.
(b) log(Q⊗R) = log(Q)⊗ IB + IA ⊗ log(R) for all positive definite Q ∈ L(HA), R ∈ L(HB).
(c) log(

∑
x∈Σ px|x⟩⟨x| ⊗ ρx) =

∑
x∈Σ log(px)|x⟩⟨x| ⊗ IB +

∑
x∈Σ|x⟩⟨x| ⊗ log(ρx) for every

ensemble {px, ρx}x∈Σ of positive definite operators ρx ∈ D(HB).

Warning: It is in general not true that log(QR) = log(Q) + log(R). Indeed, QR is in general
not even positive definite.

7.3 Trace distance of probability distributions: We defined the (normalized) trace distance
between two probability distributions p, q ∈ P(Σ) by T (p, q) := 1

2

∑
x∈Σ|p(x)− q(x)|.

(a) Show that T (p, q) = T (ρ, σ), where ρ =
∑

x p(x)|x⟩⟨x| and σ =
∑

x q(x)|x⟩⟨x|.
(b) Let X, Y be random variables with distributions p, q, respectively. Show that

T (p, q) = max
S⊆Σ

(
Pr(X ∈ S)− Pr(Y ∈ S)

)
.

Do you recognize this as the probability theory analog of a formula that you proved for
quantum states?

(c) Suppose X, Y are random variables as above and have a joint distribution. Use part (b)
to show that T (p, q) ≤ Pr(X ≠ Y ). This beautiful inequality is known as the coupling
inequality.
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7.4 Measurements and trace distance: In this problem, you will revisit how to distinguish
quantum states by using measurements. Given states ρ, σ ∈ D(H) and a measurement
µ : Ω → PSD(H), let p, q ∈ P(Ω) denote the corresponding probability distributions of
measurement outcomes.

(a) Prove that T (p, q) ≤ T (ρ, σ).
(b) Show that, for any ρ and σ, there exists Ω and a measurement µ such that equality holds.

Hint: Recall Helstrom’s theorem.

7.5 Typical subspaces: Consider the state ρ = 1
2 |0⟩⟨0|+ 1

4 |1⟩⟨1|+ 1
4 |2⟩⟨2| on H = C3. Determine

the dimension of the typical subspace Sn,ε(ρ) for n = 2 and arbitrary 0 < ε < 1
2 .

7.6 On the definition of quantum codes: The definition of an (n,R, δ)-quantum code in Def-
inition 7.6 was perhaps surprising. Why did we not simply demand that F (D[E [ρ⊗n]], ρ⊗n) ≥
1− δ? Argue that such a definition would not correspond to a reliable compression protocol.
What is the probability theory analog of this condition?

7.7 Compression and correlations: Let ρ =
∑

x∈Σ p(x)ρx, where p ∈ P(Σ) is a probability
distribution and ρx a state for each x ∈ Σ. In class, we showed that if E and D are channels
such that F (D ◦ E , ρ⊗n) ≥ 1− δ then

∑

xn

p(x1) · · · p(xn)F
(
D
[
E [ρx1 ⊗ · · · ⊗ ρxn ]

]
, ρx1 ⊗ · · · ⊗ ρxn

)
≥ 1− δ.

Show that the converse is not necessarily true.

Hint: There are even counterexamples for n = 1 and δ = 0.

7.8 Non-monotonicity of the von Neumann entropy: Given a quantum state ρAB, we
write H(AB) for its entropy and H(A), H(B) for the entropies of its reduced states.

(a) Find a state ρAB such that H(AB) > H(B).
(b) Find a state ρAB such that H(AB) < H(B).

Thus, the von Neumann entropy does not satisfy the same monotonicity as the Shannon
entropy.

7.9 Subadditivity of the von Neumann entropy: Use Schumacher’s theorem to show that,
for all states ρAB,

H(A) +H(B) ≥ H(AB),

using the same notation as in Exercise 7.8. Thus, the von Neumann entropy is subadditive.

Hint: Exercise 4.8.

7.10 Classical-quantum states and concavity: Given a probability distribution p ∈ P(Σ)
and states ρx ∈ D(H) for x ∈ Σ, we can consider the cq state ρXB =

∑
x∈Σ p(x) |x⟩⟨x| ⊗ ρx

in D(HX ⊗HB), where HX = CΣ and HB = H. See Exercise 5.12.

(a) Show that H(XB) = H(p) +
∑

x∈Σ p(x)H(ρx).
(b) Conclude that H(XB) ≥ H(X). When does equality hold?
(c) Show that the von Neumann entropy is a concave function on D(H).

Hint: Evaluate the subadditivity inequality from Exercise 7.9 for a classical-quantum state.
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7.11 Compression without error: In this problem you will study how well one can compress a
quantum state without making any error. Let us say that ρA ∈ D(HA) can be compressed
into n qubits if there exists a Hilbert space HR of dimension ≤ 2n and quantum channels
E ∈ C(HA,HR) and D ∈ C(HR,HA) such that (DE ⊗ IB)(σAB) = σAB for every register B
and σAB ∈ D(HA ⊗HB) with TrB(σAB) = ρA.

(a) Motivate briefly why we do not simply demand that D(E(ρA)) = ρA.

For any given state ρ, define the following quantity:

N(ρ) :=
⌈
log(rank(ρ))

⌉
= min

{
n ∈ Z : n ≥ log(rank(ρ))

}
.

(b) Compute N(ω), N(ω⊗2), and N(ω⊗3) for the completely mixed state ω = I/3 ∈ D(C3).
(c) Compute limn→∞

1
nN(ρ⊗n) for a general state ρ ∈ D(HA) as some simple function of

the state.

It turns out that N(ρA) corresponds to the minimal number of qubits that ρA can be
compressed into according to the above definition. To prove this, show the following facts:

(d) Show that if n ≥ log(rank(ρA)) then ρA can be compressed into n qubits.
(e) Show that if ρA can be compressed into n qubits then n ≥ log(rank(ρA)).

7.12  Practice: In this problem, you can explore the properties of typical subspaces. Consider
the qubit state ρ = 1

2 |0⟩⟨0|+ 1
2 |+⟩⟨+|, where |+⟩ = 1√

2
(|0⟩+ |1⟩).

(a) Compute the largest eigenvalue λ as well as the von Neumann entropy H(ρ) of ρ.
(b) Plot the following functions of k ∈ {0, 1, . . . , n} for n = 100 as well as for n = 1000:

d(k) =

(
n

k

)
, r(k) =

1

n
log

(
n

k

)
, q(k) =

(
n

k

)
λk(1− λ)n−k

(c) Plot the following functions of n ∈ {1, . . . , 1000} for ε = 0.1 as well as for ε = 0.01:

r(n) =
1

n
log dimSn,ε, p(n) = Tr[Πn,ερ

⊗n],

where Πn,ε denotes the orthogonal projection onto the typical subspace Sn,ε of ρ.
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Lecture 8

Entropy and subsystems

Last week we discussed the definition of the von Neumann entropy, which generalizes the Shannon
entropy to quantum states, as well as the problem of compressing quantum information. The
main result was Schumacher’s theorem (Theorem 7.10), which states that the von Neumann
entropy is the ‘optimal’ compression rate.

Today we will discuss how the entropies of subsystems are related to the entropy of the overall
system. As you already saw in last week’s Exercise 7.9, these entropies are not independent but
constrained by entropy inequalities, and we will discuss several of those. Then we will introduce
the mutual information, which is a very useful correlation measure, and discuss its mathematical
properties.

8.1 Entropies of subsystems

To study the entropies of subsystems, it is useful to first introduce some notation.

Definition 8.1 (Entropy of subsystems). Given a quantum state ρAB, we define

H(AB)ρ := H(ρAB), H(A)ρ := H(ρA), H(B)ρ := H(ρB).

We use analogous notation for more than two subsystems. We will very often leave out the
subscript and write H(AB), H(A), H(B) when the state is clear. In fact, we already introduced
and used this convention in Exercise 7.8, as well as for the Shannon entropy (Definition 6.4).

How are these entropies related? Let us first consider two very extreme cases:

• If ρAB is pure then H(AB) = 0 and

H(A) = H(B). (8.1)

The latter is often called the entanglement entropy of ρAB.

Proof. The former holds because the eigenvalues of a pure state are 1, 0, . . . , 0. The latter
follows from the Schmidt decomposition, which implies that ρA and ρB have the same
nonzero eigenvalues (Corollary 2.21).
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Definition 8.2 (Entanglement entropy). For a pure state, H(A) = H(B) is called the entangle-
ment entropy.

Note that Eq. (8.1) generalizes also to pure multi-partite states. For example, H(A) = H(BC),
H(B) = H(AC), and H(C) = H(AB) for any pure state on ABC. We will come back to
entanglement entropy in Lecture 12 and derive its operational interpretation in Theorem 12.5.

• If ρAB is a product state (equivalently, ρAB = ρA⊗ ρB) then H(AB) = H(A) +H(B). We
say that the entropy is additive with respect to tensor products.

Proof. If ρA has eigenvalues (pi)
dA
i=1 and ρB has eigenvalues (qj)

dB
j=1 then ρAB = ρA ⊗ ρB

has eigenvalues (piqj)i,j . Thus,

H(AB) =
∑

i,j

piqj log
1

piqj
=
∑

i,j

piqj log
1

pi
+
∑

i,j

piqj log
1

qj

=
∑

i

pi log
1

pi
+
∑

j

qj log
1

qj
= H(A) +H(B).

Next, we list some general properties. We first discuss the extent to which the subadditivity and
monotonicity properties of the Shannon entropy (see Lemma 6.5) generalize to the quantum case.

• Subadditivity:

H(A) +H(B) ≥ H(AB). (8.2)

Moreover, equality holds if and only if ρAB = ρA ⊗ ρB. The term “subadditivity” means
that when the two systems are combined or “added” together, the entropy of the joint
system is generally smaller (“sub”) than the sum of the entropies of the two parts.

You proved this inequality in Exercise 7.9 and we discussed above that equality holds for
product states. Why does equality hold only for product states? We will prove this next
week.

• The von Neumann entropy is not monotonic. That is, in general, H(AB) ̸≥ H(A) and
H(AB) ̸≥ H(B). You discussed this in Exercise 7.8.

• However, for classical-quantum states ρXB we do have the monotonicity inequalities

H(XB) ≥ H(X) and H(XB) ≥ H(B). (8.3)

You proved the first inequality in Exercise 7.10; the second will follow from Lemma 9.3.

• Araki-Lieb (or triangle) inequality:

H(AB) ≥
∣∣H(A)−H(B)

∣∣. (8.4)

We can think of Eq. (8.4) as a weaker form of monotonicity (not to be confused with
Eq. (8.6) below). Indeed, if H(AB) ≥ H(A) and H(AB) ≥ H(B) were true then these
would imply Eq. (8.4).

Proof. Choose any purification ρABC of ρAB. Then:

H(AB) = H(C) ≥ H(BC)−H(B) = H(A)−H(B),
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where the first and last step hold since ρABC is pure [Eq. (8.1)] and the inequality is
subadditivity [Eq. (8.2)]. Likewise,

H(AB) = H(C) ≥ H(AC)−H(A) = H(B)−H(A),

which proves the other half of Eq. (8.4).

It turns out that there is a stronger variant of the subadditivity inequality which is very powerful:

• Strong subadditivity: For all ρABC , it holds that

H(AC) +H(BC) ≥ H(ABC) +H(C). (8.5)

Clearly, this inequality reduces to Eq. (8.2) if there is no C system, which justifies the
terminology. Eq. (8.5) is much harder to prove than Eq. (8.2) and we will not have time to
do this in the lecture (cf. the closely related monotonicity property of the quantum relative
entropy [Eq. (9.6)] that we will discuss in Lecture 9).

• Weak monotonicity: For all ρABC , it holds that

H(AC) +H(BC) ≥ H(A) +H(B). (8.6)

This inequality follows from Eq. (8.5) by using a purification – in the same way that
Eq. (8.4) follows from Eq. (8.2) – as you get to prove in Exercise 8.3. The name is justified
since if H(AC) ≥ H(A) and H(BC) ≥ H(B) were true then these would imply Eq. (8.6).

8.2 Mutual information

In this section we will discuss the mutual information, which is a useful way to quantify correlations
in quantum states.

Definition 8.3 (Mutual information). The mutual information of a quantum state ρAB is defined
as

I(A : B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ. (8.7)

As for individual entropies, we will mostly leave the subscript out and write I(A : B) if the state
is clear.

We can use the same formula to define the mutual information I(X : Y )p of a joint probability
distribution. These definitions are of course compatible: If ρXY =

∑
x,y p(x, y) |x, y⟩⟨x, y| is the

classical state corresponding to a joint distribution p(x, y) then I(X : Y )ρ = I(X : Y )p.

Example 8.4. Let us revisit the three states from Table 2.1 and compute their mutual information.

• Maximally entangled state:

ρAB = |Φ+
AB⟩⟨Φ+

AB| =
1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




where |Φ+
AB⟩ = 1√

2

(
|00⟩+ |11⟩

)
. Note that H(A) = H(B) = 1 since ρA = ρB = 1

2

(
1 0
0 1

)
are

maximally mixed, and H(AB) = 0 since ρAB is pure. Hence, I(A : B) = 1 + 1− 0 = 2.
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• Maximally correlated classical state:

ρAB =
1

2

(
|00⟩⟨00|+ |11⟩⟨11|

)
AB

=
1

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ,

which corresponds to a pair of perfectly correlated uniformly random bits. In this case
ρA = ρB = 1

2

(
1 0
0 1

)
are also maximally mixed, so again H(A) = H(B) = 1. However, this

time ρAB is not pure – its eigenvalues are (12 , 0, 0,
1
2), which we easily see because ρAB is

diagonal, so H(AB) = 1. Hence, I(A : B) = 1 + 1− 1 = 1.

• Two independent uniformly random bits:

ρAB =
1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
A
⊗ 1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
B
=

1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Since ρAB = ρA ⊗ ρB is a product state, its entropy is additive: H(AB) = H(A) +H(B),
which immediately implies that I(A : B) = H(A) +H(B) −H(AB) = 0. Alternatively,
we again observe that ρA = ρB = 1

2

(
1 0
0 1

)
so H(A) = H(B) = 1. However, this time the

eigenvalues of ρAB are (14 ,
1
4 ,

1
4 ,

1
4), which is easily seen since ρAB is diagonal. This constitutes

a uniform distribution on two bits so H(AB) = 2. Hence, I(A : B) = 1 + 1− 2 = 0.

We now list some useful properties, several of which follow directly from the results of Section 8.1:

• Nonnegativity: I(A : B) ≥ 0. Moreover, I(A : B) = 0 if and only if ρAB is a product state
(i.e., ρAB = ρA ⊗ ρB). This is a first indication that the mutual information is a useful
correlation measure.

Proof. This is simply a restatement of subadditivity [Eq. (8.2)], including the condition for
equality.

• Invariance under isometries: For any state ρAB and isometries VA→A′ , WB→B′ , we have

I(A : B)ρ = I(A′ : B′)σ,

where σA′B′ := (VA→A′ ⊗WB→B′)ρAB(V
†
A→A′ ⊗W †

B→B′).

Proof. This follows from the invariance of the von Neumann entropy under isometries (see
Lemma 7.2) once we recognize that σA′ = V ρAV

† and σB′ =WρBW
†.

• Pure states: If ρAB is pure then I(A : B) = 2H(A) = 2H(B).

Proof. Recall that H(AB) = 0 and H(A) = H(B) if ρAB is pure.

• Upper bound: Let dA = dimHA and dB = dimHB. Then,

I(A : B) ≤ 2min {H(A), H(B)} ≤ 2 logmin {dA, dB}. (8.8)
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For classical-quantum states ρXB, we have the stronger upper bound

I(X : B) ≤ min {H(X), H(B)} ≤ logmin {dX , dB}. (8.9)

In particular, Eq. (8.9) holds for classical states and joint probability distributions. In
Exercises 8.6 and 8.7 you will investigate under which conditions the upper bounds in
Eqs. (8.8) and (8.9) hold with equality.

Proof. The first inequality in Eq. (8.8) follows from the Araki-Lieb inequality [Eq. (8.4)].
Indeed, H(A) +H(B)−H(AB) = I(A : B) ≤ 2H(A) is equivalent to H(AB) ≥ H(B)−
H(A), and similarly for the other bound.

Similarly, the first bound in Eq. (8.9) is equivalent to the monotonicity inequalities in
Eq. (8.3).

• Monotonicity: For all ρACE ,

I(A : CE) ≥ I(A : C). (8.10)

(We label the subsystems ACE rather than ABC to avoid confusion in the below.)

Proof. This is simply a rewriting of strong subadditivity [Eq. (8.5)].

The latter property is equivalent to the following general result:

Lemma 8.5 (Data processing inequality). Let ρAB ∈ D(HA⊗HB) be a state, TB→C ∈ C(HB,HC)
a channel, and ωAC = (IA ⊗ TB→C)[ρAB]. Then,

I(A : B)ρ ≥ I(A : C)ω.

By symmetry, a similar inequality holds if we apply a channel on A rather than on B.

The data processing inequality is very intuitive, as it states that we can never increase correlations
by acting locally. The following figure illustrates the situation:

T
ρAB ωAC=

A

B C

Clearly, Lemma 8.5 reduces to the monotonicity property of the mutual information (simply
choose B = CE and T = TrE).

Proof of Lemma 8.5. Any channel has a Stinespring representation TB→C [MB ] = TrE
[
VMBV

†],
where V = VB→CE ∈ L(HB,HC ⊗HE) is an isometry [Eq. (5.7) and Lemma 5.5]. Note that

ωACE =
(
IA ⊗ VB→CE

)
ρAB

(
IA ⊗ VB→CE

)†

is an extension of ωAC (i.e., TrE [ωACE ] = ωAC). As a consequence,

I(A : B)ρ = I(A : CE)ω ≥ I(A : C)ω,

using that the mutual information is invariant under isometries and monotonic.

Next week we will discuss a nice application of the data processing inequality known as
Holevo’s Theorem (Theorem 9.4). It introduces a quantity that characterizes how much classical
information can be extracted from a quantum state. The same quantity also turns out to capture
the rate at which classical information can be transmitted through a quantum channel.
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8.3 Exercises

8.1 Computing entropy and mutual information: Let HA = HB = C2 and consider the
following two-qubit state given with respect to the basis |00⟩, |01⟩, |10⟩, |11⟩:

ρAB =
1

10




4 0 0 4
0 1 1 0
0 1 1 0
4 0 0 4


 .

(a) Is ρAB pure or mixed?
(b) Compute the entropy H(AB).

Consider the three-qubit state |ΓABC⟩ = 1√
2
(|000⟩+ |111⟩).

(c) Compute the entropies H(A), H(B), and H(C).
(d) Compute the mutual information I(A : B).
(e) Give an example of a state ρAB which is separable and for which I(A : B)ρ > 0. Justify

your answer.

8.2 Mutual information upper bound: Eq. (8.8) implies that I(A : B) ≤ log dA + log dB,
where dA = dimHA and dB = dimHB. Give a simple proof of this fact without using the
Araki-Lieb inequality.

8.3 Weak monotonicity: Use a purification to deduce the weak monotonicity inequality
H(AC) +H(BC) ≥ H(A) +H(B) from the strong subadditivity inequality, and vice versa.

8.4 Strict concavity of the von Neumann entropy: In Exercise 7.10 you proved that H(ρ)
is a concave function of ρ ∈ D(H). Revisit your proof and show that it is strictly concave
using the equality condition for the subadditivity inequality discussed today.

8.5 Equality condition for monotonicity: In Exercise 6.6, you proved that the Shannon
entropy (unlike the von Neumann entropy) satisfies the following monotonicity inequality:
H(XY ) ≥ H(X) for any probability distribution pXY . Show that equality holds if and only
if pXY (x, y) = pX(x)δf(x),y for a function f : ΣX → ΣY .

This means that Y = f(X), i.e., the second random variable is a function of the first!

8.6 Classical mutual information: From Eq. (8.9), we know that I(X : Y ) ≤ log d for every
distribution pXY ∈ P(ΣX × ΣY ) with |ΣX | = |ΣY | = d. Show that I(X : Y ) = log d if and
only if pXY (x, y) = 1

dδf(x),y for a bijection f : ΣX → ΣY . Such probability distributions pXY
are called maximally correlated.

Hint: Exercise 8.5.

8.7 Quantum mutual information: From class, we know that I(A : B) ≤ 2 log d for every
state ρAB ∈ D(HA ⊗HB) with HA = HB = Cd. Show that I(A : B) = 2 log d if and only if
is maximally entangled (Definition 3.5).

Hint: Inspect your solution to Exercise 8.2.

8.8 Entropic uncertainty relation: Here you can prove another uncertainty relation. Let
ρ ∈ D(C2) and denote by pStd and pHad the probability distributions of outcomes when
measuring ρ in the standard basis and Hadamard basis, respectively. You will show:

H(pStd) +H(pHad) ≥ H(ρ) + 1 (8.11)
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(a) Why is it appropriate to call (8.11) an uncertainty relation?
(b) Find a state ρ for which the uncertainty relation is saturated (i.e., an equality).

To start, recall the Pauli matrices X = ( 0 1
1 0 ) and Z =

(
1 0
0 −1

)
.

(c) Verify that 1
2(ρ+ ZρZ) =

(
⟨0|ρ|0⟩ 0

0 ⟨1|ρ|1⟩

)
and deduce that H(pStd) = H(12(ρ+ ZρZ)).

(d) Show that, similarly, H(pHad) = H(12(ρ+XρX)). Hint: |±⟩ is the eigenbasis of X.

Now consider the following three-qubit state,

ωABC =
1

4

1∑

a=0

1∑

b=0

|a⟩⟨a|A ⊗ |b⟩⟨b|B ⊗ (XaZbρZbXa)C ,

where we denote X0 = I, X1 = X, Z0 = I, Z1 = Z. Note that subsystems A & B are
classical.

(e) Show thatH(ABC) = 2+H(ρ). Use parts (c) and (d) to verify thatH(AC) = 1+H(pStd),
H(BC) = 1 +H(pHad), and H(C) = 1 in state ωABC .

Hint: Use the formula for the entropy of classical-quantum states from Exercise 7.10.
(f) Use part (e) and the strong subadditivity inequality to deduce (8.11).

8.9  Practice: Let |ΨABC⟩ ∈ HA ⊗HB ⊗HC = C5 ⊗ C2 ⊗ C3 be a unit vector given by

|ΨABC⟩ =
4∑

k=0

ck|k⟩A ⊗ |βk⟩B ⊗ |γk⟩C

where (c0, c1, c2, c3, c4) = (0.3, 0.4, 0.5, 0.5, 0.5) and

|βk⟩ =
1√
2

(
|0⟩+ exp

(
2πi

5
k

)
|1⟩
)
, |γk⟩ = |k mod 3⟩.

(a) Compute the mutual information I(A : B) of ρAB = TrC
[
|Ψ⟩⟨Ψ|ABC

]
.

(b) Let Φ ∈ C(HB) be a quantum channel that acts on any M ∈ L(HB) as

Φ(M) =
1

2
M +

1

2
XMX

where X =
(
0 1
1 0

)
. Compute the mutual information I(A : B) of σAB = (IA ⊗ ΦB)[ρAB].

8.10 Squashed entanglement: In this problem we consider the following quantity which is
called the squashed entanglement of a state ρAB:

E(A : B)ρ := inf
HR, ωABR s.th.
TrR[ωABR]=ρAB

1

2

(
I(A : BR)ω − I(A : R)ω

)
.

The infimum is over arbitary finite-dimensional Hilbert spaces HR and quantum states ωABR
such that TrR[ωABR] = ρAB. We write E(A : B) if the state is clear from the context. Your
task is to prove a number of properties which indicate that E(A : B) is a useful measure of
the entanglement between systems A and B in state ρAB.

(a) Show that E(A : B) ≥ 0 for all states ρAB.
(b) Show that E(A : B) ≤ H(A)ρ for all states ρAB.
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(c) Show that if σAB′ is obtained by applying a channel B→B′ to ρAB then E(A : B′)σ ≤
E(A : B)ρ.

(d) Show that E(A : B) + E(A : C) ≤ E(A : BC) for all states ρABC .
(e) Show that if ρAB is pure then E(A : B) = H(A).
(f) Show that if ρAB is separable then E(A : B) = 0.

Hint: Any separable state can be written in the form ρAB =
∑

i pi ρA,i ⊗ ρB,i where ρA,i
and ρB,i are pure. Can you find an extension ωABR of ρAB that is classical on R?

8.11 Conditional entropy: Given a quantum state ρAB ∈ D(HA ⊗HB), the quantity

H(A|B)ρ := H(AB)ρ −H(B)ρ

is called the conditional entropy of A given B.

(a) Find a state ρAB such that H(A|B)ρ < 0.
(b) Show that H(A|B)ρ = −H(A|C)ρ for any pure state ρABC .
(c) Show that H(A|BC)ρ ≤ H(A|B)ρ for any state ρABC .
(d) Show that the conditional entropy is a concave function of the state ρAB.

Hint: Use part (c).
(e) Show H(A|B)ρ ≥ 0 for any separable state ρAB.

Hint: Use part (d).
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Lecture 9

Holevo bound and relative entropy

Last week we discussed various entropic quantities in the quantum case and inequalities between
them. In particular, for a multipartite state ρABC one can consider the entropies of the reduced
states (e.g., H(AB) = H(ρAB) where ρAB = TrC [ρABC ]) and the inequalities among them, such
as the strong subadditivity:

H(AB) +H(BC) ≥ H(ABC) +H(B).

Strong subadditivity is equivalent to the monotonicity of the mutual information I(A : B) =
H(A) +H(B)−H(AB), namely

I(A : B) ≤ I(A : BC).

This in turn was equivalent to the data processing inequality for the mutual information:

I(A : B)ρ ≥ I(A : C)ω (9.1)

where ωAC = (IA⊗TB→C)[ρAB ] is obtained by applying a channel TB→C on the B system of ρAB
Intuitively, processing quantum information locally can only decrease the mutual information.

9.1 Holevo bound

Assume we draw an element x ∈ Σ with probability px, record its value in a classical system X
with Hilbert space HX = CΣ, and create an arbitrary state ρx ∈ D(HB) associated to x in a
separate system B. Then the resulting classical-quantum (cq) state

ρXB =
∑

x

px|x⟩⟨x| ⊗ ρx ∈ D(HX ⊗HB) (9.2)

represents the ensemble {px, ρx} (see Exercise 5.12). To such an ensemble, or the corresponding
cq-state, we associate the so-called Holevo χ-quantity.

Definition 9.1 (Holevo χ-quantity). The Holevo χ-quantity of an ensemble {px, ρx} is

χ({px, ρx}) := I(X : B) = H
(∑

x

pxρx

)
−
∑

x

pxH(ρx),

where the mutual information is computed in the cq-state ρXB =
∑

x px |x⟩⟨x| ⊗ ρx.

To verify the second equality, use that H(XB) = H(p) +
∑

x pxH(ρx), as you proved in
Exercise 7.10 (a). The following lemma states upper and lower bounds on the Holevo quantity.
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Lemma 9.2. For any ensemble {px, ρx} of states ρx ∈ D(HB), we have

0 ≤ χ({px, ρx}) ≤ H
(∑

x

pxρx

)
≤ log dimHB.

Proof. The lower bound on the Holevo quantity holds since the mutual information is nonnegative.
The first upper bound follows by leaving out a nonnegative term (or by observing that it is
equivalent to H(XB) ≥ H(X), which you proved in Exercise 7.10). The second one is clear.

We also have the following upper bound, which you will prove in Exercise 9.3.

Lemma 9.3. For any ensemble {px, ρx} of states ρx ∈ D(HB), we have

χ({px, ρx}) ≤ H(p).

Morever, equality holds if and only if the states ρx with px > 0 have pairwise orthogonal image.

In terms of the cq-state corresponding to the ensemble, the upper bound in Lemma 9.3 can also
be written as H(XB) ≥ H(B). This confirms our claim in Eq. (8.3).

Why is the Holevo χ-quantity useful? For this, let us revisit the following fundamental
question: How much information can Alice communicate to Bob by sending a quantum state?
We will consider the following setup:

µ
x

Z
prep. ρx
state BX

z

Here, Alice has a classical message x ∈ Σ with distribution p ∈ P(Σ) which she would like to
communicate to Bob. For this, she sends Bob a quantum state ρx ∈ D(HB), and Bob applies a
measurement µ : Γ → PSD(HB). Using Born’s rule, we see that the joint distribution of Alice’s
random message X and Bob’s random measurement outcome Z on the set Σ× Γ is given by

p(x, z) = p(x) Tr[ρxµ(z)].

In Exercise 2.3, you proved the so-called Nayak bound: if x ∈ {0, 1}m is chosen uniformly at
random and HB = (C2)⊗n then Pr(X = Z) ≤ 2n−m, i.e., we need to send n ≥ m qubits to
communicate m bits reliably. But how about if the distribution of x is not uniform?

It turns out that there is a general useful bound on the mutual information I(X : Z) between
Alice’s message and Bob’s measurement result. This is the content of the following theorem:

Theorem 9.4 (Holevo). I(X : Z) ≤ χ({px, ρx}) for any ensemble {px, ρx} and measurement µ.

Holevo’s theorem is a simple consequence of the data processing inequality (Lemma 8.5), which
in turn relies on the very nontrivial strong subadditivity inequality.

Proof. Let ρXB be the cq-state from Eq. (9.2) that represents the ensemble {px, ρx}, let µ : Γ →
PSD(HB) be an arbitrary measurement on system B, and let ΦB→Z [σ] :=

∑
z∈ΓTr[σµ(z)] |z⟩⟨z|,

with output space HZ , be the quantum channel corresponding to µ. Then by the data processing
inequality for the mutual information, Eq. (9.1),

χ({px, ρx}) = I(X : B)ρ ≥ I(X : Z)ω

where

ωXZ = (IX ⊗ ΦB→Z)[ρXB] =
∑

x∈Σ
px|x⟩⟨x| ⊗ Φ[ρx] =

∑

x∈Σ,z∈Γ
p(x, z)|x⟩⟨x| ⊗ |z⟩⟨z|

is the resulting output state after the measurement. That was easy!
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Here is a concrete consequence of the Holevo bound. In the situation above, when can Bob
exactly recover Alice’s message? That is, when is X = f(Z) for some function f? We know from
Exercise 8.5 that this is the case precisely when H(XZ) = H(Z), that is, when I(X : Z) = H(X).
But I(X : Z) ≤ χ({px, ρx}) ≤ H(p) = H(X) by the Holevo bound and Lemma 9.3. Thus, Bob
can exactly recover Alice’s message only if χ({px, ρx}) = H(p). (In Exercise 9.4 you can prove
that this is also sufficient.) But note that Lemma 9.3 also asserts that in this case the states ρx
with px > 0 have pairwise orthogonal image. Accordingly, dimHB ≥ |x ∈ Σ : px > 0|. This
means that if we want to communicate m bits perfectly, we need to send at least m qubits, even
if the distribution of the messages is not uniform!
Remark 9.5. The above considerations are closely related to one of the most fundamental problems
in quantum information theory: Given access to a quantum channel NA→B (which could, e.g.,
describe an optical fiber), what is the optimal rate at which we can use it to communicate
classical information? This rate is called the classical capacity of the channel. The Holevo-
Schumacher-Westmoreland theorem computes this capacity in terms of the Holevo quantity. To
state this result, note that for any ensemble of input states {px, ρA,x} we get an ensemble of
output states {px, σB,x}, where σB,x := NA→B[ρA,x]. Let χ(NA→B) denote the supremum of
χ({px, σB,x}) over all ensembles obtained in this way. Then the classical capacity of NA→B is
given by limn→∞

1
nχ(N⊗n

A→B). Proving this result is out of scope for this introductory lecture,
but you can consult the books by Watrous or Wilde for details.

9.2 Relative entropy

Quantum relative entropy is a useful mathematical tool for analyzing the von Neumann entropy.
Let us first consider its classical version (also known as Kullback–Leibler divergence).

Definition 9.6 (Relative entropy). Let p, q ∈ P(Σ) be probability distributions. The relative
entropy of p with respect to q is

D(p∥q) =
{∑

x∈Σ p(x) log
p(x)
q(x) if {x : q(x) = 0} ⊆ {x : p(x) = 0},

∞ otherwise.
(9.3)

To make sense of the expression p(x) log p(x)
q(x) for all possible values of p(x), q(x) ∈ [0, 1], recall

from p. 75 that lima→0 a log a = 0. So the expression is equal to 0 whenever p(x) = 0, and has
a finite non-zero value when both p(x) > 0 and q(x) > 0. The only problematic case is when
p(x) > 0 but q(x) = 0, in which case the value becomes infinite.

p(x) q(x) p(x) log p(x)
q(x)

= 0 = 0 0
= 0 > 0 0
> 0 = 0 ∞
> 0 > 0 finite

The condition for when D(p∥q) in Eq. (9.3) is finite can also be stated as ∀x : q(x) = 0 ⇒ p(x) = 0
or equivalently as ∀x : p(x) > 0 ⇒ q(x) > 0.

Here are some basic properties of the relative entropy:

• Nonnegativity: D(p∥q) ≥ 0, with equality iff p = q.

Proof. Without loss of generality, we assume that p(x) ≥ 0 for all x. Note that ln a ≤ a− 1,
with equality iff a = 1.
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≥ 1
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∑

x
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1− q(x)

p(x)

)

=
1

ln 2

(∑

x

p(x)−
∑

x

q(x)

)
= 0,

completing the proof.

In statistics, functions with this property are known as divergences. A divergence is a
weaker notion than a distance since it does not need to be symmetric or obey the triangle
inequality. For example, the cost of a plane ticket from one destination to another is
generally a divergence but not a distance.

• Note that D(p∥q) is not symmetric, i.e., generally D(p∥q) ̸= D(q∥p).
Let us consider two simple applications of the classical relative entropy. Let p, q ∈ P(Σ) be
probability distributions and assume that q(x) = 1/|Σ| is uniform. Then

D(p∥q) =
∑

x∈Σ
p(x) log p(x)−

∑

x∈Σ
p(x) log q(x)

= −H(p)− log
1

|Σ| ,

implying that H(p) ≤ log |Σ|, with equality if and only if p is uniform. We proved this already
in Item (b) of Lemma 6.3.

As another application, let pXY ∈ P(Σ× Γ) be an arbitrary distribution and let qXY (x, y) =
pX(x)pY (y) be the product of its marginals (recall that the marginals are obtained by summing
over the remaining indices: pX(x) =

∑
y∈Σ pXY (x, y) and pY (y) =

∑
x∈Σ pXY (x, y)). Then

D(pXY ∥qXY ) = −H(pXY )−
∑

x∈Σ

∑

y∈Γ
pXY (x, y) log(pX(x)pY (y))

= −H(pXY )−
∑

x∈Σ
pX(x) log pX(x)−

∑

y∈Σ
pY (y) log pY (y)

= H(pX) +H(pY )−H(pXY )

= I(X : Y )pXY ,

implying that I(X : Y )pXY ≥ 0, with equality if and only if pXY is a product distribution, i.e.,
pXY (x, y) = pX(x)pY (y) (that is, X and Y are independent).

106



9.3 Quantum relative entropy

Now that we are familiar with the classical relative entropy, we can define the quantum version
by noting that p(x) log p(x)

q(x) = p(x) log p(x)− p(x) log q(x) and replacing probability distributions
by density matrices.

Definition 9.7 (Quantum relative entropy). Let ρ, σ ∈ D(H) be quantum states. The quantum
relative entropy of ρ with respect to σ is

D(ρ∥σ) =
{
Tr[ρ log ρ]− Tr[ρ log σ] if kerσ ⊆ ker ρ,

∞ otherwise.

The interpretation here is similar to the classical case. Note that the first term is equal to −H(ρ)
so we only need to make sense of ρ log σ in the second term. It is unambiguous how ρ log σ
acts on (kerσ)⊥ since log σ there is well-defined. Assuming kerσ ⊆ ker ρ, we can define ρ log σ
as zero on kerσ. If this condition is not met, the expression becomes infinite just like in the
classical case. Note that the condition kerσ ⊆ ker ρ is equivalent to im ρ ⊆ imσ. For example,
D(|0⟩⟨0| ∥ |+⟩⟨+|) = ∞ since span{|0⟩} ⊈ span{|+⟩}.

Here is a list of various properties of quantum relative entropy:

• Classical states: If ρ =
∑

x p(x) |x⟩⟨x| and σ =
∑

x q(x) |x⟩⟨x| then D(ρ∥σ) = D(p∥q).
• Monotonicity: For any ρ, σ ∈ D(H) and any Φ ∈ C(H,H′):

D(ρ∥σ) ≥ D(Φ[ρ]∥Φ[σ]). (9.4)

This property is very important and could well be called the “fundamental theorem of
quantum information theory” (it even implies the strong subadditivity inequality as we
will discuss below). Unfortunately, we will not have time to prove since it would require a
separate lecture (see p. 280 of Watrous’ book).

• Nonnegativity (Klein’s inequality):

D(ρ∥σ) ≥ 0, (9.5)

with equality iff ρ = σ.

Proof. Let µ : Ω → PSD(H) be a quantum measurement and denote by Φ ∈ C(H,X ) where
X = CΩ the quantum channel

Φ[ω] :=
∑

x∈Ω
Tr[µ(x)ω] |x⟩⟨x|

that implements the measurement µ. Denote by p and q the probability distributions
resulting from measuring ρ and σ, respectively:

p(x) := Tr[µ(x)ρ], q(x) := Tr[µ(x)σ].

Note that

Φ[ρ] =
∑

x∈Ω
p(x)|x⟩⟨x|, Φ[σ] =

∑

x∈Ω
q(x)|x⟩⟨x|

107



are diagonal. By monotonicity,

D(ρ∥σ) ≥ D(Φ[ρ]∥Φ[σ]) = D(p∥q) ≥ 0,

where we used the fact that the output states Φ[ρ] and Φ[σ] are diagonal to reduce to
the classical nonegativity inequality. For the equality condition, note that if ρ = σ then
D(ρ∥σ) = 0. To prove the converse, we can use Exercise 7.4 which shows that, for any ρ, σ ∈
D(H), there exists a measurement whose output distributions p and q on the two states
satisfy ∥p− q∥1 = ∥ρ− σ∥1. In particular, if ρ ̸= σ then ∥p− q∥1 = ∥ρ− σ∥1 > 0, meaning
that p ̸= q. Since the classical relative entropy is a divergence, D(ρ∥σ) ≥ D(p∥q) > 0 by a
similar argument as above. Hence the quantum relative entropy is also a divergence.

• Joint convexity: Let Σ be a finite set, p ∈ P(Σ) a probability distribution, and (ρx)x∈Σ
and (σx)x∈Σ families of states in D(H).

D(
∑

x∈Σ
pxρx∥

∑

x∈Σ
pxσx) ≤

∑

x∈Σ
pxD(ρx∥σx). (9.6)

You will show this in Exercise 9.6.

• Just like in the classical case, D(ρ∥σ) is not symmetric, i.e., generally D(ρ∥σ) ̸= D(σ∥ρ).
Along the same lines as in the classical case, we can use the quantum relative entropy to quickly
derive some entropy inequalities we have seen earlier. Let ρ, σ ∈ D(Cd) where σ = I/d is the
maximally mixed state. You will show in Exercise 9.2 that

D(ρ∥σ) = log d−H(ρ), (9.7)

implying that H(ρ) ≤ log d, with equality iff ρ = I/d is maximally mixed. We know this
already from Lemma 7.2. Next, let ρAB be a bipartite state with marginals ρA = TrB ρAB and
ρB = TrA ρAB. You will show in Exercise 9.2 that

D(ρAB∥ρA ⊗ ρB) = I(A : B)ρAB , (9.8)

implying I(A : B)ρAB ≥ 0, with equality iff ρAB = ρA ⊗ ρB is a product state. Thus we recover
not only the subadditivity inequality but also characterize when equality holds. This proves a
claim made below Eq. (8.2) in Lecture 8.

We can also derive the monotonicity of the mutual information [Eq. (8.10)] from the mono-
tonicity of the relative entropy [Eq. (9.4)]. Namely, by choosing Φ = TrE , we obtain

I(A : BE)ρABE = D(ρABE∥ρA ⊗ ρBE) ≥ D(ρAB∥ρA ⊗ ρB) = I(A : B)ρAB .

As discussed last week, this inequality is in turn equivalent to strong subadditivity [Eq. (8.5)].
Finally, the Klein inequality [Eq. (9.5)] implies that entropy never decreases under basis

measurements:

Lemma 9.8. Let ρ ∈ D(H) and let M[X] =
∑

x∈Σ⟨x|X|x⟩ |x⟩⟨x| denote the measurement channel
for an arbitrary orthonormal basis |x⟩ of H. Then,

H(M[ρ]) ≥ H(ρ),

with equality if and only if M[ρ] = ρ.

Proof. By the Klein inequality, we have

0 ≤ D(ρ∥M[ρ]) = −H(ρ)− Tr ρ logM[ρ] = −H(ρ)− TrM[ρ] logM[ρ] = −H(ρ) +H(M[ρ]).

The second inequality holds as M[ρ] is diagonal in the basis |x⟩.
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9.4 Exercises

9.1 Relative entropy warmup:

(a) Compute the D(ρ∥σ) for ρ = 1
2 |0⟩⟨0|+ 1

2 |1⟩⟨1| and σ = 1
4 |+⟩⟨+|+ 3

4 |−⟩⟨−|.
(b) Show that if ρ and σ are both pure states then D(ρ∥σ) ∈ {0,∞}.

9.2 From relative entropy to entropy and mutual information: Prove Eqs. (9.7) and (9.8).
For Eq. (9.8) you may assume that ρAB, ρA, ρB are positive definite. Hint: Exercise 7.2.

9.3 Entropy and ensembles: The goal of this exercise is to prove Lemma 9.3. It is useful to
write χ({px, ρx}) ≤ H(p) as H

(∑
x pxρx

)
≤ H(p) +

∑
x pxH(ρx).

(a) First prove the lemma assuming each ρx is a pure state, i.e., ρx = |ψx⟩⟨ψx|.
Hint: Consider the pure state |ΦXB⟩ =

∑
x

√
px|x⟩ ⊗ |ψx⟩, and compare the entropy of

the X system before and after a standard basis measurement.
(b) Then use part (a) to prove the lemma for general ρx.

Hint: Consider an ensemble obtained from the eigendecompositions of all the ρx.

9.4 Holevo χ-quantity: Alice wants to communicate a classical message to Bob by sending a
quantum state. She chooses one state ρx ∈ D(H) for each possible message x ∈ Σ that she
may want to send, and Bob chooses a measurement µ : Σ → PSD(H) that he uses to decode.

(a) Write down a formula for the probability that Bob successfully decodes the message if
the message is drawn according to an arbitrary probability distribution p ∈ P(Σ).

In class, we used the Holevo bound to prove that if this probability is 100% then, necessarily,
the Holevo χ-quantity of the ensemble {px, ρx} must be equal to H(p).

(b) Show that this condition is also sufficient: If χ({px, ρx}) = H(p) then there exists a
measurement µ such that Bob decodes the message with 100% probability of success.

9.5 Entropy need not increase: Find a state ρ and a channel Φ such that H(Φ[ρ]) < H(ρ).

9.6 Applications of monotonicity: Show the following two statements by using the mono-
tonicity of the quantum relative entropy:

(a) Entropy increase: If Φ ∈ C(H,H′) is a unital channel then we have H(Φ[ρ]) ≥ H(ρ) for
any ρ ∈ D(H). Recall that a channel is unital if Φ[IH] = IH′ .

(b) Joint convexity: For any probability distribution (px)x∈Σ and families of states (ρx)x∈Σ
and (σx)x∈Σ in D(H), it holds that D(

∑
x∈Σ pxρx∥

∑
x∈Σ pxσx) ≤ ∑

x∈Σ pxD(ρx∥σx).
You may assume that the operators ρx and σx are positive definite.

Hint: In Exercise 7.2 you computed the logarithm of a cq-state.

9.7 Compressing ensembles: Consider an ensemble {px, ρx}x∈Σ of quantum states ρx ∈ D(HA).
We define an (n,R, δ)-ensemble code to be a pair of channels

E ∈ C
(
H⊗n
A , (C2)⊗⌊nR⌋) and D ∈ C

(
(C2)⊗⌊nR⌋,H⊗n

A

)

such that the following holds:
∑

xn∈Σn

px1 · · · pxn F
(
D
[
E [ρx1 ⊗ · · · ⊗ ρxn ]

]
, ρx1 ⊗ · · · ⊗ ρxn

)
≥ 1− δ. (9.9)
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We say that an ensemble can be compressed at rate R if there exists a sequence of (n,R, δn)-
ensemble codes, one for each n ∈ N, such that limn→∞ δn = 0. By Schumacher’s theorem
and the discussion in Section 7.3, we know that we can compress an ensemble at any
rate R > H(ρ), where ρ =

∑
x∈Σ pxρx. However, in some cases one can do better. In part (d),

you will prove that the ensemble’s Holevo quantity is an ultimate lower bound on the rate.

(a) Under what condition is χ({px, ρx}) equal to H(ρ)?
(b) Give an example of an ensemble {px, ρx} and of a corresponding (1, R, 0)-ensemble code

with R < H(ρ).

Now consider an arbitrary ensemble {px, ρx}, with cq state ρXA =
∑

x px|x⟩⟨x| ⊗ ρx.

(c) Show that if σXnAn = (IXn ⊗ (D ◦ E))[ρ⊗nXA] for an (n,R, δ)-ensemble code (E ,D) then

R ≥ 1

n
I(Xn : An)σ.

Hint: Use the data processing inequality and an upper bound on the mutual information.
(d) Show that it is impossible to compress an ensemble {px, ρx} at a rate smaller than

χ({px, ρx}). You may use without proof that, if ρAB and σAB are quantum states with
fidelity F (ρAB, σAB) ≥ 1− δ, then

|I(A : B)ρ − I(A : B)σ| ≤ 2
√
δ log(dim(HA) dim(HB)) + 3h(

√
δ),

where h is the binary Shannon entropy.
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Lecture 10

LOCC and separable channels

In Lecture 3 we discussed entanglement – a notion that applies to quantum systems with at
least two subsystems, A and B. Recall from Definition 3.1 that a state ρAB ∈ D(HA ⊗HB) is
entangled if it is not separable, and we call ρAB separable if

ρAB =
∑

i∈I
pi ρA,i ⊗ ρB,i

for some probability distribution (pi)i∈I and states ρA,i ∈ D(HA) and ρB,i ∈ D(HB). Entangle-
ment is a synonym for “quantum correlations” – the correlations between subsystems A and B
that do not have classical origin. In particular, entanglement cannot be created or increased by
the following operations:

• local operations, such as unitary operations, isometries, measurement or, more generally, a
quantum channel applied to one of the subsystems (e.g., ΦA→A′ or ΨB→B′);

• classical communication (exchanging classical messages between the two subsystems), which
can increase classical correlations but not quantum.

In contrast, global operations and quantum communication can create or increase entanglement.
We refer to the set of operations that include both Local Operations and Classical Communi-

cation as LOCC. LOCC plays a central role in quantum information theory. For example, we can
then think of entanglement as the resource that cannot be created (or increased) by LOCC. This
is a very useful perspective, in particular when it comes to comparing or measuring the amount
of entanglement in different states – if a state |ΨAB⟩ can be converted to some other state |Ψ′

AB⟩
by LOCC then we know that |ΨAB⟩ has at least as much entanglement as |Ψ′

AB⟩, since LOCC
could not increase the entanglement. For another example, note that the teleportation protocol
discussed in Section 3.3 is nothing but an LOCC operation.

Right now our discussion has been somewhat informal. We will now make it more precise.

10.1 Instruments and LOCC channels

Before we can formally define LOCC, let us first introduce the most general type of operation
that produces a classical outcome as well as a leftover quantum state (you can think of this as
smashing together the notions of a quantum channel and a measurement).

Definition 10.1 (Instrument). An instrument is a collection of completely positive maps
{ΦA→B,x}x∈Ω ⊆ CP(HA,HB) such that

∑
x∈ΩΦA→B,x ∈ C(HA,HB).
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What is the interpretation of an instrument? For this, let HX = CΩ, and consider the
channel ΦA→BX ∈ C(HA,HB ⊗HX) defined by

ΦA→BX [MA] :=
∑

x∈Ω
ΦA→B,x[MA]⊗ |x⟩⟨x|X (∀MA ∈ L(HA)) (10.1)

Note that for any state ρA, the channel output ρBX := ΦA→BX [ρA] is classical on X. Indeed,

ρBX =
∑

x∈Ω
px ρB,x ⊗ |x⟩⟨x|,

where

px = Tr[ΦA→B,x[ρA]] and ρB,x =
ΦA→B,x[ρA]

Tr[ΦA→B,x[ρA]]
.

In other words, ρBX is the classical-quantum (cq) state corresponding to the ensemble {px, ρB,x}.
It describes precisely the ensemble of post-measurement states obtained when performing a basis
measurement on X (Axioms 2.7 and 2.15). We can visualize the situation as follows:

{Φx}
ρA

ρB,x

x

Note that if we trace over the X system, we obtain

TrX ◦ΦA→BX =
∑

x∈Ω
ΦA→B,x,

which is an arbitrary quantum channel (by definition of an instrument!). On the other hand,
tracing over the B system gives

(TrB ◦ΦA→BX)[MA] =
∑

x∈Ω
Tr[ΦA→B,x[MA]] |x⟩⟨x| =

∑

x∈Ω
Tr[µA(x)MA] |x⟩⟨x| (∀MA ∈ L(HA)),

where we have introduced the measurement

µA : Ω → PSD(HA), µA(x) := Φ†
A→B,x[IB]. (10.2)

Thus, TrB ◦ΦA→B is precisely the measurement channel (4.29) corresponding to this measurement.
This makes it precise that an instrument combines the notions of a quantum channel and a
measurement.

It is clear that any combination of applying quantum channels and performing measurements
on subsystems can be described by an instrument. Moreover:

Lemma 10.2. Let HX = CΩ for some finite set Ω. If ΦA→BX ∈ C(HA,HB ⊗HX) is a channel
such that ΦA→BX [ρA] is classical on X for every state ρA ∈ D(HA), then it has the form (10.1)
for an instrument {ΦA→B,x}x∈Ω.

Thus, instruments are indeed the most general type of operation that produce a classical outcome
along with a quantum state. You can verify all claims above in Exercise 10.1.

We can now formally define the set of LOCC quantum channels that can be implemented
only by local operations and classical communication. The basic idea is the following: Suppose
Alice applies an instrument {ΦA→A′,x}x∈Ω and sends her classical measurement outcome x ∈ Ω
over to Bob. Bob then applies an arbitrary quantum channel ΨB→B′,x to his system depending
on the value of x. We can visualize this as follows:
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{Φx}
x

Ψx

A A′

B B′

Bob

Alice
or

{Φx}
x

Ψx

A

A′

B

B′

BobAlice

In the first picture time goes from left to right, as is usual in quantum circuits. In the second
picture it goes from top to bottom, which is often used in quantum communication protocols.
This is called a one-way LOCC channel from Alice to Bob, or a one-way right LOCC channel
(if we imagine Alice sitting to the left of Bob, as in the second figure). We can similarly define
one-way LOCC channels that go the other way around. A general LOCC channel is then a
composition of one-way LOCC channels of both types. We now define this formally:

Definition 10.3 (LOCC channels). A channel ΞAB→A′B′ ∈ C(HA ⊗HB,HA′ ⊗HB′) is called:

• one-way LOCC channel from Alice to Bob, or one-way right LOCC channel, if

ΞAB→A′B′ =
∑

x∈Ω
ΦA→A′,x ⊗ΨB→B′,x,

for an instrument {ΦA→A′,x}x∈Ω ⊆ CP(HA,HA′) and channels ΨB→B′,x ∈ C(HB,HB′).

• one-way LOCC channel from Bob to Alice, or one-way left LOCC channel, if it is of the
same form except that now {ΨB→B′,x}x∈Ω is an instrument and each ΦA→A′,x is a channel.

• LOCC channel if it is a composition of any number of one-way LOCC channels of either type.

We write LOCC(HA :HB,HA′ :HB′) ⊆ C(HA ⊗HB,HA′ ⊗HB′) for the set of LOCC channels
defined as above. We also abbreviate LOCC(HA :HB) := LOCC(HA :HB,HA :HB).

Just like for separable states, the colon “:” in the notation signifies how the systems are split
between the two parties. By definition, the set of LOCC channels is closed under composition.

Again it is instructive to observe that the teleportation protocol discussed in Section 3.3 is
nothing but one-way LOCC channel from Alice to Bob. In Exercise 10.4 you can explore another
example of an LOCC channel. In Exercise 10.5 you can show that the set of states that can be
created by LOCC (starting from any separable state, or from no state at all) are precisely the
separable states.

10.2 Separable channels and operators

Unfortunately, LOCC is very hard to deal with mathematically. Therefore we often relax it to a
somewhat larger class of operations known as separable operations or SepC:

Definition 10.4 (Separable maps and channels). A completely positive map ΞAB→A′B′ ∈
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CP(HA ⊗HB,HA′ ⊗HB′) is called separable if it is of the form

ΞAB→A′B′ =
∑

i∈I
ΦA→A′,i ⊗ΨB→B′,i,

where ΦA→A′,i ∈ CP(HA,HA′) and ΨB→B′,i ∈ CP(HB,HB′) for every i ∈ I.
We denote the set of separable completely positive maps by SepCP(HA :HB,HA′ :HB′), and

the set of separable channels by SepC(HA :HB,HA′ :HB′). Finally, we abbreviate SepCP(HA :
HB) = SepCP(HA :HB,HA :HB) and SepC(HA :HB) = SepC(HA :HB,HA :HB).

By definition, the sets of separable completely positive maps and separable channels are related
as follows:

SepC(HA,HB :HA′ ,HB′) = SepCP(HA,HB :HA′ ,HB′) ∩ C(HA ⊗HB,HA′ ⊗HB′).

Clearly, any one-way LOCC channel is separable. Since the separable channels are also closed
under composition, it follows that the LOCC channels are a subset of the separable channels.
This is stated in the following lemma (which you will prove in Exercise 10.2) and corollary:

Lemma 10.5 (Composition of separable maps). If Ξ ∈ SepCP(HA :HB,HA′ :HB′) and Γ ∈
SepCP(HA′ :HB′ ,HA′′ :HB′′), then Γ ◦ Ξ ∈ SepCP(HA :HB,HA′′ :HB′′). The same holds if we
replace SepCP by SepC.

Corollary 10.6 (LOCC in separable). LOCC(HA :HB,HA′ :HB′) ⊆ SepC(HA :HB,HA′ :HB′).

LOCC SepC C

We will now give two mathematical characterizations of separable maps. The first is in terms
of the Kraus representation, and you will it prove it in Exercise 10.3.

Lemma 10.7 (Kraus vs separable). Let Ξ ∈ CP(HA⊗HB,HA′⊗HB′). Then, Ξ is separable if and
only if it has a Kraus representation with Kraus operators of the form Y ⊗Z, where Y ∈ L(HA,HA′)
and Z ∈ L(HB,HB′).

The second characterization is in terms of the Choi operator. Namely, a completely positive
map is separable if and only if the corresponding Choi operator is separable. Since the Choi
operator need not be a state, we first generalize the definition of separability from states to
arbitrary PSD operators:

Definition 10.8 (Separable operator). Let HA and HB be two Hilbert spaces. Then an operator
MAB ∈ PSD(HA ⊗HB) is separable (between A and B) if

MAB =
∑

i∈I
PA,i ⊗QB,i (10.3)

for PA,i ∈ PSD(HA), QB,i ∈ PSD(HB). We denote the set of separable operators by Sep(HA :HB).
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It is easy to see that the separable states (Definition 3.1) are just the separable operators that
are states:

SepD(HA :HB) = Sep(HA :HB) ∩D(HA ⊗HB).

Then we have the following result:

Lemma 10.9 (Choi vs separable). Let Ξ ∈ CP(HA ⊗HB,HA′ ⊗HB′). Let

JΞ
ABA′B′ :=

∑

a,b,ã,b̃

|ab⟩⟨ãb̃| ⊗ Ξ[|ab⟩⟨ãb̃|] ∈ PSD(HA ⊗HB ⊗HA′ ⊗HB′)

denote its Choi operator, defined as in (5.1) with respect to a product basis {|a⟩⊗ |b⟩} of HA⊗HB.
Then, Ξ is separable if and only if JΞ

ABA′B′ is separable between AA′ and BB′.1

Proof. If Ξ is separable then by definition this means that we can write Ξ =
∑

iΦi ⊗ Ψi for
completely positive maps Φi and Ψi. Then,

JΞ
ABA′B′ =

∑

i

∑

a,b,ã,b̃

|ab⟩⟨ãb̃| ⊗ (Φi ⊗Ψi)[|ab⟩⟨ãb̃|]

=
∑

i

∑

a,b,ã,b̃

|a⟩⟨ã| ⊗ |b⟩⟨b̃| ⊗ (Φi ⊗Ψi)[|a⟩⟨ã| ⊗ |b⟩⟨b̃|]

= U †

(∑

i

JΦi
AA′ ⊗ JΨi

BB′

)
U,

where U is the unitary from the footnote. Since Φi and ΨI are completely positive, their Choi
states are PSD. Thus we recognize that JΞ

ABA′B′ is separable between AA′ and BB′.
Conversely, suppose that JΞ

ABA′B′ is separable between AA′ and BB′. This means that we
can write

JΞ
ABA′B′ =

∑

i

|vi⟩⟨vi|, where |vi⟩ = U † (|αi⟩AA′ ⊗ |βi⟩BB′)

for suitable vectors |αi⟩ ∈ HA ⊗ HA′ and |βi⟩ ∈ HB ⊗ HB′ that need not be normalized. We
claim that Ξ has a Kraus representation with Kraus operators of tensor product form, so that
Lemma 10.7 implies the claim. Indeed, recall from Eq. (5.9) in the proof of Theorem 5.3 that we
obtain a Kraus representation by defining the Kraus operators

Xi :=
∑

a,b,a′,b′

⟨a, b, a′, b′|vi⟩ |a′, b′⟩⟨a, b|

=
∑

a,b,a′,b′

⟨a, a′, b, b′|αi ⊗ βi⟩ |a′, b′⟩⟨a, b|

=


∑

a,a′

⟨a, a′|αi⟩ |a′⟩⟨a|


⊗


∑

b,b′

⟨b, b′|βi⟩ |b′⟩⟨b|


 .

This concludes the proof.
1This means that UJΞ

ABA′B′U† ∈ Sep(HA ⊗HA′ : HB ⊗HB′), where U ∈ U(HA ⊗HB ⊗HA′ ⊗HB′ ,HA ⊗
HA′ ⊗HB ⊗HB′) interchanges systems B and A′.
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10.3 Entanglement rank

Presumably some entangled states are more entangled than others, however we do not yet have
any way of measuring this. The following definition provides a first (albeit somewhat rough) way
to quantify the amount of entanglement of a general state. The idea essentially is to extend the
notion of Schmidt rank to mixed states.

Recall from Theorem 2.20 that the Schmidt rank of |ΨAB⟩ is the number of non-zero
coefficients in a Schmidt decomposition of |ΨAB⟩. For pure states, this is a meaningful measure
of entanglement since the separable pure states are precisely those with Schmidt rank 1. We can
extend this notion to mixed states and indeed to general PSD operator by decomposing a given
operator as a sum of (unnormalized) pure states with as small Schmidt rank as possible:

Definition 10.10 (Entanglement rank). For any integer r ≥ 1, we define Entr(HA :HB) as the
set of operators MAB ∈ PSD(HA ⊗HB) such that we can write

MAB =
∑

i∈I
|ΨAB,i⟩⟨ΨAB,i|,

where each |ΨAB,i⟩ ∈ HA ⊗HB is a vector of Schmidt rank at most r. The entanglement rank
of MAB is by definition the smallest integer r ≥ 1 such that MAB ∈ Entr(HA :HB).

Equivalently, Entr(HA : HB) is the convex cone generated by the pure states in D(HA ⊗HB).
For pure states, the entanglement rank coincides with the Schmidt rank since the decomposi-

tion consists only of a single term (if we combine all terms that are proportional to each other).
Note that larger entanglement rank corresponds to more entanglement since

Sep(HA :HB) = Ent1(HA :HB) ⊂ Ent2(HA :HB) ⊂ . . . ⊂ Entd(HA :HB) = PSD(HA ⊗HB),

where d = min(dimHA,dimHB). All inclusions are strict. Moreover, all these sets are convex
cones. Indeed, Entr is the convex cone spanned by the pure states of Schmidt rank at most r.

Entanglement rank is only a rough measure of entanglement, since it only takes on integer
values, r ∈ {1, . . . , n}. However, it is still meaningful. Indeed, the next theorem shows that
separable channels cannot increase the entanglement rank (in particular, they cannot create
entangled states out of separable ones).

Theorem 10.11 (Separable maps cannot increase entanglement rank). If Ξ ∈ SepCP(HA :
HB,HA′ :HB′) and M ∈ Entr(HA :HB), then Ξ[M ] ∈ Entr(HA′ :HB′).

Proof. Clearly we may assume that M = |ΨAB⟩⟨ΨAB|, where |ΨAB⟩ =
∑r

j=1 sj |ej⟩⊗ |fj⟩. Recall
from Lemma 10.7 that there exists Kraus representation with Kraus operators {Yi ⊗ Zi}. Then,

Ξ[M ] =
∑

i

(Yi ⊗ Zi)|ΨAB⟩⟨ΨAB|(Yi ⊗ Zi)
† =

∑

i

|ΨA′B′,i⟩⟨ΨA′B′,i|,

where

|ΨA′B′,i⟩ :=
r∑

j=1

sjYi|ej⟩ ⊗ Zi|fj⟩ ∈ HA′ ⊗HB′ .

While this need not be a Schmidt decomposition, the fact that there are at most r summands
implies at once that each |ΨA′B′,i⟩ has Schmidt rank at most r. Thus, Ξ[M ] has entanglement
rank at most r.
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As a special case of this theorem, we see that the set of separable operators is preserved by
separable maps:

Corollary 10.12 (Separable maps preserve separability). If Ξ ∈ SepCP(HA :HB,HA′ :HB′) and
M ∈ Sep(HA :HB), then Ξ[M ] ∈ Sep(HA′ :HB′).

In particular, LOCC channels cannot increase the entanglement rank and preserve separability.

10.4 Separable and LOCC measurements

It is often useful to consider measurements that are either separable or LOCC. Imagine that Alice
and Bob share a state ρAB,x selected from some set of states, and they want to determine which
state it is. However they cannot exchange any quantum information but can communication
only classically. This corresponds precisely to LOCC channels where at the end both Alice and
Bob are left with a classical result (namely, their guess x for what state they started with). In
this context, it is interesting to compare how well LOCC performs compared to the slightly
more general separable operations. Since quantum-to-classical channels are precisely given by
measurements, we can also use the language of measurements to study this problem:

Definition 10.13 (LOCC and separable measurements). Let µAB : Ω → PSD(HA ⊗ HB) be
a measurement. We say that µAB is an LOCC measurement if the corresponding quantum-to-
classical channel Φ ∈ C(HA ⊗HB,HX ⊗HY ) defined by

Φ[MAB] =
∑

z∈Ω
Tr
[
µAB(z)MAB

]
|z⟩⟨z|X ⊗ |z⟩⟨z|Y (∀MAB ∈ L(HA ⊗HB))

is in LOCC(HA :HB,HX :HY ). Here, HX = HY = CΩ. Similarly, we say µAB is a separable
measurement if Φ ∈ SepC(HA :HB,HX :HY ).

In other words, LOCC measurements are in one-to-one correspondence with the quantum-to-
classical LOCC channels where Alice’s output and Bob’s output are perfectly correlated (are the
same). The following figure illustrates the condition that µAB is LOCC:

A

X

B

Y

BobAlice

z ∈ Ω•

µAB
=

A

X

B

Y

BobAlice

LOCC

z z

In Exercises 10.6 and 10.9 you can design LOCC measurements that distinguish various (pure)
quantum states.

While it is again difficult to characterize LOCC measurements, there is a clean criterion for
verifying when a measurement is separable. You can prove this in Exercise 10.7.

Lemma 10.14. Let µAB : Ω → PSD(HA ⊗HB) be a measurement. Then, µAB is separable if
and only if µAB(z) is separable for all z ∈ Ω.
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Above it did not matter whether Alice, Bob, or both of them (like in the definition) end up
with the measurement outcome, since we can always by LOCC communicate the measurement
outcome from one party to the other. We can also define one-way LOCC measurements. Here one
party first performs a measurement, sends the outcome to the second party, who then adaptively
performs another measurement that depends on the received value. The result of such a one-way
LOCC measurement is by definition the outcome of this second measurement. We now define
this formally:

Definition 10.15 (One-way LOCC measurements). A measurement µAB : Ω → PSD(HA ⊗HB)
is called a one-way LOCC measurement from Alice to Bob, or one-way right LOCC measurement,
if it is of the form

µAB(y) =
∑

x∈Γ
νA(x)⊗ πB,x(y)

where Γ is some arbitrary finite set, νA : Γ → PSD(HA) a measurement, and πB,x : Ω → PSD(HB)
is a measurement for every x ∈ Γ.

Similarly, µAB is called a one-way LOCC measurement from Bob to Alice, or one-way left
LOCC measurement, if it is of the form

µAB(x) =
∑

y∈Γ
νA,y(x)⊗ πB(y)

where Γ is again some arbitrary finite set, but now πB : Γ → PSD(HB) is a single measurement,
and νA,y : Ω → PSD(HA) is a measurement for every y ∈ Γ.

We can visualize the two types of one-way LOCC measurements as follows:

νA

x ∈ Γ

A B

y ∈ Ω

BobAlice

πB,x

and

πB

y ∈ Γ

A B

x ∈ Ω

BobAlice

νA,y

Remark 10.16. We can also define one-way LOCC measurements as in Definition 10.13. For
example, a measurement µAB : Ω → PSD(HA ⊗HB) is one-way right LOCC if and only if the
channel

ΦAB→XY [MAB] =
∑

z∈Ω
Tr[µAB(z)MAB] |0⟩⟨0|X ⊗ |z⟩⟨z|Y (∀MAB ∈ L(HA ⊗HB))

is one-way right LOCC, where HX = C and HY = CΩ. Note that unlike in Definition 10.13, only
one side (the “receiver”) ends up with the measurement result. This is very natural in view of the
asymmetric nature of one-way LOCC. Equivalently, one-way LOCC measurements correspond
to quantum-to-classical one-way LOCC channels where the ‘sender’ only has a one-dimensional
output system (equivalently, no output at all). Can you see why the above claims are true?
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While one-way LOCC measurements may seem rather limited, they can perfectly discriminate
any two orthogonal pure bipartite states, even if the states are entangled:

Theorem 10.17 (Perfect one-way LOCC measurement for discriminating orthogonal pure states).
For any pair of orthogonal pure states ρAB,x = |ΨAB,x⟩⟨ΨAB,x| (i.e., ⟨ΨAB,0|ΨAB,1⟩ = 0), there is
a one-way LOCC measurement µAB : {0, 1} → PSD(HA ⊗HB) such that Tr[µAB(x)ρAB,y] = δx,y.

This theorem has a nice proof that is not too complicated, but we will not prove it the class. It
is quite surprising, since it shows that LOCC measurements are as good as global measurements
for the task of discriminating pairs of orthogonal pure states.

Consider the following four (!) orthonormal product states:

|ΨAB,1⟩ = |0⟩ ⊗ |0⟩, |ΨAB,2⟩ = |0⟩ ⊗ |1⟩, |ΨAB,3⟩ = |1⟩ ⊗ |+⟩, |ΨAB,4⟩ = |1⟩ ⊗ |−⟩

where |±⟩ = (|0⟩ ± |1⟩)/
√
2. They are visualized by the left-hand tiles in the following picture:

Alice
0 1

Bob
0

1
±

SepC

LOCC

B-to-A
one-way
LOCC

Alice
0 1 2

Bob

0

1

2

±

±

±

±

In Exercise 10.9 you will show that these four states can be perfectly discriminated by a separable
measurement or a one-way LOCC measurement from Alice to Bob, but not by a one-way LOCC
measurement from Bob to Alice. Hence, as illustrated in the above diagram, the corresponding
measurement is in LOCC but not in one-way LOCC from Bob to Alice. Using the same idea,
one can come up with a slightly more complicated set of orthogonal product states in C3 ⊗ C3

that cannot be perfectly discriminated by LOCC, even with two-way communication. However,
the states can still be distinguished by a separable measurement. This shows that separable
measurements are strictly more powerful than LOCC.

10.5 Exercises

10.1 Instruments:

(a) Verify that Eq. (10.1) defines a quantum channel.
(b) Verify that Eq. (10.2) defines a measurement.
(c) Prove Lemma 10.2.

10.2 Composition of separable maps: Prove Lemma 10.5.

10.3 Kraus representation of separable maps: Prove Lemma 10.7.

10.4 LOCC: Show that the following process can be implemented by an LOCC channel. Alice
starts with a quantum system A and Bob with a quantum system B. Let (x, y) be drawn from
an arbitrary probability distribution p ∈ P(ΣX ×ΣY ). Then Alice applies a channel ΦA→A′,x

on her system and Bob applies a channel ΨB→B′,y on his system.
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10.5 LOCC vs separable: Suppose Alice and Bob start out with an arbitrary separable state.2

Show that the states they can create by LOCC are precisely the separable states.

10.6 Discriminating Bell states by LOCC: Recall the four Bell states from Eq. (3.4). Assume
that Alice holds the first qubit of a Bell state and Bob holds the second qubit.

(a) Find an LOCC protocol that can perfectly discriminate between |Φ(00)⟩ and |Φ(10)⟩.
(b) Find an LOCC protocol that can perfectly discriminate between |Φ(00)⟩ and |Φ(01)⟩.

10.7 Separable measurements: Prove Lemma 10.14.

10.8 Separable measurements: Let {|ΨAB,i⟩} be an arbitrary orthonormal basis of HA ⊗HB.
Show that the basis vectors can be perfectly distinguished by a separable measurement if
and only if the basis consists of product states.

10.9 One-way LOCC struggle: Suppose Alice the first qubit and Bob holds the second qubit
of a two-qubit system initialized in one of the following four states:

|ΨAB,1⟩ = |0⟩ ⊗ |0⟩,
|ΨAB,2⟩ = |0⟩ ⊗ |1⟩,
|ΨAB,3⟩ = |1⟩ ⊗ |+⟩,
|ΨAB,4⟩ = |1⟩ ⊗ |−⟩.

(a) Find a separable measurement that perfectly distinguishes the above four states.
(b) Find a one-way LOCC measurement from Alice to Bob that perfectly distinguishes the

above four states.
(c) Show that there is no one-way LOCC measurement from Bob to Alice that can perfectly

determine which of the four states they share.

10.10 Operations on PPT states: Suppose ρAB is an arbitrary state with positive semidefinite
partial transpose (Exercise 3.7).

(a) Show that if ΞAB→A′B′ is a separable channel then the partial transpose of the state
ωA′B′ := ΞAB→A′B′ [ρAB] is again positive semidefinite.

(b) Show that it is not possible to transform ρAB into a maximally entangled state by LOCC.

10.11 Entanglement-breaking channels: Recall that the completely dephasing channel ∆ ∈
C(HB) for HB = CΣ is defined as

∆(Y ) =
∑

a∈Σ
⟨a|Y |a⟩ · |a⟩⟨a| ∀Y ∈ L(HB).

We say that a channel Ψ ∈ C(HB,HC) is classical-to-quantum if Ψ = Ψ ◦∆.

(a) Show that any classical-to-quantum channel Ψ ∈ C(HB,HC) is of the form

Ψ(Y ) =
∑

a∈Σ
⟨a|Y |a⟩ · σa,

for some states σa ∈ D(HC).
2For example, they could start out with no quantum systems at all. This would be modeled by the trivial

Hilbert spaces HA = C and HB = C, and the (unique) state ρAB ∈ D(HA ⊗HB) = D(C ⊗ C) = D(C) = {I},
where I denotes the identity operator on C.
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Similarly, we say that a channel Φ ∈ C(HA,HB) is quantum-to-classical if Φ = ∆ ◦ Φ.

(b) Show that any quantum-to-classical channel Φ ∈ C(HA,HB) is of the form

Φ(X) =
∑

a∈Σ
Tr
(
µ(a)X

)
· |a⟩⟨a|,

for some measurement µ : Σ → PSD(HA).
Hint: Consider a Kraus representation of Φ.

Finally, we say that a channel Θ ∈ C(HA,HC) is entanglement-breaking if, for every register R
and state ρRA ∈ D(R⊗HA), the state (IR ⊗ Θ)(ρRA) ∈ D(R⊗HC) is separable. Recall
that an operator MXY ∈ PSD(HX ⊗HY ) is separable if

MXY =
∑

i

PX,i ⊗QY,i (10.4)

for some PX,i ∈ PSD(HX), QY,i ∈ PSD(HY ).

(c) Show that the completely dephasing channel ∆ ∈ C(HB) is entanglement-breaking.
Conclude that any quantum-to-classical channel Φ ∈ C(HA,HB) and any classical-to-
quantum channel Ψ ∈ C(HB,HC) is also entanglement-breaking.

(d) Show that the Choi matrix of any entanglement-breaking channel Θ ∈ C(HA,HC) is a
separable operator.

(e) Using part (d), show that any entanglement-breaking channel Θ ∈ C(HA,HC) has a
Kraus representation such that all Kraus operators have rank 1.

(f) Using part (e), show that any entanglement-breaking channel Θ ∈ C(HA,HC) can be
written as Θ = Ψ ◦ Φ, where Φ ∈ C(HA,HB) is quantum-to-classical, Ψ ∈ C(HB,HC)
classical-to-quantum, and B a suitable register.
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Lecture 11

Majorization and Nielsen’s theorem

Last week we looked at LOCC and separable channels as well as measurements. While separable
maps are easier to define and work with mathematically, LOCC is more important from physical
and operational perspective. Recall that LOCC is a subset of separable maps.

In this class, we will look at a different problem. Instead of trying to discriminate states
by an LOCC measurement, we will try to perfectly convert one state into another. You can
think of the discrimination problem as a special case of this, since a measurement effectively
converts given states to different standard basis states. The general problem of converting one
arbitrary set of states to another by LOCC is complicated, so we will only consider the case
of converting a single pure state to another pure state. The answer to this problem is known,
nontrivial, and closely tied with the notion of majorization. Thus we first need to learn the basics
of majorization.

11.1 Wealth inequality and majorization

The concept of majorization is most intuitive in the context it was first introduced, namely as a
way to measure wealth inequality. It is convenient to describe the distribution of wealth by a
probability distribution p where p(i) is the fraction of wealth owned by person i ∈ {1, . . . , n}.
Alternatively, you can think of the total wealth as being normalized to 1 and p(i) simply denoting
the wealth of person i. You can depict the distribution p as follows:

Fraction
of wealth

Person

0

1

1 ni

p(i)

p(i) ≥ 0
n∑

i=1

p(i) = 1

Given two probability distributions p and q, how can we tell which one corresponds to a
“more equal” distribution of wealth? Clearly, p = (1, 0, . . . , 0) is the least equal distribution of
wealth and q = ( 1n ,

1
n , . . . ,

1
n) is the most equal. How about the rest and how can we compare

two distributions?
One way to compare wealth distributions is by considering the fraction of wealth owned by the

richest. More specifically, let us plot the cumulative wealth of the richest fraction of the population.
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For this, we need to sort the probability distribution p so that p(1) ≥ p(2) ≥ · · · ≥ p(n), and let
fp(k) =

∑k
i=1 p(i) be the total wealth of the k richest people. We can try to compare different

wealth distributions p by plotting the corresponding cumulative wealth function fp:

0

1

0 1

Fraction
of wealth

Richest fraction
of population

equal

somewhat
equal

quite unequalcompletely unequal

If fq lies completely below fp then the distribution q is “more equal” (has less “wealth inequality”)
than p. We will denote this by q ≺ p. In the following we define the relation “≺” precisely and
for arbitrary real vectors, not just for probability distributions.

Definition 11.1 (Majorization). Let x, y ∈ Rn. Then we write x ≺ y if and only if

k∑

i=1

x↓i ≤
k∑

i=1

y↓i (∀k ∈ {1, . . . , n− 1}) and
n∑

i=1

xi =
n∑

i=1

yi.

Here x↓ ∈ Rn denotes the vector with the same entries as x ∈ Rn, but sorted nonincreasingly, i.e.,
x↓1 ≥ · · · ≥ x↓n. We say that y majorizes x or that x is majorized by y.

As mentioned above, x ≺ y intuitively means that x is “more equal” (has less “wealth inequality”)
than y, meaning that if we plot the cumulative distributions in a graph as above then the
cumulative distribution fx lies completely below fy.

Note that majorization does not depend on the order of the vectors’ entries (so it is really
a property of two multisets of numbers). When restricted to probability distributions, we do
not need to check the last condition since the entries automatically sum to one. Note that in
general neither x ≺ y nor y ≺ x (Exercise 11.1). In terms of the picture above, this means that
two cumulative wealth functions can intersect. You will derive other equivalent conditions for
majorization in Exercise 11.2.

One obvious way to increase equality is to take from the rich and give to the poor. Let us
call this a Robin Hood move. Mathematically, it is described by the following 2× 2 matrix, which
should be applied to the corresponding two entries of the distribution:

Aλ = λI + (1− λ)X =

(
λ 1− λ

1− λ λ

)
,

for some λ ∈ [0, 1]. If λ ∈ (0, 1), applying this to the wealth of two individuals always has the
effect of decreasing the gap between their wealth because the new values are convex combinations
of the old ones1:

1When λ > 1/2, the roles of the two individuals in terms of their richness are swapped.
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p

7→

q = Aλp

Since each Robin Hood move has the effect of pushing one point of the corresponding cumulative
curve downwards, any sequence of Robin Hood moves on a wealth distribution makes the
distribution more equal. Note that the overall transformation implemented by such a sequence
amounts to a convex combination of permutations and hence belongs to a class of transformations
known as “doubly stochastic” matrices. We define these next.

Definition 11.2 (Doubly stochastic matrices). Let A ∈ Rn×n. We say that A is stochastic if
its columns are probability distributions. It is called doubly stochastic if both A and AT are
stochastic, that is, if its rows as well as columns are probability distributions. In other words, A
is doubly stochastic if its entries are nonnegative and all row and column sums are equal to one:

• Aij ≥ 0 for all i, j ∈ {1, . . . , n},
•
∑n

j=1Aij = 1 for all i ∈ {1, . . . , n},
•
∑n

i=1Aij = 1 for all j ∈ {1, . . . , n}.

We already know stochastic matrices under the name classical channel. Indeed, we saw in
Section 4.3 that they are the most general linear transformations that map probability distributions
to probability distributions.

How about the doubly stochastic matrices? To get some intuition, note that permutation
matrices are doubly stochastic matrices:

Definition 11.3 (Permutation matrices). For any permutation π ∈ Sn, the permutation matrix Pπ
is defined as the matrix with entries (Pπ)i,j = δi,π(j) for all i, j. That is, Pπ =

∑n
j=1|π(j)⟩⟨j|.

It is easy to see that the permutation matrices are the doubly stochastic matrices with all entries
in {0, 1}. One can also show that they are the stochastic matrices that have a stochastic inverse,
i.e., the classical channels that have an inverse channel.

Another example are the Robin Hood matrices, which we now define formally.

Definition 11.4 (Robin Hood matrices). A Robin Hood matrix is a matrix of the form

λI + (1− λ)Pτ ,

where λ ∈ [0, 1] and τ is a transposition, i.e., a permutation that fixes all but two elements.

The product of two permutation matrices is another permutation matrix. Moreover, they are
closed under taking inverses. Doubly stochastic matrices are in general not invertible, e.g., note
that 1

2

(
1 1
1 1

)
is doubly stochastic (in fact, a Robin Hood matrix) but not invertible. However,

they are still closed under composition:

Lemma 11.5. If A,B are doubly stochastic n× n matrices, then so is AB.

Proof. The entries of AB are clearly nonnegative. Thus it suffices to verify its row and column
sums: Indeed, for all i ∈ {1, . . . , n} we can compute the corresponding row sum as

n∑

j=1

(AB)ij =

n∑

j=1

n∑

k=1

AikBkj =

n∑

k=1

Aik

n∑

j=1

Bkj =

n∑

k=1

Aik = 1.
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A similar calculation shows that the column sums are all equal to one.

It is true that any doubly stochastic matrix can be written as a finite product of Robin Hood
matrices, but we will not need this here.

The set of doubly stochastic matrices is compact and convex. In fact, the set of n× n doubly
stochastic matrices is convex polytope, since it is defined by a finite number of linear equations
and inequalities. Equivalently, it is the convex hull of finitely many extreme points, called the
vertices of the polytope. These vertices are precisely the permutation matrices, as we show in
the proof of the following theorem.

Theorem 11.6 (Birkhoff–von Neumann). A matrix A ∈ Rn×n is doubly stochastic if and only if
there exists a probability distribution (qπ)π∈Sn on the set of permutations Sn such that

A =
∑

π∈Sn

qπPπ. (11.1)

Proof. Let DSn denote the set of doubly stochastic n × n matrices. Since DSn is convex and
contains the permutation matrices, any matrix of the form (11.1) is contained in it.

To show that, conversely, any element in DSn can be written in this form, it suffices to
argue that the vertices of DSn are the permutation matrices. For this we use some basic convex
geometry. We start by noting that the space of matrices A ∈ Rn×n has dimension n2. If we add
the constraints that all row and column sums are equal to one, then A is restricted to an affine
subspace of dimensions at least n2 − (2n− 1) = (n− 1)2, since there is at least one redundancy
in these constraints (since

∑
i

∑
j Aij =

∑
j

∑
iAij). Thus if A ∈ Rn×n is a vertex of DSn then

at least (n− 1)2 of the inequalities Aij ≥ 0 have to hold with equality. That is, the matrix A
has at least (n − 1)2 zero entries. Since (n − 1)2 > n(n − 2), it follows that there must exist
some i∗ such that the i∗-th row contains n− 1 zero entries. Since the row sums are equal to one,
it follows that there exists j∗ such that Ai∗j∗ = 1. Now let A′ denote the matrix obtained by
deleting the i∗-th row and the j∗-th column. It is not hard to verify that A′ ∈ DSn−1 and indeed
an extreme point. By induction we find that A′ and hence A is a permutation matrix.

We now show that majorization is intimately connected to doubly stochasticity. Not only is
the output of a doubly stochastic matrix majorized by the input, but the converse is also true:

Theorem 11.7 (Hardy-Littlewood-Pólya). Let x, y ∈ Rn. Then, x ≺ y if and only if there exists
a doubly stochastic matrix A such that x = Ay. Moreover, A can be taken to be a product of
Robin Hood matrices.

Proof. For either direction we may without loss of generality assume that x1 ≥ x2 ≥ · · · ≥ xn
and y1 ≥ y2 ≥ · · · ≥ yn. (Can you see why this is true?)

First suppose that x = Ay for a doubly stochastic matrix A. Then, we have, for any k ∈
{1, . . . , n− 1}, that

k∑

i=1

xi =

k∑

i=1

n∑

j=1

Aijyj =

n∑

j=1

pjyj ,

where we defined pj :=
∑k

i=1Aij . Note that pj ∈ [0, 1] and
∑n

j=1 pj =
∑k

i=1

∑n
j=1Aij = k,

since A is doubly stochastic. Thus,

k∑

j=1

yj −
k∑

i=1

xi =
k∑

j=1

yj −
n∑

j=1

pjyj − yk


k −

n∑

j=1

pj
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=
k∑

j=1

(yj − yk)−
n∑

j=1

pj(yj − yk)

=
k∑

j=1

(yj − yk︸ ︷︷ ︸
≥0

)(1− pj︸ ︷︷ ︸
≥0

) +
n∑

j=k+1

pj︸︷︷︸
≥0

(yk − yj︸ ︷︷ ︸
≥0

) ≥ 0.

Since also
∑n

i=1 xi =
∑n

i,j=1Aijyj =
∑n

j=1 yj we conclude that x ≺ y.
Now suppose that x ≺ y and x ̸= y (since otherwise we are done). We would like to construct

a doubly stochastic matrix A such that x = Ay. Suppose that x and y differ in δ > 0 entries.
We claim that there exists a Robin Hood matrix A such that x and z := Ay differ in less than δ
entries and, moreover, x ≺ z. Then the result will follow by induction and Lemma 11.5. To prove
the claim, let a be the largest index such that xa < ya, and let b be the smallest index larger
than a such that xb > yb (such an index always exists, since x ≺ y implies that xb > yb for the
largest index b such that xb ̸= yb). Thus we have:

ya > xa ≥ xb > yb.

We now apply the Robin Hood matrix

A = λI + (1− λ)Pτ ,

where τ = (a b) is the transposition that exchanges a and b, λ := 1− ε
ya−yb , and ε := min(ya −

xa, xb − yb). Clearly, ε > 0 and λ ∈ (0, 1). Then, z := Ay has the same components as y except
for the a-th and the b-th entry, where we have

za = (Ay)a = λya + (1− λ)yb = ya + (1− λ)(yb − ya) = ya − ε

and hence

zb = yb + ε.

Note that the definition of ε implies that either za = xa or zb = xb. Thus, z differs from x in
fewer entries than y. We still need to verify that x ≺ z. Note that z is still sorted nonincreasingly.
Thus it suffices to prove that

k∑

i=1

xi ≤
k∑

i=1

zi (11.2)

for all k ∈ {1, . . . , n} (we clearly have equality for k = n). For k < a, Eq. (11.2) follows from
x ≺ y since zi = yi for i < a. Using za = ya− ε ≥ xa, Eq. (11.2) also holds for k = a. Our choice
of a and b ensures that xk = yk for all k ∈ {a+ 1, . . . , b− 1}, hence Eq. (11.2) also follows for
those k. Finally, for k ∈ {b, . . . , n}, using ya + yb = za + zb we see that

∑k
i=1 yi =

∑k
i=1 zk, so

Eq. (11.2) again follows from x ≺ y. This concludes the proof of the claim, and hence of the
theorem.

Remark 11.8 (Robin Hood). The proof shows that the doubly stochastic matrix A in the statement
of Theorem 11.7 can be taken to be a product of Robin Hood matrices. You might be concerned
that we assumed in the proof that the vectors were sorted, but this is not a problem. Indeed,
sorting vectors amounts to applying permutation matrices, but any permutation can be written
as a product of transpositions, and transpositions correspond to special Robin Hood matrices.
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Example 11.9 (Extreme distributions). Let u = ( 1n ,
1
n , . . . ,

1
n) denote the uniform distribution

and d denote a deterministic distribution on n elements, e.g., d = (1, 0, . . . , 0). Intuitively, they
correspond to a maximally equal and maximally unequal way to distribute wealth, respectively.
One can easily check that for any probability distribution p on n elements,

u ≺ p ≺ d.

Thus Theorem 11.7 shows that one can always perform the conversions

u 7→p 7→d

by applying doubly stochastic matrices (or a sequences of Robin Hood matrices, see Remark 11.8).

Majorization is also tightly related to convexity:

Lemma 11.10. Let p, q be probability distributions. Then, p ≺ q if and only if
∑n

i=1 f(pi) ≤∑n
i=1 f(qi) for all convex functions f : [0, 1] → R.

Proof. The “if” follows from part (c) of Exercise 11.2, since the function ft(x) := max(x− t, 0)
is convex for any t ∈ R. For the “only if”, note that p ≺ q means that there exists a doubly
stochastic matrix A such that p = Aq by Theorem 11.7. Thus:

n∑

i=1

f(pi) =
n∑

i=1

f
( n∑

j=1

Aijqj

)
≤

n∑

i=1

n∑

j=1

Aijf(qj) =
n∑

j=1

n∑

i=1

Aijf(qj) =
n∑

j=1

f(qj),

where we first used that the columns of A are probability distributions and then that the row
sums are equal to one.

As an application we have the following corollary, which is very intuitive in view of Example 11.9.

Corollary 11.11. If p, q are probability distributions with p ≺ q, then H(p) ≥ H(q).

Proof. The function f : [0, 1] → R defined by f(t) = t log t is convex and H(p) = −∑n
i=1 f(pi).

Thus the claim follows from Lemma 11.10.

You can practice majorization in Exercise 11.3.

11.2 Majorization for Hermitian operators

Any Hermitian operator can be unitarily diagonalized with real eigenvalues (Theorem 1.3). Thus
one might wonder whether the theory of majorization has a “quantum” extension that deals with
Hermitian operators instead of real vectors.

We first define majorization and then prove an analogue of Theorem 11.7. Let us denote
by λ(A) the vector of eigenvalues of a given operator A, repeated according to their multiplicity.
We will not commit to any particular order of the eigenvalues (you can choose your favorite one
for definiteness) but instead write λ↓(A) or λ↑(A) if a particular one is important.

Definition 11.12 (Majorization for Hermitian operators). Let A,B be Hermitian operators
on some Hilbert space H. Then we write A ≺ B if and only if λ(A) ≺ λ(B). We say that B
majorizes A or that A is majorized by B.
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Note that for diagonal matrices A, λ(A) consists simply of the diagonal entries of A. Hence,
majorization for diagonal operators reduces to majorization for vectors, thus recovering the
classical notion.

What operations will play the role of permutations? Clearly we should generalize stochastic
matrices (classical channels) to quantum channels. Among all stochastic matrices, permutations
stand out as precisely those that are invertible and whose inverse is also stochastic, as discussed
before. In the quantum case, unitary channels Φ[M ] = UMU † are the channels that are invertible
and whose inverse is also a channel. Since the doubly stochastic matrices are the convex hull of
the permutation matrices (Theorem 11.6), this motivates the following definition:

Definition 11.13 (Mixed-unitary channel). A channel Φ ∈ C(H) is called mixed-unitary if

Φ[M ] =
∑

x∈Ω
qx UxMU †

x,

for some finite set Ω, a probability distribution (qx)x∈Ω, and unitaries Ux ∈ U(H) for x ∈ Ω.

Equivalently, a channel is mixed-unitary if and only if it is in the convex hull of the unitary
channels. Then the following theorem by Uhlmann (not to be confused with the more famous
Uhlmann’s Theorem 4.13) provides a quantum version of Theorem 11.7:

Theorem 11.14 (Uhlmann). Let A,B be Hermitian operators on a Hilbert space H. Then,
A ≺ B if and only if there exists a mixed unitary channel Φ ∈ C(H) such that A = Φ[B].

You will prove it in Exercise 11.5.

Example 11.15 (Extreme states). Let H be a Hilbert space of dimension n. Let τ = I/n be the
maximally mixed state and let |ψ⟩⟨ψ| be an arbitrary pure state on H. Then it follows directly
from Example 11.9 that for any state ρ ∈ D(H),

τ =
I

n
≺ ρ ≺ |ψ⟩⟨ψ|.

Accordingly, one can always perform the conversion

τ =
I

n
7→ρ 7→|ψ⟩⟨ψ|

by applying mixed-unitary channels.

We also record the following easy but useful consequence:

Lemma 11.16. Let ρ, σ be quantum states. Then, ρ ≺ σ if and only if Tr f(ρ) ≤ Tr f(σ) for all
convex functions f : [0, 1] → R, where f(ρ) and f(σ) are defined as in Definition 1.6.

Proof. Clearly, f(ρ) =
∑n

i=1 f(λi(ρ)) and likewise f(σ) =
∑n

i=1 f(λi(σ)) where n := dimH.
Thus the claim follows from Lemma 11.10.

Corollary 11.17. If ρ, σ are quantum states with ρ ≺ σ, then H(ρ) ≥ H(σ).
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11.3 LOCC and Nielsen’s theorem

As discussed before, majorization determines when we can convert density operators by mixed-
unitary channels. We now discuss a second quantum interpretation: majorization determines
precisely when one bipartite pure state can be converted into another by LOCC. This is the
content of and made more precise in the following theorem:

Theorem 11.18 (Nielsen). Let ρAB, σAB be two pure states on HA ⊗HB. Then the following
are equivalent:

(a) ρA ≺ σA.

(a’) ρB ≺ σB.

(b) There exists a one-way LOCC channel Ξ from Alice to Bob such that Ξ[ρAB] = σAB.

(b’) There exists a one-way LOCC channel Ξ from Bob to Alice such that Ξ[ρAB] = σAB.

(c) There exists an LOCC channel Ξ ∈ LOCC(HA :HB) such that Ξ[ρAB] = σAB.

(d) There exists a separable channel Ξ ∈ SepC(HA :HB) such that Ξ[ρAB] = σAB.

Before proving the theorem, we note that, unlike in Theorems 11.7 and 11.14 the direction of
majorization is opposite to the direction in which the processing occurs: when ρA ≺ σA we are
able to transform ρAB 7→ σAB! This is in fact intuitive as the following example shows.

Example 11.19 (Product and maximally entangled states). Consider a bipartite system HA⊗HB ,
where HA = HB = Cn. Let |Φ+

AB⟩ be a maximally entangled state and |α⟩⊗|β⟩ be a pure product
state. Then, we see from Example 11.15 that for any pure state |ΩAB⟩, we can convert

|Φ+
AB⟩⟨Φ+

AB| 7→ |ΩAB⟩⟨ΩAB| 7→ |α⟩⟨α| ⊗ |β⟩⟨β|.

In other words, a maximally entangled state can be converted to any bipartite state, and any
bipartite state can be converted to a product state (the second claim is straightforward since Alice
and Bob can simply discard their state and prepare their halves of the product state locally).

Proof of Theorem 11.18. It suffices to prove (a)⇒(b) and (d)⇒(a). Indeed, (b)⇒(c) holds by
definition and (c)⇒(d) by Corollary 10.6, so we obtain that (a) to (d) are all equivalent. To
obtain the equivalence to the primed statements, simply interchange the roles of systems A
and B.

We first prove (a)⇒(b). The idea of the proof is to turn the mixed-unitary channel from
Theorem 11.14, which we get thanks to the majorization condition, into a one-way LOCC channel.
Recall from Definition 10.3 that a one-way LOCC channel from Alice to Bob has the form

Ξ =
∑

x∈Ω
ΦA,x ⊗ΨB,x,

for an instrument {ΦA,x}x∈Ω ⊆ CP(HA) (see Definition 10.1) and channels ΨB,x ∈ C(HB).
By Theorem 11.14, there is a probability distribution (qx)x∈Ω and unitaries UA,x for x ∈ Ω

such that
∑

x∈Ω
qx UA,xσAU

†
A,x = ρA. (11.3)
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We can use this data to define the instrument {ΦA,x}x∈Ω. For each x ∈ Ω, define a completely
positive map ΦA,x ∈ CP(HA) by ΦA,x[M ] := YA,xMY †

A,x for M ∈ L(HA), where

YA,x :=
√
qx
√
σAU

†
A,x

√
ρA

−1. (11.4)

Here we assumed for simplicity that ρA is invertible.2 We claim that {ΦA,x}x∈Ω is an instrument.
Since each ΦA,x is completely positive we only need to verify that

∑
x∈Ω ΦA,x is trace-preserving

(and hence a channel). Indeed, using Eq. (11.3) we find that, for all M ∈ L(HA),

Tr

(∑

x∈Ω
ΦA,x[M ]

)
= Tr

(∑

x

Y †
A,xYA,xM

)
= Tr

(
√
ρA

−1

(∑

x

qxUA,xσAU
†
A,x

)√
ρA

−1M

)
= TrM.

Now suppose that Alice applies this instrument to her part of the state ρAB and obtains some
outcome x ∈ Ω. Then the state is transformed into

ω̃AB,x := (ΦA,x ⊗ IB) [ρAB] = qx

(√
σAU

†
A,x

√
ρA

−1 ⊗ IB

)
ρAB

(√
ρA

−1UA,x
√
σA ⊗ IB

)
,

which is again a pure state (up to normalization). Moreover,

ω̃A,x = TrB[ω̃AB,x] = qx

(√
σAU

†
A,x

√
ρA

−1
)
ρA

(√
ρA

−1UA,x
√
σA

)
= qxσA.

Thus, for any outcome x ∈ Ω, the resulting state is a pure state whose reduced density matrix is
exactly the desired one. By Lemma 2.18, there must exist a unitary VB,x ∈ U(HB) such that

(IA ⊗ VB,x)ω̃AB,x(IA ⊗ V †
B,x) = qxσAB.

Thus, if we define unitary channels ΨB,x ∈ C(HB) by ΨB,x[M ] := VB,xMV †
B,x for M ∈ L(HB),

then Ξ :=
∑

x∈ΩΦA,x ⊗ΨB,x is a one-way LOCC channel from Alice to Bob and satisfies

Ξ[ρAB] =
∑

x∈Ω
(IA ⊗ΨB,x)[ω̃AB,x] =

∑

x∈Ω
qxσAB = σAB.

This concludes the proof that (a)⇒(b).
Next we show (d)⇒(a). The main idea is to relate the majorization inequalities to the

variational characterization of eigenvalues. Let Ξ ∈ SepC(HA : HB) be a separable channel
such that Ξ[ρAB] = σAB. We can assume without loss of generality that HA = HB = Cd.3 By
Lemma 10.7, we can find a Kraus representation of the form Ξ[MAB ] =

∑
x∈Ω(Yx⊗Zx)MAB(Y

†
x ⊗

Z†
x) for all MAB ∈ L(HA ⊗HB), where Yx ∈ L(HA) and Zx ∈ L(HB). Thus,

σAB = Ξ[ρAB] =
∑

x∈Ω
(Yx ⊗ Zx)ρAB(Y

†
x ⊗ Z†

x).

Since σAB is pure and pure states are the extreme points of the convex set of quantum states, it
follows that each summand is proportional to σAB , i.e., there exist qx ≥ 0 such that, for all x ∈ Ω,

qxσAB = (Yx ⊗ Zx)ρAB(Y
†
x ⊗ Z†

x). (11.5)

2The general case can be proved by a slight variation, where one replaces √
ρA

−1 by the inverse of √ρA on its
support and adds an additional map to the instrument. Alternatively, one can employ a continuity argument.

3Using the Schmidt decomposition we may first restrict to the case that dimHA = dimHB = d, where d is
the Schmidt rank of ρAB , recalling that the Schmidt rank of σAB = Ξ[ρAB ] is at most the Schmidt rank of ρAB

(Theorem 10.11). By composing Ξ with suitable unitaries we may further reduce to the case that HA = HB = Cd.
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Since ρAB is pure, ρAB = |ΨAB⟩⟨ΨAB| for some |ΨAB⟩ ∈ HAB . Let |Ψstd
AB⟩ := (

√
ρA⊗IB)

√
d|Φ+

AB⟩
denote the standard purification of ρA, see Definition 2.19, where |Φ+

AB⟩ is the standard maximally
entangled state. Since |ΨAB⟩ is also a purification of ρA, by Lemma 2.18 there is a unitary V ∈
U(HB) such that

|ΨAB⟩ = (IA ⊗ VB)|Ψstd
AB⟩ = (

√
ρA ⊗ VB)

√
d|Ψ+

AB⟩. (11.6)

Using Lemma 3.7 (d), Eq. (11.5) implies that, for all x ∈ Ω,

qxσA = TrB
[
(Yx ⊗ Zx)ρAB(Y

†
x ⊗ Z†

x)
]
= Yx

√
ρAV

TZTx ZxV
√
ρAY

†
x =: Hx. (11.7)

Therefore

λ↑i (σA) =
∑

x∈Ω
λ↑i (qxσA) =

∑

x∈Ω
λ↑i (Hx). (11.8)

To prove that ρA ≺ σA we may, by Exercise 11.2, equivalently show that, for all k ∈ {1, . . . , n},

k∑

i=1

λ↑i (ρA) ≥
k∑

i=1

λ↑i (σA). (11.9)

Note that using Eq. (11.8), the right-hand side can be bounded as

k∑

i=1

λ↑i (σA) =
∑

x∈Ω

k∑

i=1

λ↑i (Hx) ≤
∑

x∈Ω
Tr
[
ΠxHx

]
(11.10)

for any choice of orthogonal projections Πx with rankΠx ≥ k. This follows by the variational
characterization of sum of the smallest k eigenvalues, which you can prove in Exercise 11.6 in
case you have never seen it. If

ρA =
d∑

i=1

λ↑i (ρA)|ψi⟩⟨ψi| (11.11)

is an eigendecomposition of ρA, we choose Πx as the projection onto the orthogonal com-
plement of Wx := span {Yx|ψi⟩}di=k+1 (since dimWx ≤ d − k we indeed have rankΠx ≥ k).
Then ΠxYx|ψi⟩ = 0 for i > k, and hence

ΠxYx
√
ρA = ΠxYx

√
ρ̃A, (11.12)

where

ρ̃A :=
k∑

i=1

λ↑i (ρA)|ψi⟩⟨ψi|

is defined by omitting the terms with i > k from Eq. (11.11). Similar to Eq. (11.6), let

ρ̃AB := |Ψ̃AB⟩⟨Ψ̃AB| where |Ψ̃AB⟩ = (
√
ρ̃A ⊗ VB)

√
d|Ψ+

AB⟩.

Substituting Hx from Eq. (11.7) into Eq. (11.10) and using Eq. (11.12) we find that
∑

x∈Ω
Tr
[
ΠxHx

]
=
∑

x∈Ω
Tr
[
ΠxYx

√
ρ̃AV

TZTx ZxV
√
ρ̃AY

†
x

]
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≤
∑

x∈Ω
Tr
[
Yx
√
ρ̃AV

TZTx ZxV
√
ρ̃AY

†
x

]

=
∑

x∈Ω
Tr
[
(Yx ⊗ Zx)ρ̃AB(Y

†
x ⊗ Z†

x)
]

= TrΞ[ρ̃AB] = Tr ρ̃AB = Tr ρ̃A =

k∑

i=1

λ↑i (ρA),

where we left out the projections Πx in the second step, the third step follows from Lemma 3.7 (d)
(as before in Eq. (11.7)), and the penultimate step holds since Ξ is trace-preserving. This proves
Eq. (11.9), thus ρA ≺ σA. This concludes the proof of (d)⇒(a) and hence of the theorem.

Remark 11.20. Recall from Eq. (11.4) that Alice’s operators in the one-way LOCC protocol
achieving Ξ[ρAB] =

∑
x∈Ω(Yx ⊗ Zx)ρAB(Y

†
x ⊗ Z†

x) = σAB are given by

Yx :=
√
qx
√
σAU

†
x

√
ρA

−1, (11.13)

where qx and Ux ∈ U(HA) appear in the mixed unitary channel relating the two states: ρA =∑
x∈Ω qxUxσAU

†
x. While our proof showed the existence of Bob’s operators Zx without giving an

explicit formula, you can prove in Exercise 11.13 that Bob’s operators can be written as

Zx :=WUT
x V

†, (11.14)

where the unitaries V,W ∈ U(HB) relate the two states to their standard purifications:

ρAB = |ΨAB⟩⟨ΨAB|, |ΨAB⟩ =
(√
ρA ⊗ VB

)∑

i

|i, i⟩,

σAB = |ΦAB⟩⟨ΦAB|, |ΦAB⟩ =
(√
σA ⊗WB

)∑

i

|i, i⟩.

Nielsen’s theorem can be generalized to the situation where the two states can be on different
Hilbert spaces. We formulate this as a corollary, which you get to prove in Exercise 11.8.

Corollary 11.21. Let ρAB be a pure state on HA⊗HB and let σA′B′ be a pure state on HA′⊗HB′ .
Then the following are equivalent:

(a) (λ(ρA), 0, . . . , 0) ≺ (λ(σA′), 0, . . . , 0), where the notation means that we pad the two vectors
by any/some suitable number of zeros such that both vectors have the same length.

(a’) (λ(ρB), 0, . . . , 0) ≺ (λ(σB′), 0, . . . , 0), with the same notation as above.

(b) There exists a one-way LOCC channel Ξ from Alice to Bob such that Ξ[ρAB] = σA′B′.

(b’) There exists a one-way LOCC channel Ξ from Bob to Alice such that Ξ[ρAB] = σA′B′.

(c) There exists a channel Ξ ∈ LOCC(HA :HB,HA′ :HB′) such that Ξ[ρAB] = σA′B′ .

(d) There exists a channel Ξ ∈ SepC(HA :HB,HA′ :HB′) such that Ξ[ρAB] = σA′B′.

You can practice Nielsen’s theorem (and its proof) in Exercises 11.7, 11.9, 11.10 and 11.12.

11.4 Exercises

11.1 Majorization warmup:
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(a) Find probability distributions p and q such that neither p ≺ q nor q ≺ p.
(b) If p and q are probability distributions such that p ≺ q and q ≺ p, is it necessarily the

case that p = q?

11.2 Alternative definitions of majorization: For a vector x ∈ Rn, recall that x↓ denotes the
vector with the same entries but in nonincreasing order. Let us also denote by x↑ denote
the vector with the same entries but in nondecreasing order. Show that the following are
equivalent for probability distributions p and q on {1, . . . , n}:

(a)
∑k

i=1 p
↓
i ≤

∑k
i=1 q

↓
i for all k ∈ {1, . . . , n− 1}.

(b)
∑k

i=1 p
↑
i ≥

∑k
i=1 q

↑
i for all k ∈ {1, . . . , n− 1}.

(c)
∑n

i=1max(pi − t, 0) ≤∑n
i=1max(qi − t, 0) for all t ∈ R.

As this exercise is used in the proof of Lemma 11.10, please give a self-contained proof that
does not rely on Lemma 11.10.

11.3 Majorization examples: Let p = (0.1, 0.7, 0.2) and q = (0.3, 0.2, 0.5).

(a) One of p ≺ q or q ≺ p is true. Determine which.
(b) Find a sequence of Robin Hood matrices that convert one distribution into the other.
(c) Express this sequence as a single stochastic matrix and verify that this matrix is in fact

doubly stochastic.
(d) Express this matrix as a convex combination of permutations.

Hint: For (b), you can follow the proof of Theorem 11.7, but it is much easier to observe
that p and q have a common entry and use this to reduce directly to the 2× 2 case.

11.4 Majorization and rank:

(a) Show that if A,B ∈ PSD(H) are such that A ≺ B, then rankA ≥ rankB.
(b) Is the same true for general Hermitian operators?

Note that part (a) together with Nielsen’s theorem reproves Theorem 10.11 for pure states.

11.5 Majorization vs mixed-unitary channels: Prove Theorem 11.14.

Hint: You can reduce to the case that A and B are real diagonal matrices.

11.6 Variational characterization of eigenvalues: Let H ∈ L(H) be a Hermitian operator
and let 1 ≤ k ≤ dimH. For any subspace V ⊆ H, denote by ΠV the orthogonal projection.

(a) Show that
∑k

i=1 λ
↑
i (H) = mindimV=k Tr[ΠVH] and

∑k
i=1 λ

↓
i (H) = maxdimV=k Tr[ΠVH].

(b) Show that
∑k

i=1 λ
↑
i (H) = mindimV≥k Tr[ΠVH] and

∑k
i=1 λ

↓
i (H) = maxdimV≤k Tr[ΠVH]

if H is PSD.

You can also use part (a) to prove the following Schur–Horn inequalities:

(c) Show that
∑k

i=1 λ
↑
i (H) ≤∑k

i=1⟨i|H|i⟩ ≤∑k
i=1 λ

↓
i (H).

In particular, the diagonal entries of a Hermitian matrix are majorized by its eigenvalues.

11.7 Entanglement entropy and LOCC channels: Show that, for pure states, the entangle-
ment entropy is nonincreasing under separable channels (so in particular under LOCC).

11.8 Corollary of Nielsen’s Theorem: Prove Corollary 11.21.
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11.9 Nielsen action I: For any p ∈ [0, 1], find a one-way LOCC channel from Alice to Bob
that transforms the maximally entangled state |Φ+

AB⟩ = 1√
2
(|00⟩+ |11⟩) into the pure

state |ΨAB⟩ =
√
p|00⟩ + √

1− p|11⟩. Write down Alice’s instrument and Bob’s channels
explicitly.

Hint: 1
2

( p
1−p
)
+ 1

2X
( p
1−p
)
=
(

1/2
1/2

)
, where X = ( 0 1

1 0 ).

11.10 Nielsen action II: For any probability distribution p ∈ P({1, . . . , n}), find a one-way
LOCC channel from Alice to Bob that transforms the maximally entangled state |Φ+

AB⟩ =
1√
n

∑n
i=1|ii⟩ into the pure state |ΨAB⟩ =

∑n
i=1

√
p(i)|ii⟩. Write down Alice’s instrument

and Bob’s channels explicitly.

Hint: Try to generalize your solution to Exercise 11.9.

11.11 Converting maximally entangled states: Let ρAB , σA′B′ denote two maximally entangled
states of local dimensions d = dimHA = dimHA, d′ = dimHA′ = dimHB′ , respectively.

(a) When can ρAB be converted to σA′B′ by LOCC?

Now assume that d′ = 2.

(b) How many copies of σA′B′ can be obtained from ρAB by LOCC?
(c) How many copies of σA′B′ that are required so that ρAB can be obtained by LOCC?

11.12  Practice: Implement a subroutine that given two probability distributions p and q
determines whether p ≺ q, q ≺ p, or neither of the two statements hold. Then use your
subroutine to investigate the following:

(a) The file 11-probabilities.txt contains three probability distributions: pX , qX , and pY .
Compare the distributions pX and qX using your subroutine and output "p < q",
"q < p", or "incomparable".

(b) Now let pXY and qXY be the product distributions given by pXY (x, y) = pX(x)pY (y) and
qXY (x, y) = qX(x)pY (y). Use your subroutine to compare the product distributions pXY
and qXY . Output "p_xy < q_xy", "q_xy < p_xy", or "incomparable".

(c) How can you interpret this outcome?
(d) The files 11-psi1.txt and 11-psi2.txt contain bipartite pure states

|ΨAB,1⟩ ∈ C5 ⊗ C7 and |ΨAB′,2⟩ ∈ C5 ⊗ C9,

where Alice’s dimension is 5 and Bob’s dimensions are 7 and 9, respectively. Output the
eigenvalues of the reduced states on Alice’s system A and determine whether |ΨAB,1⟩
can be transformed by LOCC into |ΨAB′,2⟩.

11.13 Alice’s and Bob’s LOCC operators: Show that Ξ[ρAB] = σAB if Alice’s and Bob’s
LOCC operators Yx and Zx are chosen according to Eqs. (11.13) and (11.14).

134



Lecture 12

Distillable entanglement and
entanglement cost

Last week we looked at majorization and Nielsen’s theorem. Majorization provides a way to
compare probability distributions in terms of how uniform they are. Intuitively, p ≺ q if p is more
uniform than q. By Theorem 11.7, this is the case if and only if p can be obatined from q by a
doubly stochastic matrix or a product of Robin-Hood matrices (taking away from the rich and
giving to the poor). We saw that all these notions have natural quantum counterparts, where
probability distributions are replaced by density matrices. Using this more general notion of
majorization, which can be defined for arbitrary Hermitian operators, Nielsen’s Theorem 11.18
provides an elegant answer to the following problem: when can one pure state ρAB be converted
to another pure state σAB by LOCC? Nielsen’s theorem asserts that this possible if and only
if ρA ≺ σA. This condition is easy to check by computing the eigenvalues of the reduced states
and checking whether they obey the majorization conditions. Corollary 11.21 generalizes this
result to states on different Hilbert spaces.

When ρAB can be converted to σAB by LOCC then we can interpret this as saying that ρAB
is more entangled than σAB , because local operations and classical communication should not be
able to create more entanglement. Thus, one can think of Nielsen’s theorem as a way to compare
the amount of entanglement in different states. However, not every pair of states is comparable,
as follows from the analogous fact for probability distributions (Exercise 11.1). Moreover, even
when two states are comparable, Nielsen’s theorem is not quantitative in the sense that it does
not tell us “how much more entangled” one state is compared to the other.

Ideally, we would like to assign a single number to every state telling us how much entanglement
the state has. This number should be easy to compute and also have some precise operational
interpretation. In this lecture we will see how this can be done for bipartite pure states.

12.1 Conversion, distillable entanglement, entanglement cost

A convenient way to measure the amount of entanglement for bipartite states is to choose a
“gold standard” state and ask how many of these states can be obtained from the given state by
LOCC. The canonical maximally entangled two-qubit state is a natural choice of such a “gold
standard”. Throughout today’s lecture we will denote it by

ϕ+A′B′ = |Φ+
A′B′⟩⟨Φ+

A′B′ |, where |Φ+
A′B′⟩ =

1√
2
(|00⟩+ |11⟩) and HA′ = HB′ = C2.

Thus we might ask how many copies of ϕ+ can be created by LOCC when Alice and Bob start
out by sharing a given state ρAB. In other words, we might try to quantify the amount of
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entanglement in a given state ρAB as the maximal number N such that

ρAB
LOCC−→ (ϕ+A′B′)

⊗N .

However, since the number of copies N is always an integer, this would only give a rather coarse
measure of entanglement. For example, it is not hard to check using Nielsen’s theorem that
if ρAB is an arbitrary two-qubit pure state then N ∈ {0, 1}, with N = 1 if and only if ρAB is
maximally entangled. To get a more nuanced quantity, it is useful to look at conversion rates.
Namely, we might ask for the optimal rate R > 0 such that we can convert

ρ⊗nAB
LOCC−→ (ϕ+A′B′)

⊗⌊Rn⌋

for large n. Note that R no longer needs to be a integer! We need to make one more modification
to develop a good theory. Namely, instead of asking for exact conversion, we will only require
that we can by LOCC obtain a state that is arbitrary close to the target state as n→ ∞.1 The
quantity defined in this way called the distillable entanglement, since “distillation” refers to a
process by which a large amount of an impure substance is refined to a smaller amount of a more
concentrated and pure substance. We now define it formally:

Definition 12.1 (Distillable entanglement). The distillable entanglement ED(A : B)ρ of a
state ρAB ∈ D(HA ⊗HB) is defined as the supremum over all R ≥ 0 for which there are LOCC
channels

Ξn ∈ LOCC
(
H⊗n
A : H⊗n

B ,H⊗⌊Rn⌋
A′ : H⊗⌊Rn⌋

B′
)

for sufficiently large n ∈ N such that

lim
n→∞

F
(
Ξn[ρ

⊗n
AB], (ϕ

+
A′B′)

⊗⌊Rn⌋) = 1.

When the state is clear from context, we will often write ED(A : B) in place of ED(A : B)ρ (just
like for entropy and mutual information).

Note that formally ρ⊗nAB is a state on the Hilbert space

(HA ⊗HB)
⊗n = (HA ⊗HB)⊗ · · · ⊗ (HA ⊗HB).

However, we group together all A systems and all B systems and think of ρ⊗nAB as a state on

H⊗n
A ⊗H⊗n

B = (HA ⊗ · · · ⊗ HA︸ ︷︷ ︸
Alice

)⊗ (HB ⊗ · · · ⊗ HB︸ ︷︷ ︸
Bob

).

In principle, this identification amounts to a unitary, but we will not write it explicitly since it
will always be clear from context and our subscript notation helps avoid any ambiguities. The
same discussion applies to (ϕ+A′B′)⊗⌊Rn⌋.

Instead of distilling maximal entanglement, one can also ask the reverse question – how many
copies of the maximally entangled state ϕ+ are required to approximately produce some large
number of copies of some desired state? This is called the entanglement cost and is formally
defined as follows:

1In Lectures 6 and 7 we saw something completely analoguous in the context of compression. There, we found
that a good theory can be developed if we compress blocks of n symbols at a time and allow for a small probability
of error (that can be taken to go to zero as n becomes large).
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Definition 12.2 (Entanglement cost). The entanglement cost EC(A : B)ρ of a state ρAB ∈
D(HA ⊗HB) is defined as the infimum over all R ≥ 0 for which there are LOCC channels

Γn ∈ LOCC
(
H⊗⌊Rn⌋
A′ : H⊗⌊Rn⌋

B′ ,H⊗n
A : H⊗n

B

)

for sufficiently large n ∈ N such that

lim
n→∞

F
(
Γn[(ϕ

+
A′B′)

⊗⌊Rn⌋], ρ⊗nAB
)
= 1.

When the state is clear from context, we will often write EC(A : B) in place of EC(A : B)ρ.

How do distillable entanglement and entanglement cost compare in general? Think of the
following analogy: if you go to a currency exchange to exchange money, the buying rate is always
lower than the selling rate. If this were not the case, you could make money by repeatedly
exchanging it back and forth. But there is no such thing as a free lunch! Similarly, one should
not be able to obtain an increasingly large amount of entanglement by repeatedly distilling and
then recreating a state by LOCC. This should be as impossible as constructing a perpetual
motion machine that keeps generating energy for free. However, proving this formally is actually
not so trivial and relies on the following lemma, which you will prove in Exercise 12.1. We will
formulate it in a slightly more general situation than need be:

Lemma 12.3. Let HC = HD = Cd, let σCD be a state of entanglement rank r, and let ωCD be a
maximally entangled state. Then, F (σCD, ωCD) ≤

√
r
d .

We can use this to prove that the entanglement cost is indeed at least as large as the distillable
entanglement:

Corollary 12.4 (No free lunch). EC(A : B)ρ ≥ ED(A : B)ρ for any state ρAB ∈ D(HA ⊗HB).

Proof. Let R be such that there exist LOCC channels Γn such that

lim
n→∞

F
(
Γn[(ϕ

+
A′B′)

⊗⌊Rn⌋], ρ⊗nAB
)
= 1.

Likewise, let R′ be such that there exist LOCC channels Ξn such that

lim
n→∞

F
(
Ξn[ρ

⊗n
AB], (ϕ

+
A′B′)

⊗⌊R′n⌋]
)
= 1.

Since EC is the infimum over all rates R as above and ED is the supremum over all rates R′ as
above, it suffices to prove that R ≥ R′. To prove the latter, note that, by Exercise 5.9,

lim
n→∞

F
(
(Ξn ◦ Γn)[(ϕ+A′B′)

⊗⌊Rn⌋], (ϕ+A′B′)
⊗⌊R′n⌋]

)
= 1. (12.1)

On the other hand, the entanglement rank of (Ξn ◦ Γn)[(ϕ+A′B′)⊗⌊Rn⌋] is at most 2⌊Rn⌋, since this
is the entanglement (Schmidt) rank of ϕ+A′B′ and Ξn ◦Γn is LOCC. Therefore, using Lemma 12.3,

F
(
(Ξn ◦ Γn)[(ϕ+A′B′)

⊗⌊Rn⌋], (ϕ+A′B′)
⊗⌊R′n⌋]

)2 ≤ 2⌊Rn⌋−⌊R′n⌋ ≤ 2Rn−(R′n−1) = 2(R−R′)n+1.

Since this holds for sufficiently large n, Eq. (12.1) implies that R ≥ R′, concluding the proof.
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By definition, EC and ED are meaningful quantities, but how can we compute them explicitly
for a given state ρAB? In general there is no closed formula, but we will prove in Section 12.2
that for bipartite pure states they are both equal to the entanglement entropy!

In light of Corollary 12.4, it is tempting to ask if EC and ED are also equal for mixed states.
Surprisingly, the answer is “No!” – there are mixed states for which EC > ED. In fact, there even
exist mixed states such that EC > 0 but ED = 0. Such states are called bound entangled because
the entanglement in them is bound or confined within them and cannot be extracted back. This
is what makes mixed state entanglement so much more interesting and also difficult! For example,
bound entangled states are responsible for such strange phenomena as superactivation of quantum
channels – the counterintuitive fact that two zero-capacity quantum channels can have positive
capacity when used together in parallel. Unfortunately, we will not have time to go into these
interesting but more advanced topics.

12.2 Distillable entanglement equals entanglement cost for pure
states

We will now prove that, for pure states, distillable entanglement and entanglement cost are the
same, and equal to entanglement entropy (Definition 8.2).

Theorem 12.5. For any pure state ρAB ∈ D(HA ⊗HB), we have

ED(A : B)ρ = EC(A : B)ρ = H(A)ρ = H(B)ρ.

Proof. We already know that ED(A : B) ≤ EC(A : B), so it suffices to prove that

EC(A : B) ≤ H(A) ≤ ED(A : B).

The key idea is very simple: we replace ρ⊗nAB by the pure state

ρ̃AnBn =
(Πn,ε ⊗ IBn)ρ⊗nAB(Πn,ε ⊗ IBn)

pn,ε
,

where Πn,ε denotes a typical projector for ρA (Definition 7.11) and pn,ε := Tr[Πn,ερ
⊗n
A ], and

apply Nielsen’s theorem. For fixed ε > 0 and large n, part (c) of the quantum AEP (Lemma 7.12)
states that pn,ε → 1, so using the gentle measurement lemma (Exercise 4.9) it follows that

lim
n→∞

F (ρ̃AnBn , ρ⊗nAB) = 1. (12.2)

Moreover, part (a) asserts that the nonzero eigenvalue of ρ̃An are within 2−n(H(A)±ε)

pn,ε
, which makes

it easy to apply Nielsen’s theorem. We now make this idea precise and prove the two inequalities.
Let us first show that EC(A : B) ≤ H(A). Let R > H(A) and choose ε > 0 such

that R ≥ H(A) + 2ε. Then we have for all n ≥ 1
ε that

⌊nR⌋ ≥ nR− 1 ≥ n(H(A) + 2ε)− 1 ≥ n(H(A) + ε)

and hence

2−⌊nR⌋ ≤ 2−n(H(A)+ε) ≤ 2−n(H(A)+ε)

pn,ε
≤ λ
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for any nonzero eigenvalue λ of ρ̃An . This implies that the eigenvalues of (ϕ+A′)⊗⌊nR⌋ = I
2⌊nR⌋ are

majorized by the eigenvalues of ρ̃An (padded by sufficiently many zeros). Thus Corollary 11.21
shows that there exists an LOCC channel Γn such that Γn[(ϕ

+
A′B′)⊗⌊nR⌋] = ρ̃AnBn . In view of

Eq. (12.2), this shows that EC(A : B) ≤ R. Since R > H(A) was arbitrary, we conclude that
EC(A : B) ≤ H(A).

We now show that H(A) < ED(A : B). Let R < H(A) and choose ε > 0 such that
R ≤ H(A)− 2ε. Then we have for all n ≥ −1

ε log(1− ε) that

⌊nR⌋ ≤ nR ≤ n(H(A)− 2ε) ≤ n(H(A)− ε) + log(1− ε)

and hence

λ ≤ 2−n(H(A)−ε)

pn,ε
≤ 2−n(H(A)−ε)

1− ε
≤ 2−⌊nR⌋

for any eigenvalue of ρ̃An provided n is sufficiently large since we have pn,ε → 1 for fixed ε > 0.
This implies that the eigenvalues of ρ̃An are majorized by the eigenvalues of (ϕ+A′)⊗⌊nR⌋ = I

2⌊nR⌋

(padded by sufficiently many zeros). Thus Corollary 11.21 shows that there exists an LOCC
channel Ξn such that Ξn[ρ̃AnBn ] = (ϕ+A′B′)⊗⌊nR⌋. Then we have

lim inf
n→∞

F
(
Ξn[ρ

⊗n
AB], (ϕ

+
A′B′)

⊗⌊nR⌋) = lim inf
n→∞

F
(
Ξn[ρ

⊗n
AB],Ξn[ρ̃AnBn ]

)
≥ lim

n→∞
F
(
ρ⊗nAB, ρ̃AnBn

)
= 1,

where the last equality is Eq. (12.2). Since fidelities are also upper bounded by 1, it follows that

lim
n→∞

F
(
Ξn[ρ

⊗n
AB], (ϕ

+
A′B′)

⊗⌊nR⌋) = 1.

This shows that ED(A : B) ≥ R. Since R < H(A) was arbitrary, we conclude that ED(A : B) ≥
H(A).

12.3 Exercises

12.1 Entanglement rank and fidelity: Prove Lemma 12.3.

Hint: First show the claim assuming σCD is pure.

12.2 From any pure state to any other: Let ρ ∈ D(HA ⊗HB) and σ ∈ D(HA′ ⊗HB′) be two
arbitrary pure states. What is the optimal rate of conversion from copies of ρAB to copies
of σA′B′ by LOCC (if we allow for arbitrarily small error)?

12.3 Entanglement cost using compression and teleportation:
In this exercise you can find an alternative proof of the fact that EC(A : B) ≤ H(A) for any
pure state ρAB ∈ D(HA ⊗HB).

(a) Let R > H(A) = H(B) and δ > 0. Use Schumacher’s Theorem 7.10 and teleportation to
show that there exists n0 such that, for all n ≥ n0, there is an LOCC protocol which
converts (ϕ+A′B′)⊗⌊Rn⌋ into a state ρ̃AnBn with F (ρ⊗nAB, ρ̃AnBn) ≥ 1− δ.

(b) Use part (a) to show that EC(A : B)ρ ≤ H(A)ρ.

12.4 Exact entanglement distillation: Given any state ρ, we define

L(ρ) :=
⌊
− log λmax(ρ)

⌋
= max {ℓ ∈ Z : ℓ ≤ − log λmax(ρ)},

where λmax(ρ) denotes the largest eigenvalue of ρ.
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(a) Show that 0 ≤ L(ρ) ≤ H(ρ) for any state ρ.
(b) Compute L(τ), L(τ⊗2), and L(τ⊗3) for the maximally mixed qutrit state τ = I

3 ∈ D(C3).
(c) Compute limn→∞

1
nL(ρ

⊗n) for a general state ρ as some simple function of the state.

Now consider a state ρAB ∈ D(HA ⊗ HB). We define Q(A :B)ρ as the maximal number
of maximally entangled two-qubit states that can be obtained by LOCC from ρAB. That
is, Q(A : B)ρ is defined as the largest integer ℓ ≥ 0 such that there exists a channel
Φ ∈ LOCC(HA :HB, H⊗ℓ

A′ :H⊗ℓ
B′ ) such that

Φ[ρAB] = (ϕ+A′B′)
⊗ℓ,

where HA′ = HB′ = C2 and ϕ+A′B′ =
1
2(|00⟩+ |11⟩)(⟨00|+ ⟨11|).

(d) Show that Q(A :B)ρ ≤ ED(A :B)ρ for any state ρAB.
(e) Show that if ρAB is pure, then Q(A :B)ρ = L(ρA).
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Lecture 13

Monogamy of entanglement

Last week, we looked at ways to quantify entanglement. Using the canonical two-qubit maximally
entangled state as a “golden standard”, we asked how many copies of it can be extracted from a
given state, or how many copies are needed to produce a given state by LOCC. In Theorem 12.5,
we showed that for pure states these two quantities – distillable entanglement and entanglement
cost – coincide and are equal to entanglement entropy.

In this lecture, we will take a different approach to entanglement. Instead of the usual
bipartite setting, we will consider multiple parties and observe a curious property of entanglement
known as monogamy – namely, one cannot simultaneously share a large amount of entanglement
with multiple parties. Using this observation, we will draw a non-trivial conclusion about bipartite
entanglement. Namely, a bipartite state that admits a symmetric extension to a multipartite
setting cannot be too entangled, otherwise the extended state would violate monogamy.

13.1 Sharing classical vs quantum correlations

You showed in Exercise 2.10 (a) that if ρABC is a state such that ρAB is pure, then ρABC =
ρAB ⊗ ρC . In particular, this implies that ρAC = ρA ⊗ ρC and ρBC = ρB ⊗ ρC , meaning that A
and C are not correlated, and neither are B and C. Hence, one cannot share a pure entangled
state with more than one system – this is known as monogamy of entanglement.

A B

C

|ΨAB⟩

ρC

ρABC =

In contrast, a classical state that is maximally correlated can be shared with an arbitrary
number of parties. To see this, consider the tripartite classical state

ρABC =
1

2
(|000⟩⟨000|+ |111⟩⟨111|), (13.1)

which corresponds to flipping an unbiased coin and telling the outcome to all three parties. Note
that any two parties are maximally correlated since

ρAB = ρBC = ρAC =
1

2
(|00⟩⟨00|+ |11⟩⟨11|). (13.2)

Moreover, one can easily distribute this correlation to additional parties by attaching a fresh
qubit in state |0⟩ and performing a CNOT operation with this qubit as a target.

141



Can we also do this in the quantum case? Let’s see what happens if we try to use the same
approach. The natural equivalent of Eq. (13.1) for pure states is

|ΨABC⟩ =
1√
2
(|000⟩+ |111⟩).

Are all pairs of parties in this state maximally entangled? For this to be the case, all two-party
reduced states of |ΨABC⟩ should be |Φ+⟩ = 1√

2
(|00⟩+ |11⟩) or, written as a density matrix,

|Φ+⟩⟨Φ+| = 1

2
(|00⟩+ |11⟩)(⟨00|+ ⟨11|) = 1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|).

However, the actual two-party reduced states of |ΨABC⟩ are exactly the same as in Eq. (13.2):

ρAB = ρBC = ρAC =
1

2
(|00⟩⟨00|+ |11⟩⟨11|),

meaning that each pair of parties shares a maximal classical correlation, not a maximally
entangled state. This is a very stark manifestation of monogamy of entanglement – we were
hoping for all pairs of parties to be maximally entangled, while in reality each pair shares a
separable state that has no entanglement whatsoever! This means the state |ΨABC⟩ possesses
global tripartite entanglement while having no bipartite entanglement.

The only way for one party to simultaneously share a maximally entangled state with two
other parties is by increasing the dimension of its system from one to two qubits. For example, if
Bob has two qubits B and B′, he can share a maximally entangled with A and C as follows:

Bob

A B B′ C

|Φ+
AB⟩ |Φ+

B′C⟩

Note that in this case the B system is completely uncorrelated with C, and B′ is completely
uncorrelated with A. Another interesting observation is that if we increase the dimension of
system A, Bob cannot share more entanglement with it while still maintaining a maximally
entangled state with C. For example, if we increased the system A to two qubits, Bob could
now share two qubits of entanglement with A, however he would have to completely give up all
entanglement with C.

Let us now consider a more complicated situation with n parties denoted by A1, . . . , An.
Assume their joint state ρA1···An is such that all two-party reduced states ρAiAj are the same for
all i ̸= j. Let us denote this reduced state by ρAB and call ρA1···An its symmetric extension.

A1

A2

A3A4

A5

Intuitively, ρAB should not be too entangled because each party of its symmetric extension shares
this state with the remaining n− 1 other parties.

The goal of this lecture is to prove Theorem 13.13 which establishes a quantitative bound on
how close ρAB is to the set of separable states, given that it has such a highly symmetric n-party
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extension ρA1···An (results of this form are known as de Finetti theorems). More specifically, we
will show that the distance between ρAB and the set of separable states is upper bounded by

√
2d

n+ 2
,

where d is the dimension of each system. Hence, the larger symmetric extension of ρAB we can
find (i.e., the more parties n it has), the closer ρAB must be to a separable state. This provides
a way to study bipartite entanglement through the lens of multipartite states.

13.2 The symmetric subspace

Since the setup of our de Finetti theorem involves a state with a high degree of symmetry, we
first need to develop the mathematical machinery for dealing with such states. These states live
in the so-called symmetric subspace.

Definition 13.1 (Symmetric subspace). Let H be a Hilbert space, let n ≥ 1, and let Sn denote
the set of all permutations acting on {1, . . . , n}. For every π ∈ Sn, let Rπ ∈ U(H⊗n) denote the
operator that acts on n systems and permutes them according to π:

Rπ
(
|ψ1⟩ ⊗ · · · ⊗ |ψn⟩

)
:= |ψπ−1(1)⟩ ⊗ · · · ⊗ |ψπ−1(n)⟩, (13.3)

for all |ψ1⟩, . . . , |ψn⟩ ∈ H. The symmetric subspace of H⊗n is then defined as

Symn(H) :=
{
|Φ⟩ ∈ H⊗n : Rπ|Φ⟩ = |Φ⟩, ∀π ∈ Sn

}
.

Remark 13.2. The reason for using π−1 instead of π on the right-hand side of Eq. (13.3) is so
that RπRτ = Rπτ for all π, τ ∈ Sn, which makes the map π 7→ Rπ a unitary representation of
the symmetric group Sn. You will show this and also the fact that R†

π = Rπ−1 for all π ∈ Sn in
Exercise 13.1 (c).

Remark 13.3. Make sure to not confuse Rπ with the permutation matrix Pπ from Definition 11.3!
The distinction is that Rπ permutes the systems while Pπ permutes the standard basis states
according to π. In particular, Rπ is of size dn × dn, where d = dimH, while Pπ is of size n× n.

Here are some basic observations about Symn(H):

• For any |ψ⟩ ∈ H, |ψ⟩⊗n ∈ Symn(H) since Rπ|ψ⟩⊗n = |ψ⟩⊗n.
• For any π ∈ Sn, |Φ⟩ ∈ Symn(H) iff Rπ|Φ⟩ ∈ Symn(H).

• If |Φ1⟩, |Φ2⟩ ∈ Symn(H) then |Φ1⟩+ |Φ2⟩ ∈ Symn(H).

In other words, all tensor power states are in the symmetric subspace, the order in which the
systems are arranged does not affect whether a state is symmetric or not, and the symmetric
subspace is indeed a subspace.

Example 13.4 (Two qubits). When n = 2 and d = 2,

Sym2(C2) = span

{
|0, 0⟩, |0, 1⟩+ |1, 0⟩√

2
, |1, 1⟩

}
.

The remaining vector (|0, 1⟩ − |1, 0⟩)/
√
2 (also known as the singlet state) is anti-symmetric.
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Since Symn(H) is a subspace of H⊗n, we can write down a projector onto this subspace. You
will show in Exercise 13.1 (d) that the following is an orthogonal projection onto Symn(H):

Πn :=
1

n!

∑

π∈Sn

Rπ. (13.4)

In particular, Π†
n = Πn and Π2

n = Πn, i.e., Πn is Hermitian and a projector. Moreover,
ΠnRπ = RπΠn = Πn for any π ∈ Sn. Intuitively, applying Πn to a state corresponds to
“symmetrizing” it:

Πn|Φ⟩ =
1

n!

∑

π∈Sn

Rπ|Φ⟩.

As part of your argument in Exercise 13.1 (d) you will show that Πn|Φ⟩ ∈ Symn(H), for any
|Φ⟩ ∈ H⊗n. Moreover, if |Φ⟩ ∈ Symn(H) then Πn|Φ⟩ = |Φ⟩. In fact, for any k ≥ 0 and
|Φ⟩ ∈ Symk+n(H), the following more general identity holds:

(Ik ⊗Πn)|Φ⟩ = |Φ⟩, (13.5)

where Ik denotes the identity operator on the first k systems.

Example 13.5 (Projector Π2). For n = 2, it follows immediately from Eq. (13.4) that

Π2 =
1

2
(I + F ) =

1

2




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+

1

2




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 =

1

2




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




where F ∈ U(H⊗2) is the swap operator: F (|α⟩ ⊗ |β⟩) = |β⟩ ⊗ |α⟩, for all |α⟩, |β⟩ ∈ H.

Recall from Example 13.4 that the symmetric subspace for two qubits is spanned by |00⟩,
|11⟩, and (|01⟩+ |10⟩)/

√
2. How can we find all states in Symn(Cd), for any n ≥ 1 and d ≥ 1?

We can symmetrize the standard basis states, thus projecting them to the symmetric subspace!
Let Λn,d denote the set of all integers t1, . . . , td ≥ 0 such that

∑d
i=1 ti = n:

Λn,d :=
{
(t1, . . . , td) ∈ Zd : t1, . . . , td ≥ 0,

d∑

i=1

ti = n
}
.

For any (t1, . . . , td) ∈ Λn,d, let |Tt1,...,td⟩ ∈ (Cd)⊗n denote the following state:

|Tt1,...,td⟩ :=
t1︷ ︸︸ ︷

|1⟩ ⊗ · · · ⊗ |1⟩⊗
t2︷ ︸︸ ︷

|2⟩ ⊗ · · · ⊗ |2⟩⊗ · · · ⊗
td︷ ︸︸ ︷

|d⟩ ⊗ · · · ⊗ |d⟩︸ ︷︷ ︸
n

, (13.6)

where ti denotes the number of terms |i⟩ occurring in the tensor product.

Example 13.6 (Two qubits). The set Λn,d and the corresponding basis states for two qubits are

Λ2,2 = {(2, 0), (1, 1), (0, 2)}, |T2,0⟩ = |0, 0⟩, |T1,1⟩ = |0, 1⟩, |T0,2⟩ = |1, 1⟩.

To match with the case of general d, one should use {|1⟩, |2⟩} instead of {|0⟩, |1⟩} for the qubit
standard basis here. However, we used |0⟩ and |1⟩ to emphasize the correspondence with the
states in Example 13.4.
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We can get a basis for the symmetric subspace by symmetrizing the states |Tt1,...,td⟩.

Lemma 13.7 (Basis of symmetric subspace). The following is an orthogonal basis for Symn(Cd):

Symn(Cd) = span
{
Πn|Tt1,...,td⟩ : (t1, . . . , td) ∈ Λn,d

}
.

Proof. Since Πn projects onto the symmetric subspace, we need to find the image of (Cd)⊗n
under Πn. For this, it suffices to apply Πn to all standard basis vectors |Φ⟩ of (Cd)⊗n. Since
ΠnRπ|Φ⟩ = Πn|Φ⟩ for all π ∈ Sn, we can first permute the systems and sort the basis vectors
in the tensor product expansion of |Φ⟩ to obtain one of the states |Tt1,...,td⟩. Since ti counts the
number of appearances of |i⟩, you can think of the resulting sequence t1, . . . , td as a “generalized
Hamming weight” of the original string of basis vectors. To obtain a basis of Symn(Cd), it
suffices to apply Πn to all vectors |Tt1,...,td⟩ with (t1, . . . , td) ∈ Λn,d. Note that all terms in the
expansion of Πn|Tt1,...,td⟩ have the same Hamming weight, and for different choices of t1, . . . , td
the Hamming weights are different. The resulting basis is orthogonal since all vectors have
disjoint supports, i.e., their standard basis expansions do not contain a single common term.

Remark 13.8. While the states Πn|Tt1,...,td⟩ with (t1, . . . , td) ∈ Λn,d are mutually orthogonal, they
are not normalized in general since Πn is a projector.

As a practice, you can work out the bases for Sym2(Cd) and Sym3(C2) in Exercise 13.1 (b).
Using Lemma 13.7, we can easily find the dimension of the symmetric subspace.

Lemma 13.9. The dimension of the symmetric subspace is

dim
(
Symn(Cd)

)
= |Λn,d| =

(
n+ d− 1

n

)
=

(n+ d− 1)!

n!(d− 1)!

Proof. Recall from Lemma 13.7 that the states Πn|Tt1,...,td⟩ with (t1, . . . , td) ∈ Λn,d are mutually
orthogonal since they have disjoint supports. Hence, the dimension of Symn(Cd) is equal to
|Λn,d|. Note that |Λn,d| is the number of ways of grouping n elements into d (possibly empty)
groups. Using the method of stars and bars, this can be determined by separating n stars with
d− 1 bars. This corresponds to choosing d− 1 out of n+ d− 1 elements to be the bars and the
remaining n to be stars, yielding the desired binomial coefficient.

We will need the following result, which we state without proof.

Lemma 13.10. Let A ∈ L(H⊗n) for some Hilbert space H and n ≥ 1. Then

U⊗nAU †⊗n = A, ∀U ∈ U(H),

iff A =
∑

π∈Sn
cπRπ, for some cπ ∈ C.

Using this, we can provide an alternative expression for the projector Πn defined in Eq. (13.4).
Instead of a discrete sum over permutations, this expression involves a continuous integral with
the uniform measure over pure quantum states. We will denote this measure by dψ. Since it
is uniform, the states |ψ⟩ and U |ψ⟩ have the same probability density, for any unitary U . This
high degree of symmetry alone implies, for example, that

∫
dψ |ψ⟩⟨ψ| = I/d (indeed, M = I/d

is the only matrix such that UMU † = M for all U ∈ U(d) and TrM = 1). A similar uniform
measure can also be defined on the set U(d) of all unitary matrices (see Exercise 13.3).
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Lemma 13.11. For any n ≥ 1 and d ≥ 2,

Πn =

(
n+ d− 1

n

)∫
dψ (|ψ⟩⟨ψ|)⊗n,

where dψ is the uniform probability measure on pure states in Cd.

Proof. You will prove this in Exercise 13.2.

Example 13.12 (Integral for Πn when d = 2 and n = 2). The uniform measure for pure
qubit states is the same as for the points on the unit sphere in R3 (a.k.a. the Bloch sphere, see
Section 1.4):

dψ =
1

4π
sin θ dθ dφ,

where θ ∈ [0, π] and φ ∈ [0, 2π) are the angles in the spherical coordinates. The corresponding
point on the unit sphere in R3 has coordinates

(x, y, z) := (sin θ cosφ, sin θ sinφ, cos θ) ∈ R3.

This corresponds to the pure state

|ψ(θ, φ)⟩ :=
(

cos θ2
eiφ sin θ

2

)
∈ C2,

as can be seen by comparing the density matrix ρ(θ, φ) := |ψ(θ, φ)⟩⟨ψ(θ, φ)| with

ρ(x, y, z) :=
1

2
(I + xX + yY + zZ) =

1

2

(
1 + z x− iy
x+ iy 1− z

)
.

By explicitly evaluating the integral from Lemma 13.11 with n = d = 2 we get

(
2 + 2− 1

2

)
1

4π

∫ π

θ=0

∫ 2π

φ=0
ρ(θ, φ)⊗2 sin θ dθ dφ =

1

2




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 = Π2,

which agrees with the matrix in Example 13.4.

13.3 The quantum de Finetti theorem

If |ΦA1···An⟩ ∈ Symn(H) then all its two-party reduced density matrices ΦAiAj , i ̸= j, are identical.
If a given mixed state ρAA′ can be extended to such symmetric pure state |ΦA1···An⟩, for some
large value of n, then ρAA′ must be very close to separable (in fact, the distance goes to zero as
n→ ∞). This is made rigorous by the quantum de Finetti theorem.

Theorem 13.13 (Quantum de Finetti theorem). Let k ≥ 1, n ≥ 0, and consider k + n systems
A1 · · ·Ak+n, each of dimension d ≥ 2. For any |Φ⟩ ∈ Symk+n(Cd), there exists a probability
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density function p on pure states in Cd such that

1

2

∥∥∥∥ΦA1···Ak
−
∫
dψ p(ψ) (|ψ⟩⟨ψ|)⊗k

∥∥∥∥
1

≤
√

dk

k + n
, (13.7)

where ΦA1···Ak
= TrAk+1···Ak+n

[
|Φ⟩⟨Φ|

]
.

Remark 13.14. While the definition of bipartite separable states involves a finite sum, not an
integral (see Definition 3.1), by Carathéodory’s theorem an integral

∫
dx p(x) ρA(x)⊗ ρB(x) can

always be converted to a finite sum (as long as the dimensions of both systems are finite). In
particular, one can always write it as

∑
i∈I pi ρA,i ⊗ ρB,i where |I| ≤ r2 and r is the rank of the

separable state that is being represented. A similar argument can also be used for multi-partite
states to replace the integral in Eq. (13.7) by a finite sum.

Proof. Recall from Eq. (13.5) that (IA1···Ak
⊗Πn)|Φ⟩ = |Φ⟩, so

ΦA1···Ak
= TrAk+1···Ak+n

[
|Φ⟩⟨Φ|

]

= TrAk+1···Ak+n

[
(IA1···Ak

⊗Πn)|Φ⟩⟨Φ|
]

=

(
n+ d− 1

n

)∫
dψ TrAk+1···Ak+n

[(
IA1···Ak

⊗
(
|ψ⟩⊗n⟨ψ|⊗n

)
Ak+1···Ak+n

)
|Φ⟩⟨Φ|

]

=

(
n+ d− 1

n

)∫
dψ
(
IA1···Ak

⊗ ⟨ψ|⊗n
)
|Φ⟩⟨Φ|

(
IA1···Ak

⊗ |ψ⟩⊗n
)
, (13.8)

where we substituted the integral formula for Πn from Lemma 13.11 and then used the following
cyclic property of the partial trace:

TrB

[(
IA ⊗ |ψ⟩⟨ψ|B

)
ΦAB

]
=
(
IA ⊗ ⟨ψ|B

)
ΦAB

(
IA ⊗ |ψ⟩B

)
, (13.9)

which holds for any ΦAB ∈ L(HA ⊗HB) and unit vector |ψ⟩B ∈ HB (this identity follows from
Definition 2.8 by computing the partial trace in any basis that contains |ψ⟩).

Let us rewrite the integral in Eq. (13.8) as follows:

ΦA1···Ak
=

∫
dψ p(ψ) |Φψ⟩⟨Φψ|, (13.10)

where |Φψ⟩A1···Ak
∈ (Cd)⊗k and p are such that

√
p(ψ) |Φψ⟩ :=

√(
n+ d− 1

n

)(
IA1···Ak

⊗ ⟨ψ|⊗n
)
|Φ⟩. (13.11)

If we rescale |Φψ⟩ to a unit vector, p becomes a probability density function on pure states in Cd,
as can be seen by taking trace on both sides of Eq. (13.10). More specifically, p(ψ) is given by

p(ψ) :=

(
n+ d− 1

n

)∥∥(IA1···Ak
⊗ ⟨ψ|⊗n

)
|Φ⟩
∥∥2.

Let us compare the integral in Eq. (13.10) with Φ̃A1···Ak
=
∫
dψ p(ψ) |ψ⟩⊗k⟨ψ|⊗k, where p is

the same probability density function. Recall from Eq. (4.10) the formula 1
2∥|α⟩⟨α| − |β⟩⟨β|∥1 =√

1− |⟨α|β⟩|2 for the trace distance between pure states |α⟩ and |β⟩. Using triangle inequality
and then this formula,

1

2

∥∥∥ΦA1···Ak
− Φ̃A1···Ak

∥∥∥
1
≤
∫
dψ p(ψ)

1

2

∥∥∥|Φψ⟩⟨Φψ| − |ψ⟩⊗k⟨ψ|⊗k
∥∥∥
1
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=

∫
dψ p(ψ)

√
1− |⟨ψ|⊗k|Φψ⟩|2

≤
√∫

dψ p(ψ)
(
1− |⟨ψ|⊗k|Φψ⟩|2

)

=

√
1−

∫
dψ p(ψ) |⟨ψ|⊗k|Φψ⟩|2,

where we used Jensen’s inequality [Eq. (6.4)] to bring the integral underneath the square root, a
concave function.

For the rest of the proof, let us focus on bounding the integral. Note from Eq. (13.11) that

√
p(ψ) ⟨ψ|⊗k|Φψ⟩ =

√(
n+ d− 1

n

)(
⟨ψ|⊗k ⊗ ⟨ψ|⊗n

)
|Φ⟩

=

√(
n+ d− 1

n

)
⟨ψ|⊗k+n|Φ⟩.

Hence,
∫
dψ p(ψ)

∣∣⟨ψ|⊗k|Φψ⟩
∣∣2 =

(
n+ d− 1

n

)∫
dψ ⟨Φ|

(
|ψ⟩⟨ψ|⊗k+n

)
|Φ⟩

=

(
n+ d− 1

n

)(
k + n+ d− 1

k + n

)−1

⟨Φ|Πk+n|Φ⟩

=

(
n+ d− 1

n

)(
k + n+ d− 1

k + n

)−1

,

where we used the integral formula from Lemma 13.11 and then the assumption |Φ⟩ ∈ Symk+n(Cd)
which implies that Πk+n|Φ⟩ = |Φ⟩.

The ratio of the two binomial coefficients can be expressed as follows:

(
n+ d− 1

n

)(
k + n+ d− 1

k + n

)−1

=
(n+ d− 1)!

n!����(d− 1)!
· (k + n)!����(d− 1)!

(k + n+ d− 1)!

=
(n+ d− 1)!

n!
· (k + n)!

(k + n+ d− 1)!

=
(n+ d− 1) · · · (n+ 1)

(k + n+ d− 1) · · · (k + n+ 1)
.

Note that a+1
b+1 − a

b = b−a
b(b+1) ≥ 0 when b ≥ a, so a+1

b+1 ≥ a
b and hence

n+ d− 1

k + n+ d− 1
· · · n+ 1

k + n+ 1
≥
(

n+ 1

k + n+ 1

)d−1

=

(
1− k

k + n+ 1

)d−1

≥ 1− (d− 1)
k

k + n+ 1

≥ 1− dk

k + n
,
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where we used (1− α)x ≥ 1− αx for α ∈ (0, 1) and x ≥ 1. Putting everything together,

1

2

∥∥∥ΦA1···Ak
− Φ̃A1···Ak

∥∥∥
1
≤
√
1−

∫
dψ p(ψ) |⟨ψ|⊗k|Φψ⟩|2

=

√
1−

(
n+ d− 1

n

)(
k + n+ d− 1

k + n

)−1

≤
√

dk

k + n
,

which is the desired bound.

13.4 Exercises

13.1 Symmetric subspace:

(a) Write out Π2 and Π3.
(b) Example 13.4 gives a basis for Sym2(C2). Write down bases of Sym2(Cd) and Sym3(C2).
(c) Verify that RπRτ = Rπτ and R†

π = Rπ−1 , for all π, τ ∈ Sn.
(d) Verify that Πn = 1

n!

∑
π∈Sn

Rπ is the orthogonal projection onto the symmetric subspace.

13.2 Integral formula: In this exercise you can prove the integral formula:

Πn =

(
n+ d− 1

n

)∫
|ψ⟩⊗n⟨ψ|⊗ndψ =: Π̃n

(a) Show that Π̃n = ΠnΠ̃n.
(b) Use the very important Lemma 13.10 to show that Π̃n =

∑
π cπRπ for suitable cπ ∈ C.

(c) Use parts (a) and (b) to prove the integral formula. That is, show that Π̃n = Πn.

13.3 First moment of Haar measure: There is a unique probability measure dU on the
unitary operators U(H) that is invariant under U 7→ V UW for every pair of unitaries V,W .
It is called the Haar measure. Its defining property can be stated as follows: For every
continuous function f on U(H) and for all unitaries V,W ∈ U(H), it holds that

∫
f(U) dU =∫

f(V UW ) dU . Now let M ∈ L(H).

(a) Argue that
∫
UMU †dU commutes with all unitaries.

(b) Deduce that
∫
UMU †dU = Tr[M ] Id , where d = dimH.

(c) Generalize this to
∫
(UA ⊗ IB)MAB(UA ⊗ IB)

†dUA = TrA[MAB ]
IA
dA

⊗MB , where MAB ∈
L(HA ⊗HB).

13.4 � De Finetti theorem and quantum physics: Given a Hermitian operator h on Cd⊗Cd,
consider the operator H = 1

n−1

∑
i ̸=j hi,j on (Cd)⊗n, where hi,j acts by h on subsystems i

and j and by the identity on the remaining subsystems (e.g., h1,2 = h⊗ I⊗(n−2)).

(a) Show that E0
n ≤ 1

n⟨ψ⊗n|H|ψ⊗n⟩ = ⟨ψ⊗2|h|ψ⊗2⟩ for every pure state ψ on Cd.

Let E0 denote the smallest eigenvalue of H and |E0⟩ a corresponding eigenvector. If the
eigenspace is one-dimensional and n > d then |E0⟩ ∈ Symn(Cd) (you do not need to show
this).

(b) Use the de Finetti theorem to show that E0
n ≈ min∥ψ∥=1⟨ψ⊗2|h|ψ⊗2⟩ for large n.
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Interpretation: The Hamiltonian H describes a mean-field system. Your result shows that
in the thermodynamic limit the ground state energy density can be computed using states of
form ψ⊗n.

13.5 Rényi-2 entropy: In this problem you will study a new entropy measure called the Rényi-2
entropy. It is defined by H2(ρ) := − log Tr[ρ2] for any quantum state ρ ∈ D(Cd).

(a) Find a formula for H2(ρ) in terms of the eigenvalues of ρ.
(b) Show that H2(ρ) ≤ H(ρ) by using Jensen’s inequality.
(c) Show that Tr[ρ2] = Tr[Fρ⊗2], where F : |i⟩ ⊗ |j⟩ 7→ |j⟩ ⊗ |i⟩ for all i, j ∈ {1, . . . , d}, is

the swap operator.

13.6 Average entanglement: In this exercise you will study the average entanglement of a
random pure state in HA⊗HB drawn from the uniform distribution dψAB discussed in class.
Recall that the entanglement entropy of a pure state |ψAB⟩ is given by H(ρA) = H(ρB),
where ρA and ρB are the reduced states of |ψAB⟩.

(a) Let FAA, FBB denote the swap operators on H⊗2
A , H⊗2

B and let dA = dimHA, dB =
dimHB. Use the integral formula for the symmetric subspace to deduce that

∫
|ψAB⟩⊗2⟨ψAB|⊗2 dψAB =

1

dAdB(dAdB + 1)
(IAA ⊗ IBB + FAA ⊗ FBB) .

(b) Verify that
∫
Tr[ρ2A] dψAB = dA+dB

dAdB+1 .
(c) Show that the average Rényi-2 entropy H2(ρA) for a random pure state |ψAB⟩ is at

least log(min(dA, dB))− 1. Conclude that the same holds for the entanglement entropy.

Hint: Use Exercise 13.5 and Jensen’s inequality.

13.7 Second moment of Haar measure: In Exercise 13.3, we discussed the Haar measure
on U(H), which is the unique probability measure dU with the following property: For
every continuous function f on U(H) and for all unitaries V,W ∈ U(H), it holds that∫
f(U) dU =

∫
f(V UW ) dU .

(a) Argue that, for any operator A ∈ L(H⊗n), the so-called twirl
∫
U⊗nAU †⊗n dU can always

be written as a linear combination of permutation operators Rπ, π ∈ Sn.
(b) Deduce that

∫
U⊗2AU †⊗2 dU = αI + βF for every A ∈ L(H⊗2), where F is the swap

operator on H⊗2, α = d
d3−d Tr[A]− 1

d3−d Tr[FA], and β = d
d3−d Tr[FA]− 1

d3−d Tr[A].

13.8  Practice: Let |ψAB⟩ ∈ CdA ⊗ CdB be a pure state and ρA = TrB
[
|ψAB⟩⟨ψAB|

]
its

reduced state on system A. We would like to understand how the entropy H(ρA) behaves
when |ψAB⟩ is chosen uniformly at random. More specifically, let us fix dA = 3 and try to
understand how H(ρA) depends on the dimension dB of system B that is discarded.

(a) Compute the average value of H(ρA) over n = 50, 000 uniformly random samples of
|ψAB⟩ when dB = 3 and when dB = 5.

(b) Produce a histogram for the values of H(ρA) over n = 50, 000 uniformly random samples
of |ψAB⟩ when dB = 3 and when dB = 5 (use bars of width 0.05 in the histogram).

To generate a uniformly random unit vector |ψ⟩ in Cd, write |ψ⟩ =
∑d

j=1 ψj |j⟩ and set
ψj = aj + ibj where each aj and bj is a real random variable chosen independently from the
normal distribution of mean value zero and variance one. Once all amplitudes are chosen,
you simply normalize the state so that it is a unit vector.
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13.9 2-Extensions: A 2-extension of a state ρAB ∈ D(HA ⊗HB) is a state σAB1B2 ∈ D(HA ⊗
HB ⊗HB) such that σAB1 = σAB2 = ρAB.

(a) Show that the states ρAB = |00⟩⟨00| and ρ′AB = 1
2 |00⟩⟨00|+ 1

2 |11⟩⟨11| have 2-extensions.
(b) Show that the maximally entangled state |τAB⟩ = 1√

2
(|00⟩+ |11⟩) has no 2-extension.

(c) Show that if ρAB has a 2-extension then so does ρAnBn := ρ⊗nAB ∈ D(H⊗n
A ⊗H⊗n

B ) for
any n ≥ 1.

Let Φ ∈ C(HA⊗HB, H̃A⊗H̃B) be a 1-way LOCC channel from Alice to Bob, i.e., a channel
of the form

Φ(X) =
∑

x∈Σ

(
Sx ⊗ Tx

)
(X) ∀X ∈ L(HA ⊗HB),

where {Sx}x∈Σ ⊆ CP(HA, H̃A) is an instrument and Tx ∈ C(HB, H̃B) is a channel for each
x ∈ Σ.

(d) Show that if ρAB has a 2-extension then so does Φ(ρAB).
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