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Summary

This course gives an introduction to the mathematics of quantum information.

Notation

• H – Hilbert space, Section 1.1
• L(H,H ′) – linear operators fromH to H ′, Eq. (1.4)
• PSD(H) – positive semidefinite operators on H, Eq. (1.6)
• D(H) – quantum states onH, Definition 1.6
• |Φ+

AB〉 – maximally entangled state, Eq. (2.17)
• U(H) – unitary operators onH, Eq. (2.20)
• U(H,K) – isometries fromH to K, Eq. (2.21)
• ‖x‖1 – `1-norm of vectors, Definition 6.2
• ‖M‖1 – trace norm of operatorM, Eq. (3.1)
• ‖M‖2 – Frobenius norm of operatorM, Eq. (3.2)
• 〈M,N〉HS – Hilbert-Schmidt inner product, Eq. (3.3)
• ‖M‖∞ – operator norm ofM, Eq. (3.4)
• T(p, q) – trace distance between distributions p and q, Definition 6.2
• T(ρ, σ) – trace distance between states ρ and σ, Definition 3.1
• F(ρ, σ) – fidelity between states ρ and σ, Definition 3.2
• CP(HA,HB) – completely positive maps fromHA to HB, Definition 3.8
• C(HA,HB) – quantum channels fromHA toHB, Definition 3.8
• JΦAB – Choi operator of ΦA→B, Eq. (4.1)
• ∆ – completely dephasing channel, Eq. (4.3)
• P(Σ) – probability distributions on Σ, Eq. (5.1)
• H(p), H(X), H(X)p – Shannon entropy, Definitions 5.1 and 5.3
• Tn,ε(p) – typical set, Definition 5.8
• H(ρ), H(A), H(A)ρ – von Neumann entropy, Definitions 6.1 and 7.1
• F(T, ρ) – channel fidelity of channel T and state ρ, Definition 6.5
• Sn,ε(ρ) – typical subspace, Definition 6.9
• I(A : B)ρ – mutual information of state ρAB, Definition 7.2
• χ({px, ρx}) – Holevo χ-quantity of ensemble {px, ρx}, Definition 8.1
• D(p‖q) – relative entropy of distribution p with respect to distribution q, Definition 8.4
• D(ρ‖σ) – quantum relative entropy of state ρwith respect to state σ, Definition 8.5
• |Φzx〉 – Bell states, Eq. (9.1)
• Sep(HA ⊗HB) – separable operators onHA ⊗HB, Definition 9.4
• SepD(HA ⊗HB) – separable states onHA ⊗HB, Definition 9.4
• SepCP(HA,HC : HB,HD) – separable completely positive maps from A : B to C : D,

Definition 10.1
• SepC(HA,HC : HB,HD) – separable quantum channels, Definition 10.1
• |MAB〉 – vectorization ofM ∈ L(HA,HB), Definition 10.2
• Entr(HA : HB) – operators of entanglement rank at most r on HA ⊗HB, Definition 10.4
• LOCC(HA,HC : HB,HD) – LOCC channels from A : B to C : D, Definition 10.8
• u � v – majorization of vectors, Definition 11.3
• A � B – majorization of Hermitian operators, Definition 11.7
• ED(ρ) – distillable entanglement of ρ, Definition 12.1
• EC(ρ) – entanglement cost of ρ, Definition 12.2
• Symn(H) – symmetric subspace ofH⊗n, Definition 13.1
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Lecture 1

Introduction to the formalism of
quantum information theory

This course gives an introduction to the mathematical theory of quantum information. We
will learn the basic formalism and toolbox that allows us to reason about states, channels, and
measurements, discuss important notions such as entropy and entanglement, and see how
these can be applied to solve fundamental mathematical problems that relate to the storage,
estimation, compression, and transmission of quantum information.

To make this concrete, suppose that we would like to transmit a message through a
communication channel (think of an optical fiber with some loss). To achieve this, we might try
to encode our messagem into a quantum state ρm, which we then send through the channel.
The receiver receives some noisy state ρ̃m and wants to apply a measurement that allows them
to recovermwith high probability. This situation is visualized in the following figure:

What is the optimal way of encoding the message when the channel is quantum mechanical? To
even make sense of this question, we first have to learn how to mathematically model quantum
states and channels. We will do so in the first weeks of the course. In the remainder of the
course, we will learn a variety of mathematical tools that will eventually allow us to attack
information processing problems such as the above.

1.1 Hilbert space and Dirac notation

Today, we start with an introduction to the axioms (rules, laws, postulates) of quantum
information. Some of the axioms may look differently from (or more general than) what you
remember from a previous course on quantum mechanics, and we will discuss this carefully.
The first axiom is the following:

Axiom 1.1 (System). To every quantum system, we associate a Hilbert spaceH.

Throughout this course we will restrict to finite-dimensional Hilbert spaces. Recall that a
finite-dimensional Hilbert space is nothing but a complex vector space together with an inner
product, which we denote by 〈φ|ψ〉. We will always take our inner product to be anti-linear in
the first argument! Any Hilbert space carries a natural norm, defined by ‖ψ‖ :=

√
〈ψ|ψ〉.
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Throughout this course we will use Dirac’s “bra-ket” notation, with “kets” |ψ〉 denoting
vectors in H and “bras” 〈ψ| denoting the corresponding dual vector in H∗, i.e., 〈ψ| := 〈ψ|·〉. The
latter means that 〈ψ| is the linear functional that sends a vector |φ〉 to the inner product 〈ψ|φ〉.
Thus, “bra” and “ket” together give the inner product 〈ψ|φ〉 = 〈ψ||φ〉. A unit vector is a
vector |ψ〉whose norm (or norm squared) is equal to one, i.e., 〈ψ|ψ〉 = 1.

A well-known example is the Hilbert space H = Cd with the standard inner product
〈φ|ψ〉 =

∑d
i=1φiψi and norm ‖ψ‖ = (

∑d
i=1|ψi|

2)1/2. Any d-dimensional Hilbert space can be
identified with Cd by choosing an orthonormal basis. When we speak of a basis of a Hilbert
space we always mean an orthonormal basis. The following compares Dirac notation with the
corresponding expression in coordinates.

|ψ〉 =

ψ1...
ψd

 , 〈ψ| =
(
ψ1 · · · ψd

)
,

〈φ|ψ〉 =
d∑
i=1

φiψi, |ψ〉〈φ| =

ψ1φ1 . . . ψ1φd
...

...
ψdφ1 . . . ψdφd


As a first nontrivial example of using Dirac notation, let |ψ〉 be a unit vector. Then

P = |ψ〉〈ψ| (1.1)

is the orthogonal projection (‘projector’) onto the one-dimensional space C|ψ〉. For this, we only
need to verify that P|ψ〉 = |ψ〉〈ψ|ψ〉 = |ψ〉, since 〈ψ|ψ〉 = ‖ψ‖2 = 1, while P|φ〉 = |ψ〉〈ψ|φ〉 = 0
for any |φ〉 that is orthogonal to |ψ〉. From this, it is also clear that∑

i

|ei〉〈ei| = I (1.2)

is the identify operator for any choice of orthonormal basis |ei〉. Another useful formula is that
the trace of any X ∈ L(H) can be calculated as follows:

Tr[X] =
∑
i

〈ei|X|ei〉. (1.3)

Indeed, the right-hand side terms are just the diagonal entries of Xwhen represented as a matrix
with respect to the basis |ei〉. Practice Problem 1.1 allows you to sharpen your Dirac notation
skills some more.

In quantum information, it is often useful to work with Hilbert spaces that have a privileged
basis. Given a finite set Σ, we denote by CΣ the Hilbert space with orthonormal basis {|x〉}x∈Σ.
Thus, 〈x|y〉 = δx,y. Note that the inner product is fully specified by this requirement. We will
call the basis {|x〉} the standard basis of CΣ.
Remark 1.2. You may also can think of CΣ as the vector space of functions Σ→ C, equipped with the
inner product 〈f|g〉 :=

∑
x∈Σ f(x)g(x). In this picture, the standard basis vector |x〉 corresponds to the

function fx : Σ→ C, fx(y) = δx,y which sends x to 1 and all other y ∈ Σ \ {x} to 0.
The simplest quantum system is the qubit – short for quantum bit. It corresponds to the

two-dimensional Hilbert space H = CΣ, where Σ = {0, 1}. We will always identify H ∼= C2
using the standard basis, so that

|0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
.

These two vectors together make up a classical bit inside a quantum bit: {0, 1} 3 x 7→ |x〉 ∈ C2.
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1.2 Operators on Hilbert space

Throughout these lectures we will often deal with operators on Hilbert spaces, so it is useful to
introduce some notation and recall some concepts that you might remember from your linear
algebra class. For Hilbert spacesH and K, define

L(H,K) := {A : H→ K linear}, L(H) := L(H,H) = {A : H→ H linear}. (1.4)

Recall that any operator A ∈ L(H,K) has an adjoint. This is the operator A† ∈ L(K,H) defined
by the property that

〈φ|A†|ψ〉 = 〈ψ|A|φ〉 ∀|φ〉 ∈ H, |ψ〉 ∈ K.

If you write A as a matrix with respect to an orthonormal basis, then the adjoint is given by the
conjugate transpose matrix: A† = AT = (A)T .

Remark 1.3. Note that this is the same rule that we used to go from a ‘ket’ to the corresponding ‘bra’.
Indeed, if we think of |ψ〉 ∈ H as an operator C→ H then it is not hard (but slightly confusing) to verify
that 〈ψ| = |ψ〉† – so this makes perfect sense!

Next, we say that an operator A ∈ L(H) is Hermitian if A = A†. Hermitian operators satisfy
the important spectral theorem, which asserts that they are diagonalizable with real eigenvalues
and orthonormal eigenvectors. Using Eq. (1.1), we can write the eigendecomposition in the
following way:

A =
∑
i

ai|ψi〉〈ψi|, (1.5)

where the ai are real numbers (the eigenvalues) and the |ψi〉 form an orthonormal basis (of
eigenvectors). Conversely, any operator of this form is necessarily Hermitian with eigenvectors
|ψi〉 and eigenvalues ai. This can be seen by verifying that

A|ψj〉 =
∑
i

ai|ψi〉〈ψi|ψj〉 =
∑
i

ai|ψi〉δi,j = aj|ψj〉.

The set of Hermitian operators forms a real vector space of dimension d2, where d = dimH.
We now come to a central definition. We say that an operator A is positive semidefinite (PSD)

if A is Hermitian and its eigenvalues are nonnegative. Thus A can be written as in Eq. (1.5)
with ai > 0. It is not easy to verify this definition directly, since in general it can be difficult to
compute the eigenvalues of a given matrix. To this end, the following criterion is useful:

Lemma 1.4 (When is an operator positive semidefinite?). For an operator A ∈ L(H), the following
three conditions are equivalent:

1. A is PSD.

2. A = B†B for some arbitrary B ∈ L(H,K) and Hilbert space K.

3. 〈ψ|A|ψ〉 > 0 for all |ψ〉 ∈ H.

You can prove this in Practice Problem 1.2, which gives some further useful critera for positive
semidefiniteness.
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Positive semidefinite operators are so important that we will give them their own notation
and define

PSD(H) = {A ∈ L(H) : A positive semidefinite}. (1.6)

This is a convex set – see Practice Problem 1.3.
We will moreover write A > B or B 6 A iff A − B ∈ PSD(H). This defines a partial order

on L(H). For example, A > 0means simply that A is positive semidefinite, while A 6 I states
that I−A is positive semidefinite, i.e., A is Hermitian and has eigenvalues less or equal to one.
See Practice Problem 1.4 for more detail.

Remark 1.5 (Operators vs. numbers). It is useful to think of the Hermitian operators as the operator
counterpart of the real numbers R, and the PSD operators as the operator counterpart of the nonnegative
numbers R>0. In fact, this is exactly what you obtain for H = C. For example, the characterization
A = B†B of PSD operators generalizes the statement that the nonnegative numbers are precisely the
absolute values squared of arbitrary complex numbers: a ∈ R>0 iff a = b̄b = |b|2 for some b ∈ C.

1.3 States

We will now discuss the state space of quantum systems.

Definition 1.6 (State). A (quantum) state, density operator, or density ‘matrix’ is by definition
a semidefinite operator with trace one. We denote by D(H) = {ρ ∈ PSD(H),Tr[ρ] = 1} the set of all
quantum states.

Axiom 1.7 (State space). The state space of a quantum system with Hilbert space H is given by D(H).

By the spectral theorem for Hermitian operators [Eq. (1.5)], any quantum state can be written in
the form

ρ =
∑
i

pi|ψi〉〈ψi|, (1.7)

with eigenvalues pi and orthonormal eigenvectors |ψi〉. Since ρ is positive semidefinite, all
pi > 0, and since Tr[ρ] = 1,

∑
i pi = 1. Thus, the eigenvalues (pi) form a probability distribution!

It is useful to distinguish some special classes of states:

• We say that ρ is a pure quantum state if it is of the form ρ = |ψ〉〈ψ| for some unit vector
|ψ〉 ∈ H. Those are precisely the states of rank one – equivalently, the states that have one
nonzero eigenvalue (which is then necessarily equal to 1). Thus, Eq. (1.7) shows that any
state can be written as a mixture of pure states.
Note that the pure states are in one-to-one correspondence with unit vectors, up to an
overall phase (i.e., |ψ〉 and eiθ|ψ〉 give rise to the same pure state). You may remember
this from your physics class. Mathematically, the space of pure states is a projective space.

• Quantum states that are not pure are often called mixed. In particular, on every Hilbert
spaceH we always have a maximally mixed state

τ =
I

d
, d = dimH.

Its eigenvalues form a uniform probability distribution (1/d, . . . , 1/d).
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• Given an arbitrary probability distribution (px)x∈Σ on some finite set Σ, we can define a
corresponding quantum state onH = CΣ:

ρ =
∑
x∈Σ

px|x〉〈x|. (1.8)

Such quantum states are called classical. With respect to the standard basis, classical states
corresponding precisely to diagonalmatrices.

The set of quantum states D(H) is convex. This follows easily from the convexity of PSD(H),
and you can prove this in Practice Problem 1.3. Convexity means that for any two states σ,ω
and p ∈ [0, 1], the operator ρ = pσ+ (1− p)ω is again a state. More generally, for any ensemble
{qj, ρj} of quantum states – i.e., (qj) is a probability distribution and the ρj are states – the
mixture

ρ =
∑
j

qjρj (1.9)

is again a quantum state. We caution that, in general, Eq. (1.9) has nothing to do with the
eigendecomposition (the ρj need neither be pure nor pairwise orthogonal).

The fact that the state space is convex is a very useful property. For example, suppose that
we have a machine that emits the state ρj with probability qj. Then it is natural to describe its
average state by Eq. (1.9).

The following picture shows three convex sets:

The first has a round boundary, while the latter two have some ‘flat’ boundary pieces. What
does the convex set of quantum states look like? To get more intuition we consider the case of a
qubit.

1.4 Qubit and Bloch sphere

In this section we will study the geometry of D(C2) – the state space of a single qubit. We start
by observing that the four Pauli matrices

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
(1.10)

are linearly independent and form a basis of the real vector space of Hermitian 2× 2-matrices.
Indeed, a 2× 2matrix is Hermitian iff its diagonal entries are real and its top-right entry is the
complex conjugate of its bottom-left entry. Note that X, Y, Z are traceless, while Tr[I] = 2. As a
consequence, we see that

ρ =
1

2

(
I+ xX+ yY + zZ

)
=
1

2

(
1+ z x− iy
x+ iy 1− z

)
, where~r =

xy
z

 ∈ R3, (1.11)

is the most general form of a Hermitian 2× 2-matrix with Tr[ρ] = 1. So far, the Bloch vector~r is
completely arbitrary. When is ρ a quantum state? We will need to ensure that ρ is PSD, i.e., has
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nonnegative eigenvalues. Since Tr[ρ] = 1, its eigenvalues are given by p, 1− p for some p ∈ R.
A moments thought shows that p > 0 and 1 − p > 0 if and only if p(1 − p) > 0 (since p and
1− p cannot both be negative). But precisely this product is computed by the determinant:

p(1− p) = det(ρ) = 1

4
((1+ z)(1− z) − (x+ iy)(x− iy)) =

1

4

(
1− x2 − y2 − z2

)
=
1

4

(
1− ‖~r‖2

)
.

Thus, ρ is a quantum state if and only if ‖~r‖ 6 1. Thus we have shown that the state space of a
qubit can be identified with the unit ball in R3 – which is known as the Bloch ball and clearly
convex.

When is ρ a pure state? This is the case precisely when p(1− p) = 0 (one eigenvalue is zero
and the other is one), i.e., when ‖~r‖ = 1, i.e., when~r is in the Bloch sphere of radius one.

We summarize our findings in the following lemma.

Lemma 1.8 (Bloch ball). Any qubit state ρ ∈ D(C2) can be written in the form

ρ =
1

2
(I+ xX+ yY + zZ) ,

where~r =
(
x
y
z

)
is an arbitrary vector of norm ‖~r‖ 6 1. Moreover, ρ is pure if and only if ‖~r‖ = 1.

The following picture gives a rough sketch of the situation:

The north and south poles have Bloch vectors

~r0 =

00
1

 , ~r1 =

 0

0

−1

 ,
which correspond [via Eq. (1.11)] to the pure states

|0〉〈0| =
(
1 0

0 0

)
, |1〉〈1| =

(
0 0

0 1

)
.

More generally, the Bloch vectors on the blue line segment between north and south pole
correspond to the classical states

ρ = p|0〉〈0|+ (1− p)|1〉〈1| =
(
p 0

0 1− p

)
. (1.12)

In particular, the origin of the Bloch ball corresponds to the maximally mixed qubit state τ = I/2,
with Bloch vector~r = 0. Can you figure out the pure states that corresponding to the ‘east’ and
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‘west poles’, as well as to the ‘front’ and ‘back poles’? You can learn more about the Bloch sphere
in Practice Problem 1.5. In particular, you may prove there that the components of the Bloch
vector~r can be calculated by

x = Tr[Xρ], y = Tr[Yρ], z = Tr[Zρ].

1.5 Measurements

The discussion so far has been slightly formal, since we did not yet discuss the rules for getting
information out of a quantum system. For this we need the notion of a measurement.

Definition 1.9 (Measurement). Ameasurement or POVM (short for positive operator valued measure)
on a Hilbert space H with outcomes in some finite setΩ is a function

µ : Ω→ PSD(H) such that
∑
ω∈Ω

µ(ω) = I. (1.13)

When we apply a measurement µ to a quantum system in some state ρ, the outcome will be an
elementω ∈ Ω. We will often draw pictures such as the following to illustrate this situation:

Importantly, the measurement outcome ω will in general be random (even if we know µ and
ρ precisely). In this sense, quantum mechanics is a probabilistic theory. How can we calculate
the probability of measurement outcomes? For this we use the following axiom, which is often
referred to as Born’s rule.

Axiom 1.10 (Born’s rule). If we measure a quantum system in state ρ ∈ D(H) using a measurement µ,
then the probability of outcomeω ∈ Ω is given by Born’s rule:

Pr(outcomeω|state ρ) = Tr[µ(ω)ρ] (1.14)

Let us verify that Born’s rule in Eq. (1.14) defines a probability distribution. Indeed, Tr[µ(ω)ρ] > 0
(since the trace of a product of two PSD operators is always nonnegative) and∑

ω∈Ω
Tr[µ(ω)ρ] = Tr[

∑
ω∈Ω

µ(ω)ρ] = Tr[ρ] = 1,

where we first use that the elements µ(ω) sum to the identify operator [Eq. (1.13)] and then that
quantum state have trace one. Thus, Born’s rule makes sense.

Remark 1.11 (Measurements vs. observables). If you have attended a course in quantum mechanics,
you may know the notion of an observable, which is another way to think about measurements. On
Practice Problem 2.6 you can explore how these two notions are related. Namely, observables correspond
precisely to projective measurements (as defined below) that take outcomes in the reals (i.e.,Ω ⊆ R).

Remark 1.12 (After the measurement?). You may wonder what happens to the quantum state after the
measurement – perhaps you remember from your quantum mechanics course that the post-measurement
state ‘collapses’ or something similar. At this point we do not want to make any statement about this. For
now we will simply assume that the quantum state is ‘gone’ after the measurement – as in the figure above.
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Just like we did for states, it is useful to single out some special classes of measurement:
• We say that a measurement is projective if all µ(ω) are orthogonal projections. Recall that

this means µ(ω)2 = µ(ω) = µ(ω)† for eachω ∈ Ω. It is not directly obvious, but true that
this implies that µ(ω)µ(ω ′) = 0 for allω 6= ω ′ ∈ Ω.

• Given an orthonormal basis {|ψω〉}ω∈Ω, we can always define a projective measurement
as follows. Define the basis measurement in basis {|ψω〉}ω∈Ω as the following measurement,

µ : Ω→ PSD(H), µ(ω) = |ψω〉〈ψω|,

with outcomes inΩ. Note that Born’s rule can be rewritten as follows:

Pr(outcomeω|state ρ) = Tr[µ(ω)ρ] = Tr[|ψω〉〈ψω|ρ] = 〈ψω|ρ|ψω〉.

• In particular, we can always consider the standard basis measurement onH = CΣ:

µ : Σ→ PSD(H), µ(x) = |x〉〈x|,

with outcomes in Σ. The probabilites of measurement outcomes are given by

Pr(outcome x|state ρ) = 〈x|ρ|x〉.

In particular, if ρ = |Ψ〉〈Ψ| is a pure state then

Pr(outcome x|state Ψ) = 〈x|Ψ〉〈Ψ|x〉 = |〈x|Ψ〉|2 = |Ψx|
2,

wherewe note that 〈x|Ψ〉 is the same as the componentΨxwhen expanding |Ψ〉 =
∑
x Ψx|x〉

with respect to the standard basis. If you attend Ronald de Wolf’s quantum computing
course then this formula will look very familiar to you!

For a qubit, C2, the standard basis is {|0〉, |1〉}, so the standard basis measurement reads

µStd : {0, 1}→ PSD(C2), x 7→ |x〉〈x|.

Another basis of C2 is the so-called Hadamard basis {|+〉, |−〉}, where

|±〉 = 1√
2
(|0〉 ± |1〉) = 1√

2

(
1

±1

)
.

The Hadamard basis measurement is defined by

µHad : {0, 1}→ PSD(C2), µHad(0) = |+〉〈+|, µHad(1) = |−〉〈−|.

Suppose for example that our qubit is in state ρ = |0〉〈0| and we carry out the standard basis
measurement. Then the probability of outcome ‘0’ is given by

pStd(0) = 〈0|ρ|0〉 = |〈0|0〉|2 = 1,

i.e., the measurement yields outcome ‘0’ with certainty (as one might expect). In contrast, if we
perform a Hadamard basis measurement then the probability of outcome ‘0‘ (corresponding to
state |+〉〈+|) is given by

pHad(0) = 〈+|ρ|+〉 = |〈+|0〉|2 = 1

2
,

so both outcomes are equally likely. Similarly, if ρ = |1〉〈1| then the standard basis measurement
always yields outcome ‘1’, while the Hadamard basis measurement is again completely random.
This shows that the standard and the Hadamard basis are in some way ‘complementary’ – if
our qubit is in a standard basis state then doing a Hadamard basis measurement reveals no
information at all. In Homework Problem 1.2, you will show an uncertainty relation which states
that there exists no quantum state for which both the standard and the Hadamard measurement
are certain.
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1.6 Distinguishing quantum states

Nowwe have learned all the quantum information formalism required to prove a first interesting
result. Suppose that we have a source that emits either of two states ρ0, ρ1 ∈ D(H) with 50%
probability each, as in the following picture:

Our goal is to design a measurement µ : {0, 1}→ PSD(H) that identifies the correct state as best
as possible. That is, we want to maximize the success probability

psuccess =
1

2
Pr(outcome 0|state ρ0) +

1

2
Pr(outcome 1|state ρ1) =

1

2
Tr[µ(0)ρ0] +

1

2
Tr[µ(1)ρ1]

over all possible measurements. How can we calculate the optimal success probability and find
the corresponding measurement? We will come back to this next week (see end of Lecture 2
and Homework Problem 2.2)!
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Lecture 2

Joint systems, reduced states,
purifications

Last week, we mathematically defined quantum states and measurements, and we discussed
that probabilities of measurement outcomes are computed by Born’s rule [Eq. (1.14)]. We saw
that states are described by ‘density operators’ – positive semidefinite operators with unit trace.
A basic distinction is between pure states ρ = |ψ〉〈ψ|, which correspond to unit vectors in Hilbert
space (up to overall phase), and mixed states, which cannot be written in this way. Why did we
care about mixed states? One reason is that they allow us to model probability distributions.
Indeed, if (px)x∈Σ is a probability distribution then we can associate with it the classical state
ρ =
∑
x px|x〉〈x| on H = CΣ [Eq. (1.8)]. More generally, we can use mixed states to model the

average state of an ensemble. For example, if a quantum device outputs a system in state ρj
with probability pj (the states ρj need not be pure or orthogonal), then we might describe the
average output of the device by the state ρ =

∑
j pjρj, which is generically mixed [Eq. (1.9)].

(If you have taken a course on quantum statistical physics then you will also have seen that
equilibrium states such as Gibbs states are naturally mixed states.)

Today, we will see another use for mixed states. If we have a composite system that consists
of two or more subsystems, then, even if the overall state is pure, the subsystems are typically
described by mixed states (see Eq. (2.15)). This phenomenon is closely related to the notion of
entanglement, which will be discussed in more detail next month.

Remark 2.1 (Why not restrict to pure states?). There is a more general philosophical point that is
worth mentioning. In quantum computing, we usually start out with a pure initial state, apply unitary
operations, and only at the very end carry out a basis measurement. This allows us to work with
vectors |ψ〉 rather than with density operators ρ. In contrast, in information theory we often deal with
uncertainty and noise. For this, it is more natural to work with mixed states. Similarly, instead of only
dealing with unitary operations, we will use the more general notion of a quantum channel, which can
send pure states to mixed states, which we will introduce next week. However, it is important to point
out that both formalisms are equivalent. For example, one of this lecture’s key points will be that we can
always think of mixed states in terms of subsystems of pure states (see Section 2.3 below), and we will see
that quantum channels can similarly be reduced to unitary operations on a larger system.

2.1 Joint or composite systems

Axiom 2.2 (Composing systems). For a quantum system composed of n subsystems with Hilbert spaces
H1, . . . ,Hn, the overall Hilbert space is given by the tensor productH = H1 ⊗ . . .⊗Hn.
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For example, a quantum system comprised of n qubits is described by the Hilbert space

H = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n factors

= (C2)⊗n

This space has a natural product basis |x1, . . . , xn〉 = |x1〉 ⊗ · · · ⊗ |xn〉, indexed by bitstrings x =
(x1, . . . , xn) ∈ {0, 1}n. We will often leave out the commas and simply write, e.g., |010〉 =
|0〉 ⊗ |1〉 ⊗ |0〉.

More generally, ifHi = CΣi for i = 1, . . . , n, then

H = H1 ⊗ · · · ⊗Hn

has a natural product basis |x1, . . . , xn〉 = |x1〉⊗· · ·⊗|xn〉, indexed byn-tuples x = (x1, . . . , xn) ∈
Σ = Σ1 × · · · × Σn. (Thus, H ∼= CΣ.)

What are possible states on a tensor-product Hilbert spaceH = H1 ⊗ · · · ⊗Hn?

• Given states ρ1, . . . , ρn, where ρi ∈ D(Hi), we can always form a so-called product state

ρ = ρ1 ⊗ · · · ⊗ ρn (2.1)

Here we use the tensor product of operators, rather than of vectors (see Remark 2.3 below
for a reminder).
You can think of the product states as the quantum generalization of joint probability
distribtions where the random variables are independent (which means that the probability
distribution factors as p(x1, . . . , xn) = p(x1) . . . p(xn)).

• Not all states are product states [i.e., of the form Eq. (2.1)]. States that are not product
states are called correlated. Here is an example of a correlated two-qubit state:

ρ =
1

2
|00〉〈00|+ 1

2
|11〉〈11| = 1

2
|0〉〈0|⊗ |0〉〈0|+ 1

2
|1〉〈1|⊗ |1〉〈1| = 1

2

(
1
0
0
1

)
(2.2)

To see the middle equality, remember that |00〉 = |0〉 ⊗ |0〉, so |00〉〈00| = (|0〉 ⊗ |0〉)(〈0| ⊗
〈0|) = |0〉〈0|⊗ |0〉〈0| etc. The right-hand side matrix is with respect to the product basis
|00〉, |01〉, |10〉, |11〉.
Note that Eq. (2.2) is a classical state – corresponding to a probability distribution of two
bits which are both equal to 0 or both equal to 1, with 50% probability each. Thus the
notion of correlations has nothing to do with quantum mechanics per se.

Remark 2.3 (Tensor product of operators). Let us recall the definition of the tensor product of operators
[already used in Eq. (2.1) above]. If X ∈ L(H1,K1) and Y ∈ L(H2,K2) are linear operators, then their
tensor product X⊗ Y is a linear operator in L(H1 ⊗H2,K1 ⊗K2) defined as follows:(

X⊗ Y
)(
|ψ〉 ⊗ |φ〉

)
:= X|ψ〉 ⊗ Y|φ〉 ∀|ψ〉 ∈ H1, |φ〉 ∈ H2. (2.3)

Note that this definition is not circular – we define the tensor product of operators in terms of the tensor
product of vectors. Note that Eq. (2.3) in particular implies that the matrix entries of X⊗ Y with respect
to product bases are given by

〈a, b|X⊗ Y|c, d〉 = 〈a|X|c〉〈b|Y|d〉.

Thus, if we think of operators as matrices then X ⊗ Y is simply given by the Kronecker product of the
matrices X and Y.
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An important special case is when one of the Hilbert spaces is one-dimensional. E.g., suppose that
H2 = C. In this case, the operators Y ∈ L(C,K2) can be identified with a vector |χ〉 ∈ K2 (in coordinates,
this means that a matrix with a single column is the same as a column vector), and the operator X⊗ |χ〉 in
L(H1,K1 ⊗K2) simply acts as (

X⊗ |χ〉
)
|ψ〉 = X|ψ〉 ⊗ |χ〉. (2.4)

(If alsoH1 = C then we simply recover the tensor product of vectors.)
Similarly, if K2 = C then Y ∈ L(H2,C) is nothing but a dual vector 〈χ| ∈ H∗2 (in coordinates, a

matrix with a single row is the same as a row vector), and the operator X⊗〈χ| in L(H1⊗H2,K1) acts as(
X⊗ 〈χ|

)(
|ψ〉 ⊗ |φ〉

)
= X|ψ〉 〈χ|φ〉 = 〈χ|φ〉X|ψ〉 (2.5)

Note that 〈χ|φ〉 ∈ C. In the middle formula, we right-multiply the vector X|ψ〉 by this number, while on
the right we left-multiply it. (If also K1 = C then recover the tensor product of dual vectors.)

If all this seems confusing to you, you can simply take Eqs. (2.4) and (2.5) as the definition of the
tensor product between an operator and a vector or covector.

Remark 2.4. It is not hard to see that generic quantum states are correlated. Here is a simple dimension
counting argument. Note that the space of Hermitian operators on a d-dimensional Hilbert space has real
dimension d2, likewise the space of PSD operators, so the space of density operators has dimension d2 − 1
(the condition that Tr ρ = 1 reduces the dimension by one). Now suppose for simplicity that each
Hi is d-dimensional, so that H = H1 ⊗ . . . ⊗ Hn has dimension dn. Then the space of density
operators has dimension d2n − 1, which grows exponentially with n, while the space of product states has
dimension n(d2 − 1), so grows only linearly with n (i.e., much slower).

When writing tensor products of vectors and operators, it can be confusing to remember
which tensor factors we are referring to. To simplify our life, we will henceforth adopt a notation
that is ubiquitious in the quantum information literature.

Definition 2.5 (Subscripts for subsystems). Fom now on we will always use subscripts to indicate
which subsystem some mathematical object refers to. Thus, we writeHAB = HA ⊗HB for the Hilbert
space of a quantum system comprised of two subsystems A and B, |ΨAB〉 for vectors in HAB, ρAB for
states in D(HAB), XB for linear operators onHB, and so forth.

2.2 Partial trace and reduced states

Suppose we are given a quantum state ρAB on a quantum system AB composed of two
subsystems A and B, with overall Hilbert spaceHAB = HA ⊗HB. Which state ρA should we
use to describe the state of subsystem A alone, say?

(By analogy, if p(x, y) is a joint probability distribution then we know that the distribution
of the first random variable is given by the marginal probability distribution p(x) =

∑
y p(x, y).

We are looking for the quantum counterpart of this definition.)
To answer this question we need more input from quantum theory:

Axiom 2.6 (Born’s rule for measuring a subsystem). If the quantum system AB is in state ρAB and
we want to measure µA : Ω→ PSD(HA) on subsystemA, then the probability of measurement outcomes
is calculated as follows:

Pr(outcomeω) = Tr
[
ρAB(µA(ω)⊗ IB)

]
(2.6)
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Note that this is precisely Born’s rule [Eq. (1.14)] for the following measurement on AB:

µA ⊗ IB : Ω→ PSD(HA ⊗HB), ω 7→ µA(ω)⊗ IB

We can now phrase our initial question more precisely: Given a state ρAB ∈ D(HA ⊗HB),
can we find a state ρA ∈ D(HA) such that

Tr
[
ρAB(µA(ω)⊗ IB)

]
= Tr

[
ρAµA(ω)

]
(2.7)

for all possibleΩ, measurements µA : Ω→ PSD(HA), and outcomesω ∈ Ω?
Note that Eq. (2.7) means that the state ρA reproduces the statistics of all possible measure-

ments on A – but contains no information about B (since it is a state on A alone). This is exactly
the kind of object that we are looking for. How can we find such a ρA? We first give the solution
and then verify that it does the job.

Definition 2.7 (Partial trace). The partial trace over B is the linear map TrB : L(HA⊗HB)→ L(HA)
defined as follows: For everyMAB ∈ L(HA ⊗HB),

TrB[MAB] :=
∑
b

(
IA ⊗ 〈b|

)
MAB

(
IA ⊗ |b〉

)
, (2.8)

where |b〉 is an arbitrary orthonormal basis of HB. Note that TrB[MAB] ∈ L(HA). Concretely, its
matrix entries with respect to an arbitrary orthonormal basis |a〉 of HA are given by:

〈a|TrB[MAB]|a
′〉 =
∑
b

〈a, b|MAB|a
′, b〉 (2.9)

See Eqs. (2.4) and (2.5) to remind yourself of the meaning of IA ⊗ 〈b| and IA ⊗ |b〉. Note that,
not only does the partial trace send operators to operators – but it is itself a linear operator!
Sometimes such maps are called superoperators. We now list some useful properties of the partial
trace.

1. For any operator of tensor product form, MAB = XA ⊗ YB, where XA ∈ L(HA) and
YB ∈ L(HB), we have

TrB[XA ⊗ YB] = XA Tr[YB] = Tr[YB]XA. (2.10)

This justifies the name partial trace (we take the trace of YB but leave XA untouched). To
prove Eq. (2.10), use Eq. (2.8) to see that

TrB[XA ⊗ YB] =
∑
b

(
IA ⊗ 〈b|

)(
XA ⊗ YB

)(
IA ⊗ |b〉

)
=
∑
b

XA〈b|YB|b〉 = XA Tr[YB].

(If the second step confuses you, apply |a〉 from the left and 〈a ′| from the right.)

2. For any two operatorsMAB and XA, whereMAB ∈ L(HA ⊗HB), XA ∈ L(HA), we have

Tr
[
MAB(XA ⊗ IB)

]
= Tr

[
TrB[MAB]XA

]
(2.11)
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Let us give a careful proof of this crucial identity:

Tr
[
MAB(XA ⊗ IB)

]
=
∑
a,b

(
〈a|⊗ 〈b|

)
MAB

(
XA ⊗ IB

)(
|a〉 ⊗ |b〉

)
=
∑
a,b

(
〈a|⊗ 〈b|

)
MAB

(
XA|a〉 ⊗ |b〉

)
=
∑
a,b

〈a|
(
IA ⊗ 〈b|

)
MAB

(
IA ⊗ |b〉

)
XA|a〉

=
∑
a

〈a|
∑
b

(
IA ⊗ 〈b|

)
MAB

(
IA ⊗ |b〉

)
XA|a〉

=
∑
a

〈a| TrB[MAB]XA|a〉 = Tr
[
TrB[MAB]XA

]
.

Here, we first evaluate the trace in an arbitrary product basis, next we use Eq. (2.3), then
Eqs. (2.4) and (2.5), and after moving the sum over b inside we recognize the definition of
the partial trace from Eq. (2.8).

Wenow recognize that the partial trace indeed solves our problem. SimplydefineρA := TrB[ρAB].
Then Eq. (2.7) as a direct consequence of Eq. (2.11) [chooseMAB = ρAB and XA = µA(ω)]. This
calls for its own definition and notation:

Definition 2.8 (Reduced states). Given a state ρAB on AB, we define its reduced state on subsystem
A by ρA := TrB[ρAB]. Similarly, we define the reduced state on subsystem B by ρB := TrA[ρAB].

We use the same notation for three or more subsystems. For example, if ρABC is a state on three
subsystems ABC, then we denote its reduced states by ρAB := TrC[ρABC], ρAC := TrB[ρABC],
ρA := TrBC[ρABC], etc.

It is a pleasant exercise to verify that reduced states are again states, i.e., that ρA is PSD and has
trace one (etc). This follows by combining the following two facts:

3. Tr[MAB] = Tr[TrB[MAB]] for any operatorMAB.
This follows directly from Eq. (2.11) by choosing XA = IA (the identity operator).

4. IfMAB is positive semidefinite, then so is TrB[MAB].
To see this, note that if XA ∈ PSD(HA) then XA ⊗ IB ∈ PSD(HA ⊗HB), so

Tr
[
TrB[MAB]XA

]
= Tr

[
MAB(XA ⊗ IB)

]
> 0.

The equality is Eq. (2.11), and the inequality holds since MAB is PSD [see Practice
Problem 1.2 (e)]. This in turn implies that TrB[MAB] is PSD (by the same criterion).

Here is another useful observation.

5. ρAB is a product state iff ρAB = ρA ⊗ ρB (i.e., ρAB is a product of its reduced states).
Clearly, the right-hand side is stronger than the left-hand side one. Conversely, suppose
that ρAB is a product state, i.e., ρAB = σA ⊗ωB for some arbitrary states σA and ωB.
Then, necessarily ρA = σA and ρB = σB, as follows from Eq. (2.10).

In Practice Problem 2.5 andHomework Problem 2.3 (a) you can establish further useful properties
of the partial trace.
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Let us discuss a concrete example. LetHA = HB = C2 and consider the unit vector

|Φ+
AB〉 :=

1√
2
(|00〉+ |11〉) . (2.12)

(the + means nothing in particular, it is just a symbol to indicate this particular vector). The
corresponding pure state is known as a maximally entangled state of two qubits,

ρAB := |Φ+
AB〉〈Φ

+
AB| =

1

2

(
|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|

)
(2.13)

=
1

2

(
|0〉〈0|⊗ |0〉〈0|︸ ︷︷ ︸

Tr=1

+|1〉〈0|⊗ |1〉〈0|︸ ︷︷ ︸
Tr=0

+|0〉〈1|⊗ |0〉〈1|︸ ︷︷ ︸
Tr=0

+|1〉〈1|⊗ |1〉〈1|︸ ︷︷ ︸
Tr=1

)
(2.14)

(The second line follows from the first by the same reasoning as in Eq. (2.2).) To compute its
reduced state on A, we can simply use linearity and Eq. (2.10) for each of the four terms. Using
the traces indicated in Eq. (2.14), the result is

ρA =
1

2

(
|0〉〈0|+ |1〉〈1|

)
. (2.15)

By symmetry, the reduced state ρB is given by the same formula.

Remark 2.9. It is also instructive to write down the above objects with respect to the product basis |00〉,
|01〉, |10〉, |11〉:

|Φ+
AB〉 =

1√
2


1

0

0

1

 , ρAB =
1

2


1

0

0

1

(1 0 0 1
)
=
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 (2.16)

The right-hand side matrix can also be read off directly from Eq. (2.13). Compared with the correlated
classical state Eq. (2.2), the maximally entangled state also has 1s in the top right and bottom left corners.
This is a crucial difference! For example, ρAB is a pure state (has rank one), while Eq. (2.2) is mixed (its
rank is two).

More generally, for any finite set Σ, we can let HA = HB = CΣ and define the maximally
entangled state

|Φ+
AB〉 :=

1√
|Σ|

∑
x∈Σ

|xx〉. (2.17)

Then we can check, analogously to the qubit example, that its reduced state ρA is given by

ρA := TrB
[
|Φ+
AB〉〈Φ

+
AB|
]

=
1

|Σ|
TrB
[ ∑
x,y∈Σ

|xx〉〈yy|
]

=
1

|Σ|

∑
x∈Σ

|x〉〈x|

using that TrB
[
|xx〉〈yy|

]
= 0 if x 6= y and TrB

[
|xx〉〈xx|

]
= |x〉〈x|. Hence, ρA is the maximally

mixed state on A, and by symmetry ρB is also the maximally mixed state on B.
The above example has a remarkable feature. We started with a global pure state ρAB, but

nevertheless its reduced states ρA and ρB were mixed. This is an important reason for allowing
general density operators – they naturally arise when describing the states of subsystems. We
alluded to this in the discussion at the beginning of the lecture.
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2.3 Purifications

It is natural to ask whether we can also go the other way around. Suppose we start with a mixed
state σA – can we always find a pure state on a larger system so that σA is its reduced state?
Indeed, this can always be done, as is the content of the following lemma:

Lemma 2.10 (Existence of purifications). Let σA ∈ D(HA) be a state and HB a Hilbert space of
dimension dimHB > rankσA. Then there exists a pure state |ΨAB〉 such that

TrB
[
|ΨAB〉〈ΨAB|

]
= σA.

A pure state with this property is called a purification of σA.

Proof. Consider a spectral decomposition σA =
∑r
i=1 pi|ei〉〈ei|, where r = rank(σA), the pi are

the nonzero eigenvalues of σA (so pi > 0), and |ei〉 corresponding orthonormal eigenvectors.
Since dimHB > r, we can choose orthonormal vectors |f1〉, . . . , |fr〉 ∈ HB. Then,

|ΨAB〉 :=
r∑
i=1

√
pi|ei〉 ⊗ |fi〉 (2.18)

is a purification of σA. Indeed,

TrB
[
|ΨAB〉〈ΨAB|

]
=
∑
i,j

√
pipj|ei〉〈ej| Tr

[
|fi〉〈fj|

]︸ ︷︷ ︸
=δi,j

=
∑
i

pi|ei〉〈ei| = σA

by virtually the same calculation that we used to deduce Eq. (2.15) from Eq. (2.13).

In case you were suspicious of why we consider arbitrary density operator in Axiom 1.7 and not
just pure states, Lemma 2.10 should alleviate your concerns!

Are purifications unique? In the proof of Lemma 2.10 we chose an arbitrary orthonormal
basis of HB, so clearly they are not unique. However, this turns out to be the only source of
ambiguity:

Lemma 2.11 (Uniqueness of purifications). Let |ΨAB〉 ∈ HA ⊗HB and |ΦAC〉 ∈ HA ⊗HC be two
purifications of σA ∈ D(HA). If dimHB 6 dimHC then there exists an isometry VB→C : HB → HC
such that

|ΦAC〉 = (IA ⊗ VB→C)|ΨAB〉. (2.19)

In particular, if dimHB = dimHC then the two purifications are related by a unitary!

Recall that an operator U ∈ L(H,K), where dimH = dimK, is called a unitary if U†U = IH
and UU† = IK, the two conditions being equivalent. We denote the set of all unitary operators
on H by

U(H) := {U ∈ L(H) : U†U = IH}. (2.20)

More generally, an operator V ∈ L(H,K) is called an isometry if V†V = IH. This implies that
dimH 6 dimK, so the target space can generally have a larger dimension than the domain. We
denote the set of all isometries fromH to K by

U(H,K) := {V ∈ L(H,K) : V†V = IH}. (2.21)
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If dimH = dimK then any isometry is a unitary. Isometries (in particular unitaries) preserve
inner products, so they map orthonormal sets to orthonormal sets.

See Remark 2.15 below for a proof sketch of Lemma 2.11. In Practice Problem 3.5 you get to
fill in the details.

There is a particularly convenientway to construct a purification: GivenσA, chooseHB = HA
and define the standard purification

|Ψstd
AB〉 :=

(√
σA ⊗ IB

)∑
x

|x〉 ⊗ |x〉, (2.22)

where |x〉 is some arbitrary orthonormal basis ofHA = HB (since this involves a choice, the term
‘standard purification’ is a bit of a misnomer). The square root√σA is the PSD operator defined
by taking the square roots of the eigenvalues of σA, while keeping the eigenvectors the same.
Clearly, √σA

√
σA = σA, which justifies the notation. To see that Eq. (2.22) is a purification,

simply compute the partial trace:

TrB
[
|Ψstd
AB〉〈Ψstd

AB|
]
=
∑
x,y

TrB
[(√

σA ⊗ IB
)(

|x〉〈y|⊗ |x〉〈y|
)(√

σA ⊗ IB
)]

=
√
σA
∑
x,y

TrB
[
|x〉〈y|⊗ |x〉〈y|

]√
σA

=
√
σA
∑
x,y

|x〉〈y| Tr
[
|x〉〈y|

]
︸ ︷︷ ︸

=δx,y

√
σA =

√
σA
∑
x

|x〉〈x|︸ ︷︷ ︸
=IA

√
σA = σA.

To go from the first to the second line, use Practice Problem 2.5 (a). One can verify that |Ψstd
AB〉 is

indeed a valid quantum state (i.e., a unit vector) for any state σA – we leave it as an exercise for
you to show that 〈Ψstd

AB|Ψ
std
AB〉 = Tr[σ] = 1.

2.4 Schmidt decomposition

States of the form Eq. (2.18) are quite pleasant to work with, since it is easy to calculate their
reduced states. In fact, any bipartite pure state (i.e., pure state of two systems) can be written in
this form – this is called the Schmidt decomposition.

Lemma 2.12 (Schmidt decomposition). Any |ΨAB〉 ∈ HA ⊗HB can be written as

|ΨAB〉 =
r∑
i=1

si|ei〉 ⊗ |fi〉.

where the si > 0, the |ei〉 ∈ HA are orthonormal, and the |fi〉 ∈ HB are orthonormal. A decomposition
of this form is called a Schmidt decomposition of |ΨAB〉, r is called the Schmidt rank and the si are
called the Schmidt coefficients of |ΨAB〉.

Using the Schmidt decomposition, we see as before that the reduced states are given by

ρA =

r∑
i=1

s2i |ei〉〈ei|, ρB =

r∑
i=1

s2i |fi〉〈fi|. (2.23)

This is a very important fact which has important consequences, such as the following.
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Corollary 2.13 (Reduced states of pure states). If ρAB = |ΨAB〉〈ΨAB| is a pure state then ρA and
ρB have the same rank (namely r) and the same nonzero eigenvalues (namely, the {s2i }).

Proof. This is immediate from Eq. (2.23).

Corollary 2.14 (When is a pure state a product state?). Let ρAB = |ΨAB〉〈ΨAB| be a pure state.
Then, ρA is pure iff ρB is pure iff ρAB is a product state.

Proof. Clearly, ρA is pure iff ρB is pure since both have the same rank (Corollary 2.13). If ρA is
pure then there is only one nonzero Schmidt coefficients (s1 = 1), so |ΨAB〉 = |e1〉 ⊗ |f1〉 and so
ρAB = |e1〉〈e1|⊗ |f1〉〈f1| is a product state.

Conversely, suppose that ρAB is a product state, so ρAB = ρA ⊗ ρB (see Property 5 on p. 23).
Since ρAB is pure, we have 1 = rank ρAB = rank ρA rank ρB. Thus, both ρA and ρB have rank
one, hence are pure states.

It is crucially important in Corollary 2.14 that the global state ρAB is pure. For mixed ρAB, it
is still holds that if ρA is pure then ρAB is a product state – you will prove this in Homework
Problem 2.3 – but the converse is patently false. That is, there exist many (mixed) product
states ρAB such that ρA or ρB are not pure.

Remark 2.15 (On the uniqueness of purifications). We can also use the Schmidt decomposition to see
why Lemma 2.11 should hold. Consider a Schmidt decomposition of the first purification, say,

|ΨAB〉 =
r∑
i=1

si|ei〉 ⊗ |fi〉.

By Corollary 2.13, both r and the si > 0 are uniquely determined by σA. For simplicity, assume that
the eigenvalues of σA are distinct. In this case, the |ei〉 are likewise uniquely determined up to phases
(namely, by the property of being a norm-one eigenvector of σA with eigenvalue s2i ). This means that the
Schmidt decomposition of the second purification necessarily reads

|ΦAC〉 =
r∑
i=1

si(e
iφi |ei〉)⊗ |hi〉 =

r∑
i=1

si|ei〉 ⊗ eiφi |hi〉︸ ︷︷ ︸
=:|h ′i〉

,

The |fi〉 and |h ′i〉 each consist of r many orthonormal vectors. Since dimHB 6 dimHC, we can
find an isometry VB→C that sends |fi〉 7→ |h ′i〉 for i = 1, . . . , r. Clearly, this means that |ΦAC〉 =
(IA ⊗ VB→C)|ΨAB〉, which is what we wanted to show.

If some eigenvalues of σA are degenerate, then we have some more freedom in the Schmidt decomposi-
tions. But just like we pushed the phases eiφi from the first to the second tensor factor, we can always find
two Schmidt decomposition that are ‘aligned’ as above (i.e., have the same si and |ei〉). You may prove
this in Practice Problem 3.5.

The Schmidt decomposition is a mild restatement of the singular value decomposition of
operators, which we recall in the following.

Lemma 2.16 (Singular value decomposition). Any operatorM ∈ L(H,K) has a singular value
decomposition (SVD): That is, we can write

M =

r∑
i=1

si|ei〉〈gi|, (2.24)
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where r = rankM, the si > 0, the |ei〉 are orthonormal in K, and the |gi〉 are orthonormal in H. The si
are called the singular values ofM.

In Practice Problem 2.4 you can prove precisely that the Schmidt decomposition follows from
the singular value decomposition.

Proof of Lemma 2.16. For completeness, we sketch a proof of the singular value decomposition
(but you have probably seen this before and it is also somewhat outside the scope of this class).
Consider the operatorMM†, which is always positive semidefinite (Practice Problem 1.2 (c)), so
it has an eigendecomposition

MM† =
∑
i

ti|ei〉〈ei|,

where |ei〉 is an orthonormal basis inK. Suppose that t1, . . . , tr > 0, while ti = 0 for i > r. Note
that the latter means that ‖M†|ei〉‖2 = 〈ei|MM†|ei〉 = 0, soM†|ei〉 = 0 for all i > r. Define
si :=

√
ti. For i = 1, . . . , r, set |gi〉 = M†|ei〉

si
∈ H. Then the |gi〉 are orthonormal, since

〈gi|gj〉 =
〈ei|MM†|ej〉

sisj
=
tj〈ei|ej〉
sisj

=
tj

sisj
δi,j = δi,j.

For i = 1, . . . , r, it holds that

M|gi〉 =
MM†|ei〉

si
=
ti|ei〉
si

= si|ei〉.

This shows thatM acts as in Eq. (2.24) for all vectors in the span of |g1〉, . . . , |gr〉. It remains to
prove thatM|ψ〉 = 0 for every |ψ〉 that is orthogonal to |g1〉, . . . , |gr〉. Indeed

〈ei|M|ψ〉 =
(
M†|ei〉

)†
|ψ〉 =

{
si〈gi|ψ〉 = 0 if i = 1, . . . , r, since then 〈gi|ψ〉 = 0,
0 if i > r, since thenM†|ei〉 = 0.

We still need to check that r equals the rank ofM. This follows from

r = rankM†M 6 rankM 6 r,

where we first used that r is the rank ofM†M (the number of nonzero ti’s), then that the rank of
a product is no larger than the rank of the factors, and finally Eq. (2.24), noting that its right-hand
side has rank no larger than r.

How can we find the singular values in practice?

• We see directly from Eq. (2.24) (but also from the proof) that the singular values {si} are
necessarily the square roots of the nonzero eigenvalues ofMM† (equivalently, ofM†M).

• IfM =M†, then the singular values are simply the absolute nonzero eigenvalues ofM.

Let us conclude with some outlook. Next week, we will discuss distance measures between
quantum states. The singular values will be an important tool for this. For example, if
M ∈ L(H,K) then we can define its trace norm by ‖M‖1 :=

∑
i si. The subscript reminds us that

this is nothing but the `1-norm of the singular values (recall that si > 0). IfM is Hermitian then
this the same as ‖M‖1 :=

∑
i|mi|, where themi are the eigenvalues ofM.
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In particular, we may use this to define the (normalized) trace distance of two states ρ, σ:

T(ρ, σ) :=
1

2
‖ρ− σ‖1.

(Note that ρ− σ is a difference of Hermitian operators, so itself Hermitian.) You already saw
this distance measure in Homework Problem 1.1. In this week’s Homework Problem 2.2, you
will derive a useful variational expression for it and show that it has a pleasant interpretation.
Namely, the trace distance is directly related to how well we can distinguish ρ and σ by an
arbitrary measurement (a result known as Helstrom’s theorem). This answers the problem that
we raised in Section 1.6 at the end of Lecture 1.
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Lecture 3

Trace distance and fidelity, introduction
to quantum channels

Today, we will be concerned with two separate topics. First, we will discuss ways of quantifying
to what extent two quantum states are similar. One way to do this is by using last week’s trace
distance – and we will recall its most important properties below. Next, we will define the
fidelity, which generalizes the overlap |〈φ|ψ〉| between pure states and is often a convenient tool.

We will then switch gears for the remainder of the lecture and work towards the definition
of a quantum channel. Roughly speaking, quantum channels describe the most general way by
which we can modify (or ‘process’) a quantum state. We will first discuss the classical situation
and then turn towards the quantum case – culminating in the definition of a quantum channel
as a completely positive and trace-preserving superoperator. We will continue the discussion of
channels next week. After this, we will have fully developed the basic formalism of quantum
information theory.

3.1 Interlude: Norms of operators

Since quantum states are operators, we can in principle use any norm on L(H) to define a
distance measure. What are useful norms on operators? Let us briefly discuss this more
generally. Given Hilbert spacesH andK, we can define norms on L(H,K) by using the singular
values. For p ∈ [1,∞), define the Schatten p-norm of an operatorM ∈ L(H,K) by

‖M‖p :=

(
r∑
i=1

s
p
i

)1/p
,

where s1, . . . , sr > 0 denote the singular values ofM. In other words, ‖M‖p is the `p-norm of the
singular values ofM. IfM is Hermitian, then the singular values are the absolute eigenvalues –
so ‖M‖p is the `p-norm of the eigenvalues. We will mostly be concerned with the following
important special cases:

• ‖·‖1 is called the trace norm (or nuclear norm):

‖M‖1 :=
r∑
i=1

si = Tr
√
M†M. (3.1)

On the right-hand side, we take the trace of the square root of the PSD operatorM†M. In
general, ifQ is PSD then its (positive semidefinite) square root

√
Q is the operatorwith the same
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eigenvectors but eigenvalues the square root of those of Q. That is, if Q =
∑
i λi|ei〉〈ei| is

an eigendecomposition then
√
Q =

∑
i

√
λi|ei〉〈ei|. Clearly,

√
Q
√
Q = Q. We used this

notation already in Eq. (2.22).
Warning: In general, it is not true that

√
QR =

√
Q
√
R for PSD Q and R. Indeed, QRwill

not even be PSD in general.

• ‖·‖2 is called the Frobenius norm (or Hilbert-Schmidt norm):

‖M‖2 :=

(
r∑
i=2

s2i

)1/2
=
√
TrM†M (3.2)

Just like the ordinary `2-norm, this norm is induced by an inner product – the so-called
Hilbert-Schmidt inner product on L(H,K), which is defined by

〈M,N〉HS := Tr[M†N] ∀M,N ∈ L(H,K). (3.3)

Thus, L(H,K) is itself a Hilbert space if we use this inner product.

We can also extend the definition of ‖·‖p to p =∞ by continuity. The result is the following:

• ‖·‖∞ is the operator norm (or spectral norm), defined by

‖M‖∞ := max
i=1,...,r

si = max
‖|φ〉‖=1

‖M|φ〉‖ (3.4)

Let us discuss some useful properties, which hold for p ∈ [1,∞]:

• The norms are invariant under taking the adjoint, as well as under conjugation and
transposition (w.r.t. any orthonormal basis): ‖M‖p = ‖M†‖p = ‖M‖p = ‖MT‖p

• Since the norms ‖·‖p only depend on the singular values, they are invariant under isometries
V : K→ K ′,W : H→ H ′ (i.e., V†V = IK,W†W = IH):

‖M‖p = ‖VMW†‖p (3.5)

In particular, they are invariant under left and right multiplication by unitaries.

• Next, the norms are monotonically decreasing in the parameter p as a direct consequence of
the same property for the ordinary `p-norms. In particular:

‖M‖1 > ‖M‖2 > ‖M‖∞
• We also have a version of the Hölder inequality: For 1p + 1

q = 1, it holds that |Tr[M†N]| 6
‖M‖p‖N‖q for all M,N ∈ L(H,K). In fact, ‖·‖p is the dual norm of ‖·‖q. Again, we
record the two most important special cases – the Cauchy-Schwarz inequality

|Tr[M†N]| 6 ‖M‖2‖N‖2 (3.6)

[which holds for any inner product, so in particular for Eq. (3.3)], and the Hölder inequality
for the trace and operator norm:

|Tr[M†N]| 6 ‖M‖1‖N‖∞. (3.7)
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Proof. To see that the latter holds, letM =
∑
i si|ei〉〈gi| be an SVD. Then

|Tr[M†N]| =
∣∣∣Tr[∑

i

si|gi〉〈ei|N]
∣∣∣ = ∣∣∣∑

i

si〈ei|N|gi〉
∣∣∣ 6∑

i

si |〈ei|N|gi〉|︸ ︷︷ ︸
6‖N‖∞

6 ‖M‖1‖N‖∞;

to estimate the underbraced inner product, first use the Cauchy-Schwarz inequality (for
vectors) and then the definition of the operator norm in Eq. (3.4).

How about duality? Any Hilbert space is self-dual, so this is clear for p = q = 2. For p = 1
and q =∞, duality is the first of the following two equations:

‖N‖1 = max
M∈L(H,K),‖M‖∞61|Tr[M

†N]| (3.8)

Proof. The direction ‘>’ is just Eq. (3.7), while ‘6’ can be seen by taking an SVD N =∑
i si|ei〉〈gi| and evaluating the right-hand side forM =

∑
i|ei〉〈gi|.

The case that H = K is so important that we re-state Eq. (3.8) in this case and add a slight
variation. For N ∈ L(H),

‖N‖1 = max
M∈L(H),‖M‖∞61

|Tr[MN]| = max
U∈U(H)

|Tr[MU]| > |Tr[N]| (3.9)

Proof. The first equality is just Eq. (3.8) forH = K. For the second equality, note that ‘>’
holds since ‖U‖∞ = 1 for any unitary, while for ‘6’ we merely note that if H = K then
we can choose U as a unitary that maps the left singular vectors onto the right singular
vectors (while acting arbitrarily on the orthogonal complement). The inequality is obvious
– simply chooseM = I or U = I.

By combining the above, we can also prove variants of the Hölder inequalities for
M ∈ L(H ′,K), N ∈ L(H,K) (withH andH ′ not necessarily the same space), such as the
following:

‖M†N‖1 6 ‖M‖1‖N‖∞. (3.10)

Proof. By Eq. (3.8),

‖M†N‖1 = max
X∈L(H,H ′),‖X‖∞61

|Tr[X†M†N]|,

but

|Tr[X†M†N]| = |Tr[M†NX†]| 6 ‖M‖1‖NX†‖∞ 6 ‖M‖1‖N‖∞‖X†‖∞ 6 ‖M‖1‖N‖∞,
where we first used Eq. (3.7), then submultiplicativity for the operator norm, and then
that ‖X‖∞ 6 1.

IfH = H ′ then above strengthens Eqs. (3.6) and (3.7) [since the trace norm is never smaller
than the trace, viz the inequality in Eq. (3.9)].

• Lastly, we note that the Schatten p-norms are all submultiplicative, which means that
‖MN‖p 6 ‖M‖p‖M‖p for all N ∈ L(H,K),M ∈ L(K,L).
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3.2 Trace distance and fidelity

We can use the norms defined in Section 3.1 to define distance measures (metrics) between
quantum states. One particular useful definition is the trace distance.

Definition 3.1 (Trace distance). The (normalized) trace distance between two states ρ, σ ∈ D(H) is
defined as follows:

T(ρ, σ) :=
1

2
‖ρ− σ‖1

We already know several useful properties:

• T(ρ, σ) ∈ [0, 1], and T(ρ, σ) = 0 if and only if ρ = σ.

• For pure ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|, the trace distance is directly related to the overlap
|〈φ|ψ〉|:

T(ρ, σ) =
√
1− |〈φ|ψ〉|2 (3.11)

You proved this in Homework Problem 1.1.

• In general, we have the following variational formula:

T(ρ, σ) = max
06Q6I

Tr[Q(ρ− σ)] (3.12)

This directly implies Helstrom’s theorem, which shows that the trace distance has
the following operational interpretation: The optimal probability of distinguishing two
equiprobable states ρ and σ is precisely 1

2 + 1
2T(ρ, σ). You proved this in Homework

Problem 2.2.

On Practice Problem 3.2, you will furthermore show that:

• Invariance under isometries: That is, T(ρ, σ) = T(VρV†, VσV†) for any isometry V . [This
follows directly from Eq. (3.5)].

• Monotonicity: T(ρA, σA) 6 T(ρAB, σAB) for all states ρAB, σAB. This is an intuitive
property, since it means that two states can only get closer if we discard a subsystem. [This
follows from Eq. (3.12), or also as a consequence of Helstrom’s theorem! Can you see
how?]

Is there also something like an overlap for mixed states? Yes, there is! The correct definition
is as follows (although this will only become clear in view of Theorem 3.5 below).

Definition 3.2 (Fidelity). Given states ρ, σ ∈ D(H), define their fidelity by

F(ρ, σ) := ‖
√
ρ
√
σ‖1 = Tr[

√√
σρ
√
σ].

For the second equality, see Eq. (3.1). Let us discuss some properties:

• F(ρ, σ) ∈ [0, 1], and F(ρ, σ) = 1 if and only if ρ = σ. Note that the fidelity is a similarity
measure rather than a distance measure (i.e., it is maximized if the two states are the same)
– just like the overlap.
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• Symmetry: F(ρ, σ) = F(σ, ρ).

• If σ = |ψ〉〈ψ| is pure then
√
σ = σ, so

F(ρ, σ) = Tr[
√
|ψ〉〈ψ|ρ|ψ〉︸ ︷︷ ︸

>0

〈ψ|] =
√
〈ψ|ρ|ψ〉Tr[

√
|ψ〉〈ψ|]︸ ︷︷ ︸

=Tr|ψ〉〈ψ|=1

=
√
〈ψ|ρ|ψ〉. (3.13)

If both states are pure, σ = |ψ〉〈ψ| and ρ = |φ〉〈φ|, then

F(ρ, σ) =
√
〈ψ|φ〉〈φ|ψ〉 = |〈ψ|φ〉|.

Thus, the fidelity indeed generalizes the overlap of pure states.

• Just like the tracedistance, thefidelity is invariant under isometriesV : F(ρ, σ) = F(VρV†, VσV†).
(Can you see why?)

Remark 3.3 (Why so complicated?). Why don’t we simply use
√

Tr[ρσ] to generalize the overlap?
Whatever the definition, we would like that our quantity is maximized when both states are the same. But
note that Tr[ρ2] can be any number in [1/d, 1], d = dimH, so the above is not a good definition.
Remark 3.4 (Tricky conventions). Around half of the quantum information community defines the
fidelity as the square of our F(ρ, σ). This is good to keep in mind when consulting the literature (including
textbooks).

The following central result gives a nice interpretation of the fidelity – it is simply the
maximal overlap between any pair of purifications!

Theorem 3.5 (Uhlmann). Let ρA, σA ∈ D(HA) be states and HB a Hilbert space such that both states
admit purifications onHA ⊗HB. Then,

F(ρA, σA) = max
{
|〈ΨAB|ΦAB〉| : |ΨAB〉, |ΦAB〉 ∈ HA ⊗HB purifications of ρA, σA

}
(3.14)

Since any two purifications are related by a unitary [Lemma 2.11], Uhlmann’s theorem can
equivalently be stated as follows:

F(ρA, σA) = max
{
|〈Ψfixed
AB |(IA ⊗UB)|Φfixed

AB 〉| : UB ∈ U(HB)
}
, (3.15)

where |Ψfixed
AB 〉, |Φfixed

AB 〉 are arbitrary fixed purifications of ρA and σA, respectively.

Proof of Theorem 3.5 (ifHA = HB). We first give a proof under the simplifying assumption that
HA = HB (see below for a general proof, which is slightly more technical). Then we can use the
standard purifications of ρA and σA, respectively. Recall from Eq. (2.22) that these are given by

|Ψstd
AB〉 :=

(√
ρA ⊗ IB

)∑
x

|x〉 ⊗ |x〉, |Φstd
AB〉 :=

(√
σA ⊗ IB

)∑
x

|x〉 ⊗ |x〉, (3.16)

where |x〉 is an arbitrary orthonormal basis ofHA = HB. We will now prove Eq. (3.15), using
these purifications as the ‘fixed’ purifications.

|〈Ψstd
AB|(IA ⊗UB)|Φstd

AB〉| =
∑
x,y

(
〈x|⊗ 〈x|

)(√
ρA
√
σA ⊗UB

)(
|y〉 ⊗ |y〉

)
=
∑
x,y

〈x|
√
ρA
√
σA|y〉〈x|U|y〉

=
∑
x,y

〈x|
√
ρA
√
σA|y〉〈y|UT |x〉

=
∑
x

〈x|
√
ρA
√
σAU

T
A|x〉 = Tr

[√
ρA
√
σAU

T
A

]
.
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In the first step we inserted Eq. (3.16), next we used Eq. (2.3), then we perform the transpose
(in the basis |x〉), and then we finally use Eqs. (1.2) and (1.3). (The unitaries UB = U = UA are
all the same objects – the subscripts are just notation to help us remember on which quantum
system the operator acts.) By maximizing the left and right hand side of this equality, we obtain

max
UB

|〈Ψstd
AB|(IA ⊗UB)|Φstd

AB〉| = max
UA

Tr
[√
ρA
√
σAU

T
A

]
= max

UA
Tr [√ρA

√
σAUA] = ‖

√
ρA
√
σA‖1 = F(ρA, σA).

The second step uses that U 7→ UT is a permutation of the set of unitaries and the third equality
is precisely Eq. (3.12). Thus we have proved Eq. (3.15), and thereby the theorem.

Proof of Theorem 3.5 (general case). We now show how to adapt the preceding proof in the general
case that HA and HB are not necessarily the same. Now we can no longer use the standard
purification. Instead we consider the following purifications:

|Ψfixed
AB 〉 :=

(√
ρAV ⊗ X

) r∑
x=1

|x〉 ⊗ |x〉, |Φfixed
AB 〉 :=

(√
σAW ⊗ X

) r∑
x=1

|x〉 ⊗ |x〉. (3.17)

Here, r = max{rank(ρA), rank(σA)} and we think of
∑r
x=1|x〉 ⊗ |x〉 in K⊗K, where K = Cr is

an auxiliary Hilbert space. The operator V is an isometry that the standard basis |x〉 of K to a
subset of an orthonormal eigenbasis of ρA, such that the first rank(ρA) vectors correspond to
the nonzero eigenvalues (this is possible since rank(ρA) 6 r 6 dimHA). Likewise, the operator
W is an isometry that maps the standard basis |x〉 to a subset of an orthonormal eigenbasis of
σA, again such that the first rank(ρB) vectors correspond to the nonzero eigenvalues. Finally,
the operator X is an arbitrary isometryK→ HB (this exists since r 6 dimHB, since we assumed
that both ρA and σA have purifications to HA ⊗HB.) It is easy to verify that Eq. (3.17) defines
purifications of ρA and σA, respectively.

We now proceed as before and consider Eq. (3.15), but now using Eq. (3.17) as our ‘fixed’
purifications. Now,

|〈Ψfixed
AB |(IA ⊗UB)|Φfixed

AB 〉| =
r∑

x,y=1

(
〈x|⊗ 〈x|

)(
V†
√
ρA
√
σAW ⊗ X†UBX

)(
|y〉 ⊗ |y〉

)
=

r∑
x,y=1

〈x|V†
√
ρA
√
σAW|y〉〈x|X†UBX|y〉

=

r∑
x,y=1

〈x|V†
√
ρA
√
σAW|y〉〈y|(X†UBX)T |x〉

= Tr[V†√ρA
√
σAW(X†UBX)

T ]

What kind of object are X†UBX and its transpose? This is an operator on K = Cr which we
can think of as the restriction of the unitary UB to a subspace (namely the image im(X) of the
isometry X). As such, it is clear that ‖X†UBX‖∞ 6 1, which can also be seen formally by using
submultiplicativity and the fact that unitaries and (more generally isometries) have operator
norm at most one. This means that

max
UB

|〈Ψfixed
AB |(IA ⊗UB)|Φfixed

AB 〉| 6 max
‖Y‖∞61Tr[V

†√ρA
√
σAWY] = ‖V†

√
ρA
√
σAW‖1 (3.18)

using the first characterization in Eq. (3.9). On the other hand, we can write any unitary matrix
in U(K) as X†UBX for some unitary UB ∈ U(HB) (simply choose UB to be a direct sum of the
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desired unitary on K ∼= im(X) and, say, an identity matrix on the orthogonal complement).
Hence,

max
UB

|〈Ψfixed
AB |(IA ⊗UB)|Φfixed

AB 〉| > max
Z∈U(K)

Tr[V†√ρA
√
σAWZ] = ‖V†

√
ρA
√
σAW‖1 (3.19)

Combining Eqs. (3.18) and (3.19), we find that

max
UB

|〈Ψfixed
AB |(IA ⊗UB)|Φfixed

AB 〉| = ‖V†
√
ρA
√
σAW‖1. (3.20)

We are almost done – but we still have to get rid of the isometries V andW on the right-hand
side. To do so, note that

‖
√
ρA
√
σA‖1 = ‖VV†

√
ρA
√
σAWW

†‖1 6 ‖V†
√
ρA
√
σAW‖1 6 ‖

√
ρA
√
σA‖1 (3.21)

The equality holds, because VV† is projects onto the orthogonal complement of ρA, hence of√
ρA, so VV†

√
ρA =

√
ρA; and likewise forWW† and √σA. The inequalities follow from the

Hölder inequality [Eq. (3.10)] since the isometries V and W and their adjoints satisfy have
operator norm bounded by one. (In the fact, the first inequality is an equation thanks to Eq. (3.5).)
Since the left and the right hand side of Eq. (3.21) are the same, it follows that we must have
equality throughout, so that

‖
√
ρA
√
σA‖1 = ‖V†

√
ρA
√
σAW‖1.

In view of Eq. (3.20) this concludes the proof. Phew!

On Homework Problem 3.2, you will use Uhlmann’s theorem to prove the following two
important properties:

• Just like the trace distance, the fidelity satisfies a monotonicity property: F(ρAB, σAB) 6
F(ρA, σA) for any two states ρAB, σAB ∈ D(HA ⊗HB)Note that the inequality goes the
opposite way than for the trace distance! This is intuitive, since the trace distance is a
distance measure, while the fidelity is a similarity measure.

• Joint concavity:
∑n
i=1 piF(ρi, σi) 6 F(

∑n
i=1 piρi,

∑n
i=1 piσi), where (pi)ni=1 is an arbitrary

probability distribution and ρ1, . . . , ρn and σ1, . . . , σn are arbitrary states.

Finally, we mention (without proof) that the trace distance and fidelity are related by the
so-called Fuchs-van de Graaf inequalities: For all ρ, σ ∈ D(H),

1− F(ρ, σ) 6 T(ρ, σ) 6
√
1− F2(ρ, σ).

You can prove the upper bound in Practice Problem 5.1. For pure states, the upper bound
is an equality, see Eq. (3.11). Moreover, it is sometimes useful to know that the function
P(ρ, σ) :=

√
1− F2(ρ, σ) is a metric – called the purified distance.

3.3 Motivation: Channels in probability theory

So far, the only way to manipulate a quantum state has been to measure it – but we have not
discussed at all how quantum states can be evolved or manipulated. (For example, you may
know from a previous quantum mechanics class, or the ongoing quantum computing course,
that we can always apply unitary operators to any quantum state.) In the remainder of today’s
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lecture we will start developing the mathematical formalism that describes the most general
ways that quantum states can be manipulated. Before considering the quantum situation, it is
instructive to consider the classical situation.

Suppose we have are given a ‘box’ such that we can input a value x ∈ ΣX and receive as
output some value y ∈ ΣY , as in the following figure:




























































































































Channels in a classical world

Tko x ftyEPy
How todescribemathematically y fCx Ingeneral y can be fadom

ipcykP.rc.oatpul.glinput x Seth 1 1 1 0

Epyx iii
u u u u
conditional probdistribution Cmemoryless Channel transition matrix

if input has distribution pCA y joint
distribution

outputdistribution pCy IpcyHpC PGD PG7pCyk
x

matrix vectormultiplication Py p six Px
Ex Px tape is linear

binarysymmetricchannel binary erasure channel

X y pColo EE O pColo
O 0 pali l E O Le pal1 L EEE LA pal of 1 et palo1 poll E 1 PHI E

flip bit w probabilityE bit lost w probability E

just like probabilitydistributions candescribe indetain States
channels describe uncertain or noisy evolutions

o Communicate reliably in the presence of uncertainty noise

Howdoes thepicturemodify in quantum infotheory

How should we describe this mathematically? Let us imagine that the box has no memory, i.e.,
it acts the same way even if we use it many times. Then the most straightforward description
might be to assume that there exists a function, f : ΣX → ΣY , such that y = f(x) for every input
x. This is an excellent description if we have engineered the box ourselves to perform a given
operation deterministically. But how about there is some uncertainty about the inner workings
of the box? In this case, it is natural to allow the output to be random, i.e., described by a
probability distribution. Mathematically, this means that we are given an assignment

p(y|x) such that
{
p(y|x) > 0 ∀x, y∑
y p(y|x) = 1 ∀x.

(3.22)

The right-hand side conditions mean that p(y|x) is a probability distribution in y for every
fixed x. The interpretation is that if the input to the box is x, then the output is random, with
probabilities given by the p(y|x). That is,

p(y|x) = Pr(output y|input x).

For this reason we might call p(y|x) a conditional probability distribution (but note that we do
not presuppose the existence of a joint distribution). In information theory, p(y|x) is called a
(memoryless) channel. We will mostly use these two terms. In the context of Markov chains,
p(y|x) is often known as a transition operator or Markov operator.

Remark 3.6 (Functions as channels). Note that given a function f : ΣX → ΣY , we can always define

p(y|x) =

{
1 if y = f(x),

0 otherwise.

Then, if x is the input then y = f(x) is the output with certainty. This shows that we can use channels to
describe ‘boxes’ that simply apply a deterministic function.

What is the input is also random, say, given by some probability distribution p(x)? In this
case, the joint probability of input and output is given by p(x, y) = p(y|x)p(x), so the distribution
of the output is the marginal distribution of y,

p(y) =
∑
x

p(y|x)p(x). (3.23)

Here we used the slightly terrible (but concise) convention of writing p(x) and p(y) for the
input and output distribution, respectively, only distinguishing them by the symbol used for the
argument. It would be more precise to use subscripts – writing, say, pX and pY for the input
and output distribution, and PY|X for the channel. Then, Eq. (3.23) reads

pY(y) =
∑
x

PY|X(y|x)pX(x). (3.24)
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Note that this is precisely the formula for matrix-by-vector multiplication – provided we think of
the probability distributions pX ∈ RΣX and pY ∈ RΣY as vectors, and of the channel as a matrix
PY|X ∈ RΣY×ΣX (the entry in row y and column x is PY|X(y|x)). The conditions in Eq. (3.22)
mean that all entries are nonnegative and each column sums to one – such matrices are often
called (column) stochastic. Then, the formula Eq. (3.24) for computing the output distribution
given a channel and input distribution can be succinctly written as follows:

pY = PY|XpX

The mapping pX 7→ pY is evidently linear (since it is implemented by left multiplication with
the channel matrix PY|X). Conversely, any linear mapping that sends probability distributions
to probability distributions must be of this form, with PY|X a channel.

Let us discuss two families of channels that are very important from (classical) information
theory.

1. A binary symmetric channel is a channel which flips a bit with some probability ε ∈ [0, 1].
That is, ΣX = ΣY = {0, 1} and

p(0|0) = p(1|1) = 1− ε,

p(1|0) = p(0|1) = ε

We can visualize this as follows:
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just like probabilitydistributions candescribe indetain States
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o Communicate reliably in the presence of uncertainty noise

Howdoes thepicturemodify in quantum infotheory

Note that output y does not contain any information about whether the bit has been
flipped. This is perhaps the most straightforward way of modeling an unreliable (digital)
information transmission line.

2. A binary erasure channel is a channel where the input bit is lost (‘erased’) with some
probability ε ∈ [0, 1]. Mathematically, ΣX = {0, 1}, ΣY = {0, 1 ⊥} and

p(0|0) = p(1|1) = 1− ε,

p(⊥ |0) = p(⊥ |1) = ε.

That is, the output is either equal to the input (it never gets flipped), or a new symbol ⊥
(‘perp’) that indicates that the bit has been lost. This is illustrated in the following picture:




























































































































Channels in a classical world
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just like probabilitydistributions candescribe indetain States
channels describe uncertain or noisy evolutions
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Howdoes thepicturemodify in quantum infotheory

You could for example use this to describe a situation where you send a (physical or
digital) packet from a sender to a receiver which sometimes gets lost.
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From these examples we see that the formalism of channels can not only describe arbitrary
deterministic functions, but it is also very well suited to describing ‘uncertain’ or ‘noisy’
evolutions. One of the central goals of information theory is to understand how to communicate
reliably in the presense of uncertainty and noise.

3.4 Quantum channels

We now discuss how the preceding gets modified in quantum information theory. As before, we
would like to model a ‘box’ – but now the box should map quantum states to quantum states:Quantum Channels

Data FSA SBE DEHB

Since g States are linearoperators thisshould be a map

OI UHH LEHB

OIshould be linear ND EE LCLEHAI LEH Superoperator

why Sothat oI Episi Epi ESB
NOTATION OIA BESA etc

ideas IA LCHA Lata Ia473 17a A A

tensorproductof Superoperators LEHAEHd

DLEHBEHDGIEAaB.io c oD fMaxoNd 9 LIFE
t.EE 5LMtDxOEc oDCNc3 FELTC D

extend bylinearity

what conditions should I satisfy to be a channel Stamp
Positivity 1720 EID 20 AM

tracepreserving to473 tr EEMD th

Together g stale te OIES State
µ

I write since we will usuallyapplychanne
toStates but can pkgin anylinearoperator

Basechange OIES Cugat for unitaryCorisometry U
Add State OITSAI Sa cog for stale o i

i Y 20
i ElPartial trace OI Ha

Measure and prepare OI 4 151 7 oh EEE's ox

Since quantum states are operators, this should be described by a map

Φ : L(HA)→ L(HB).

What additional properties should this maps satisfy? First of all, we want to demand thatΦ is
linear. This ensures that if {pi, ρi} is an ensemble of input states then

T [
∑
i

piρi] =
∑
i

piT [ρi].

Remark 3.7. Precisely speaking, this condition only justifies that Φ should be a convex map from
D(HA) to D(HB). But any such map has a unique extension to linear map from L(HA) to L(HB).

The fact that Φ is supposed to be linear can be succinctly written as follows:

Φ ∈ L(L(HA),L(HB)). (3.25)

Thus,Φ is an operator that maps operators to operators! Such maps are called superoperator. As
for states and operators, we will use subscripts to indicate the labels of systems. Thus, we will
write ΦA→B for a superoperator as in Eq. (3.25) and

ΦA→B[ρA]

to apply a superoperator to a state ρA ∈ L(HA), the result of which is an operator in L(HB). We
will consistently use square brackets [. . . ] to apply superoperators to operators.

We still have to discuss which conditions we should impose toΦ to be a quantum channel,
but let us first discuss some generalities.

• First, we always have an identity superoperator, denoted

IA : L(HA)→ L(HA), IA[MA] =MA ∀MA ∈ L(HA).

This naturally describes the situation where our box does not change the input at all (or
there is no box). We will visualize IA as follows:

Quantum Channels
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• Second, given two superoperators ΦA→B and ΨC→D, we can always form their tensor
product. This is a superoperator ΦA→B ⊗ ΨC→D from AC to BD, i.e., an element in
L(L(HA ⊗HC),L(HB ⊗HD)). It is defined as follows on tensor product operators,

(ΦA→B ⊗ ΨC→D)[MA ⊗NC] := ΦA→B[MA]⊗ ΨC→D[NC], (3.26)

extended by linearity – in precise analogy to how we defined the tensor product of
operators in terms of the tensor product of vectors (Remark 2.3). The tensor product of
two superoperators naturally describes the situation of two boxes, where we apply the
first to one subsystem and the second to the other, as in the following picture:

Quantum Channels

Data FSA SBE DEHB

Since g States are linearoperators thisshould be a map

OI UHH LEHB

OIshould be linear ND EE LCLEHAI LEH Superoperator

why Sothat oI Episi Epi ESB
NOTATION OIA BESA etc
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tensorproductof Superoperators LEHAEHd

DLEHBEHDGIEAaB.io c oD fMaxoNd 9 LIFE
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What conditions to we want to impose onΦ to legitimately call it a ‘quantum channel’? Clearly,
we would like Φ to map quantum states to quantum states:

ρA ∈ D(HA) ⇒ ΦA→B[ρA] ∈ D(HB)

We can equivalently split this up into two conditions and ask thatΦ is both

1. Positive,meaning it maps PSD operators to PSD operators: Φ[MA] > 0 for allMA > 0,

2. Trace-preserving: Tr[Φ[MA]] = Tr[MA] for allMA.

Let us try to come up with maps that satisfy these properties:

• Basis change: Φ[ρ] = UρU† for a fixed unitary or isometry U

• Add state: ΦA→AB[ρA] = ρA ⊗ σB for a fixed state σB. This superoperator corresponds to
a source that emits a quantum system in state σB – as in the figure:

 

ETE
Pnf IT aw

HEE

• Partial trace: ΦAB→A = TrA. Indeed, the partial trace is a superoperator that maps states
to states, as we discussed on p. 23. This corresponds to the situation where we simply
discard a subsystem A:

 

ETE
Pnf IT aw

HEE

It is very instructive to note that we can write TrA = (Tr⊗IB), as can be seen by comparing
Eqs. (2.10) and (3.26).
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• Measure and prepare: This superoperator is defined by

ΦA→B[ρA] =
∑
ω∈Ω

Tr[ρAµA(ω)]σB,ω,

whereµA : Ω→ PSD(HA) is an arbitrarymeasurement onA andσB,ω a state onB for each
possible outcome ω ∈ Ω. By Born’s rule, Tr[ρAµA(ω)] is the probability of outcome ω
using the measurement µA. Thus, the above superoperator corresponds to performing a
measurement and then preparing a state labeled by the measurement outcome:

 

ETE
Pnf IT aw

HEE

(By convention, single lines correspond to quantum systems, while double lines denote
classical data.)

This is encouraging – we found many superoperators that are ‘obviously reasonable’ and map
states to states.

However, we will now see that there is a problem – the two conditions above are not sufficient
to single out quantum channels. The reason is that there are superoperatorsΦ such that the two
conditions hold for Φ but fail for Φ⊗ IR, i.e., there exists a system R and state ρAR such that
(ΦA→B ⊗ IR)[ρAR] is not a state!
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This is clearly nonsensical, since we want to interpret Φ⊗ IR as applying Φ on the A system
while leaving the R-system untouched.

For an example of such a superoperator, consider the transpose map that sends an operator to
its transpose (in some fixed basis):

T[M] =MT .

For concreteness, think of this as a qubit superoperator, i.e., from L(C2) to L(C2).

• It is clear that T sends states to states, i.e., is positive and trace-preserving. Indeed, the
transpose of a PSD operator is PSD, and the trace is likewise invariant under transposition.

• Consider the maximally entangled state of two qubits [Eq. (2.13)]:

ρAR = |Φ+
AR〉〈Φ

+
AR| =

1

2
(|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|)

=
1

2
(|0〉〈0|⊗ |0〉〈0|+ |1〉〈0|⊗ |1〉〈0|+ |0〉〈1|⊗ |0〉〈1|+ |1〉〈1|⊗ |1〉〈1|) = 1

2

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
If we apply the transpose channel on the A-subsystem (this is sometimes called a partial
transpose, in analogy to the partial trace), we obtain

(T ⊗ IR)[ρAR] =
1

2

(
|0〉〈0|T ⊗ |0〉〈0|+ |0〉〈1|T

::::::
⊗ |0〉〈1|+ |1〉〈0|T

::::::
⊗ |1〉〈0|+ |1〉〈1|T ⊗ |1〉〈1|

)
=
1

2

(
|0〉〈0|⊗ |0〉〈0|+ |1〉〈0|

::::
⊗ |0〉〈1|+ |0〉〈1|

::::
⊗ |1〉〈0|+ |1〉〈1|⊗ |1〉〈1|

)
=
1

2

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
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We see immediately from the matrix representation that ρBR is not a state. Indeed, while
the trace is still one, the right-hand sidematrix has an eigenvector (0, 1,−1, 0)with negative
eigenvalue −1/2.

Thus we recognize that ‘positivity’ alone is not enough, we need to demand the stronger
condition that even when we tensor with an identity channel we obtain a ‘positive’ map. This
property is called ‘complete positivity’. The problem identified above turns out to be the only
issue – so we arrive at the following definition of a quantum channel.

Definition3.8 (Quantumchannel). A (quantum) channel is a superoperatorΦA→B ∈ L(L(HA),L(HB))
that is both

1. Completely positive: For all HR andMAR > 0, it holds that (ΦA→B ⊗ IR)[MAR] > 0,

2. Trace-preserving: Tr[ΦA→B[MA]] = Tr[MA] for allMA.

We write CP(HA,HB) and C(HA,HB) for the sets of all completely positive mapsΦA→B and quantum
channels, respectively, and we set CP(HA) := CP(HA,HA) and C(HA) := C(HA,HA).

Remark 3.9. Note that the second condition is unchanged. Indeed, unlike for positivity, it holds
automatically that if ΦA→B is trace-preserving then so is ΦA→B ⊗ IR for any system R.

What are some examples of quantum channels?

• Clearly, the identity channel is a quantum channel according to this definition.

• All examples given above – except for the transpose map – are quantum channels. You
will show this in Practice Problem 3.3 and Homework Problem 3.3.

• We can also build old channels from new ones. E.g., it follows almost by definition that if
ΦA→B is a channel then so isΦA→B ⊗ IR. More generally, channels can be composed in
parallel (by ΨA→B ⊗ΦC→D), but also sequentially (by ΦB→C ◦ ΨA→B). You can prove
this in Practice Problem 3.4.

The set of quantum channels is a convex set.
Perhaps you might still feel a bit uneasy with this definition – perhaps there is another

problem that we might have missed? Next week we will see that this is not so. Indeed, we will
find that any quantum channel according to the above definition can be written as a three-step
procedure: first add a system in a fixed state, then apply a unitary, and finally trace over a
system. Since quantum theory tells us that these three building blocks are all ‘physical’, this
justifies the mathematical definition. See the discussion surrounding Axiom 4.5 for more details.

Remark 3.10 (Complete positivity for classical channels?). In probability theory this problem does
not appear. If p(y|x) is a conditional probability distribution then so is p(yz ′|xz) = p(y|x)δz,z ′ (in
fact, this is the same as tensoring the transition matrix with IZ). Thus, in a classical world, ‘complete
positivity’ is automatic.
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Lecture 4

Structure of quantum channels

Last week, we defined the notion of a quantum channel as a completely positive and trace-
preserving superoperator. Today we will discuss several characterizations of quantum channels.
Those characterizations will give us better mathematical insight into the notion of complete
positivity, serve as important tools for what follows, and give us a more satisfying explanation
why last week’s definition is a sensible one.

4.1 Superoperators and complete positivity

LetΦA→B ∈ L(L(HA),L(HB)) be a superoperator. It is easy to checkwhenΦ is trace-preserving,
but how can we check complete positivity?

We start with a warning. Since L(HA) ∼= HA ⊗H∗A, we can always think of ΦA→B as an
operator in L(HA ⊗H∗A,HB ⊗H∗B). Now, despite the similarity of words, it is important to
keep in mind that ‘positivity’ or ‘complete positivity’ ofΦ does notmean thatΦA→B is a PSD
operator. Indeed, the latter statement does not even make sense in general, since HA ⊗H∗A and
HB ⊗H∗B are not necessarily even the same spaces. Instead, our main tool will be to associate
with every superoperator an operator in L(HA ⊗HB) – such operators have the possibility of
being PSD, and we will see that this precisely characterizes whenΦ is completely positive.

To start, let us define the Choi operator associated with the superoperatorΦA→B by

JΦAB :=
∑
x,y

|x〉〈y|⊗ΦA→B[|x〉〈y|] ∈ L(HA ⊗HB), (4.1)

where |x〉 denotes an arbitrary orthonormal basis ofHA. We can also write

JΦAB =
∑
x,y

(IA ⊗ΦA→B)[|xx〉〈yy|], (4.2)

whichmakes it clear that JΦAB is the result of applyingΦA→B to half of an unnormalizedmaximally
entangled state

∑
x|xx〉 ∈ HA ⊗HA, as defined in Eq. (2.17). Note that the latter state depends

on a choice of basis of HA, just like the Choi operator. The following figure illustrates Eq. (4.2):
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The ‘blue bracket’ on the left-hand side is standard notation for a maximally entangled state.
For example, takingHA = HB = CΣ and the standard basis, the so-called completely dephasing

channel

∆[ρ] =
∑
x∈Σ
〈x|ρ|x〉 |x〉〈x| (4.3)

has the following Choi operator:

J∆AB =
∑
x

|x〉〈x|⊗ |x〉〈x|, (4.4)

an unnormalizedmaximally correlated state. You can verify this andmore in Practice Problem4.2.
In fact, the mapping Φ 7→ JΦ defines an isomorphism, known as the Choi-Jamiołkowski

isomorphism:

Lemma 4.1 (Choi-Jamiołkowski isomorphism). The following map is an isomorphism,

L(L(HA),L(HB))→ L(HA ⊗HB), ΦA→B 7→ JΦAB,

with inverse given by

ΦA→B[MA] = TrA
[
(MT

A ⊗ IB)JΦAB
]

∀MA ∈ L(HA), (4.5)

where we take the transpose in the same basis as used to in the definition of the Choi operator.

Proof. The mapping is clearly linear and both spaces have the same dimension, so we only need
to show how the channel can be recovered from the Choi operator. For this we prove Eq. (4.5)
by a direct calculation:

TrA
[
(MT

A ⊗ IB)JΦAB
]
=
∑
x,y

TrA
[
(MT

A ⊗ IB)(|x〉〈y|⊗ΦA→B[|x〉〈y|])
]

=
∑
x,y

TrA
[
MT
A|x〉〈y|⊗ΦA→B[|x〉〈y|]

]
=
∑
x,y

Tr[MT
A|x〉〈y|]︸ ︷︷ ︸

=〈y|MT
A|x〉=〈x|MA|y〉

ΦA→B[|x〉〈y|]

=
∑
x,y

ΦA→B[|x〉〈x|MA|y〉〈y|] = ΦA→B[MA].

It is a nice exercise to verify that this formula indeed recovers Eq. (4.3) from Eq. (4.4).
We now state the central theorem that gives four equivalent ways of characterizing when a

superoperator is completely positive.

Theorem 4.2 (When is a superoperator completely positive?). For a superoperator ΦA→B ∈
L(L(HA),L(HB)), the following statements are equivalent:

1. ΦA→B is completely positive (i.e., for allHR andMAR > 0 it holds that (ΦA→B⊗IR)[MAR] > 0).

2. ΦA→B ⊗ IA ′ is positive (i.e., for allMAA ′ > 0 it holds that (ΦA→B ⊗ IA ′)[MAA ′ ] > 0).

3. JΦAB > 0, i.e, the Choi operator ofΦA→B is positive semidefinite.
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4. Kraus representation: There exist operators X1, . . . , Xr ∈ L(HA,HB) such that

Φ[M] =

r∑
i=1

XiMX
†
i (4.6)

for allM ∈ L(HA).

5. Stinespring representation: There exists HE and V ∈ L(HA,HB ⊗HE) such that

Φ[M] = TrE[VMV†] (4.7)

for allM ∈ L(HA).

Moreover, r in 4 and dimHE in 5 can be chosen as rank(JΦAB) 6 dimHA dimHB (or larger).

Proof. The implications 1⇒2⇒3 are immediate. For the implication 4⇒5, simply defineHE = Cr
and V :=

∑r
i=1 Xi ⊗ |i〉 and verify that Eq. (4.7) reduces to Eq. (4.6). (We can also go the other

way around and obtain Kraus operators from V by setting Xi := (IB ⊗ 〈i|)V , showing that 5⇒4.)
The implication 5⇒1 is also easy – both M 7→ VMV† and TrE are completely positive (see
Practice Problem 3.3, complete positivity of part (a) did not rely on the fact that U was unitary),
hence so is their composition.

It remains to prove that 3⇒4 with r = rank JΦAB. Since JΦAB is PSD, we can use a spectral
decomposition to write

JΦAB =

r∑
i=1

|vi〉〈vi| for suitable vi ∈ HA ⊗HB. (4.8)

(To get this form, restrict to the positive eigenvalues λi > 0 and absorb their square root
√
λi

into the normalization of the eigenvectors |vi〉.) The vi are vectors in HA ⊗HB, but we need
to construct operators Xi in L(HA,HB). This we can do similarly as in Practice Problem 2.4.
Simply define

Xi :=
∑
a,b

〈ab|vi〉 |b〉〈a| ∈ L(HA,HB). (4.9)

Then, using Eq. (4.5),

Φ[M] = TrA
[
(MT

A ⊗ IB)JΦAB
]
=
∑
i

TrA
[
(MT

A ⊗ IB)|vi〉〈vi|
]

=
∑
i

∑
a,b

∑
a ′,b ′

〈ab|vi〉〈vi|a ′b ′〉TrA
[
(MT

A ⊗ IB)|ab〉〈a ′b ′|
]

=
∑
i

∑
a,b

∑
a ′,b ′

〈ab|vi〉〈vi|a ′b ′〉TrA
[
MT
A|a〉〈a ′|⊗ |b〉〈b ′|

]
=
∑
i

∑
a,b

∑
a ′,b ′

〈ab|vi〉〈vi|a ′b ′〉 Tr[MT
A|a〉〈a ′|]︸ ︷︷ ︸

=〈a ′|MT
A|a〉=〈a|MA|a ′〉

|b〉〈b ′|

=
∑
i

∑
a,b

∑
a ′,b ′

〈ab|vi〉|b〉〈a|MA|a
′〉〈b ′|〈vi|a ′b ′〉

=
∑
i

XiMAX
†
i ,

which concludes the proof.
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Theorem 4.2 is rather remarkable. Criterion 2 shows that complete positivity, which a priori
involves an auxiliary Hilbert spaceHR of unbounded dimension, to a singleHR ∼= HA. And
criterion 3 shows that we do not even have to check thatΦA→B⊗IA sends every PSD operator to
a PSD operator – it suffices to check this condition for an (unnormalized, if we wish) maximally
entangled state. You can practice this technique in Homework Problem 4.2.

Criteria 4 and 5 are also very useful in practice, since many quantum channels are naturally
given in this form. Indeed, your homework last week would have tremendously simplified with
Theorem 4.2!

Remark 4.3 (Beyond completely positive maps). For superoperators that are not completely positive,
we can still find weak forms of Kraus and Stinespring representations. Namely, any superoperator can be
written in the form Φ[M] =

∑
i XiMY

†
i (where, in general, Xi 6= Yi) or Φ[M] = VMW† (where, in

general, V 6=W). This can be proved as above using the singular value decomposition of the Choi operator
(which need no longer be PSD) instead of the eigendecomposition in Eq. (4.8). As these representations
are much less useful we did not discuss this in class.

4.2 Characterizing quantum channels

With Theorem 4.2 in hand, it is straightforward to characterize quantum channels since we only
need to determine when a completely positive map is trace-preserving. This is achieved by the
following lemma.

Lemma 4.4 (When is a completely positive superoperator trace-preserving?). For a completely
positive superoperator ΦA→B, the following statements are equivalent:

1. ΦA→B is trace-preserving (hence a quantum channel).

2. Choi operator: TrB[JΦAB] = IA.

3. Kraus representation:
∑
i X
†
iXi = IA for one/every Kraus representation.

4. Stinespring representation: V†V = IA for one/every Stinespring representation. That is, V is an
isometry.

In fact, the equivalence between 1 and 2 holds for arbitary superoperators (completely positive or not).

Proof. We will use the fact, which follows from Practice Problem 4.1, that for X, Y ∈ L(H) it
holds that

Tr(XM) = Tr(YM) for allM ∈ L(H) ⇔ X = Y. (4.10)

By Eq. (4.5) for anyMA ∈ L(HA)

Tr[ΦA→B(MA)] = Tr[TrA[(MT
A ⊗ IB)JΦAB]] = Tr[MT

A TrB[JΦAB]]

fromwhich it clearly follows using Eq. (4.10) that 2 and 1 are equivalent since Tr(MT
A) = Tr(MA).

Next, consider a Kraus representation of the channel, and use the cyclicity of the trace to see
that for allMA ∈ L(HA)

Tr[ΦA→B(MA)] = Tr
[∑
i

XiMAX
†
i

]
= Tr

[
MA

(∑
i

XiX
†
i

)]
.
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So, again using Eq. (4.10), we see that 1 and 3 are equivalent. Finally, for a Stinespring
representation, again using the cyclicity of the trace we see that

Tr[ΦA→B(MA)] = Tr[TrE[VMAV
†]] = Tr[MAV

†V]

allowing us to conclude the equivalence of 1 and 4.

It is worth stating again that if we put half of a normalized maximally entangled state into a
channel then we get a quantum state, which is nothing but the Choi operator but normalized to
be a quantum state. This state is also known as the Choi state of ΦA→B, and it is given by

1

dA
JΦAB = (IA ⊗ΦA→B)[|Φ+

AA〉〈Φ
+
AA|], (4.11)

where |Φ+
AA〉 =

1√
dA

∑
x|x, x〉 is a maximally entangled state and dA = dimHA.

The Stinespring representation has a nice conceptual interpretation. It is by definition a
composition of applying an isometry and then forgetting a subsystem (partial trace). In Practice
Problem 4.5 you will show that you can reinterpret the isometry as a composition of first adding
a pure state in a reference system and then applying a unitary:
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That means that every quantum channel can be constructed as a composition of adding states,
applying unitaries and discarding subsystems, which shows that the formalism of quantum
channels is equivalent to unitary quantum mechanics on pure states where we may add and
forget subsystems, which is not at all clear from the original definition of a quantum channel.
Thus we may feel sufficiently confident to state the following axiom:

Axiom 4.5 (Channels). Any quantum channel ΦA→B can be realized physically. That is, in principle,
there exists a device that, given as input an arbitrary state ρA, outputs the state ΦA→B[ρB].

Apart from being conceptually insightful, the Stinespring representation also often simplifies
proofs tremendously. Indeed, to show a certain property holds for quantum channels it suffices
to show that it holds for isometries (which is often trivial) and for partial traces. In Homework
Problem 4.1 you will encounter an example of this proof strategy.

Remark 4.6 (Uniqueness of the Stinespring and Kraus representations). It is interesting to ask
how much freedom we have in choosing the Stinespring and Kraus representations. Any two Stinespring
isometries VA→BE, ṼA→BE of a channel ΦA→B are related by a unitary UE on E, in the sense that

ṼA→BE = (IB ⊗UE)VA→BE. (4.12)

This follows from Lemma 2.11, because |ΦABE〉 := (IA ⊗ VA→BE)|Φ+
AA〉 and |Φ̃ABE〉 := (IA ⊗

ṼA→BE)|Φ
+
AA〉 are both purifications of the Choi state Eq. (4.11) and hence they are related by a unitary

UE on E, so |Φ̃ABE〉 = (IAB ⊗ UE)|ΦABE〉. It is an exercise for the reader to check that this indeed
implies Eq. (4.12).

As a consequence, any two sets {Xi}ri=1, {Yi}ri=1 of Kraus operators for a channelΦA→B are related
by a unitary matrix U ∈ U(Cr) in the sense that Xi =

∑
jUijYj for i = 1, . . . , r. This can be seen
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by constructing the Stinespring isometries corresponding to these Kraus operators as in the proof of
Theorem 4.2.

One can also compare Stinespring isometries with different auxilliary systems or sets of Kraus
operators of different cardinalities, in which case the unitary on the reference system is replaced by an
isometry.

Recall from Eq. (3.3) that the Hilbert-Schmidt inner product on L(H) is given by 〈M,N〉HS =
Tr[M†N]. This allows us to define the adjoint of a superoperatorΦ ∈ L(L(HA),L(HB)). Explicitly,
this is the superoperator Φ† ∈ L(L(HB),L(HA)) such that

〈MA, Φ
†[NB]〉HS = 〈Φ[MA], NB〉HS ∀MA ∈ L(HA), NB ∈ L(HB).

In Practice Problem 4.6 you will show the adjoint of a completely positive superoperator is again
completely positive, and the ajoint of a trace-preserving superoperator is unital (meaning that
Φ†[IB] = IA).
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Lecture 5

Shannon entropy and data compression

Over the past month, we have learned the basic formalism and toolbox of quantum information
theory (e.g., note that all objects in the cartoon on p. 9 are now well-defined). From this week on
we will discuss information theory proper. Today we will discuss the classical theory of data
compression due to Shannon. Next week, we will generalize Shannon’s results and learn how
to optimally compress quantum information. For more information on classical information
theory see, e.g., the lecture notes at https://staff.fnwi.uva.nl/m.walter/iit19/.

5.1 Shannon entropy

Today we will work with classical probability distributions a lot, so let us denote by

P(Σ) :=
{
p : Σ→ R>0 :

∑
x∈Σ

p(x) = 1

}
(5.1)

the set of all probability distributions on a finite set Σ. If X is a random variable then write X ∼ p

to say that X is distributed according to p, i.e., Pr(X = x) = p(x) for all x ∈ Σ. As usual, we
write E[X] =

∑
x∈Σ p(x)x for the expectation value and Var(X) = E[X2] − E[X]2 for the variance of

a numerical random variable X. We now define the Shannon entropy.

Definition 5.1 (Shannon entropy). The Shannon entropy of a probability distribution p ∈ P(Σ) is
defined by

H(p) :=
∑
x∈Σ

p(x) log 1

p(x)
= −

∑
x∈Σ

p(x) logp(x). (5.2)

Here and throughout these lecture notes, log always denotes the logarithm to base 2 (i.e., log 2 = 1).

As stated, Eq. (5.2) is only well-defined if all p(x) > 0. However, note that q log 1q = −q logq is
continuous in q > 0 and tends to 0 as q→ 0, as illustrated in the following figure:

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.1

0.2

0.3

0.4

0.5 q log (1/q)
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Wecan thus extend thedefinitionofH(p)by continuity, i.e., definingp(x) log 1
p(x) = −p(x) logp(x) =

0 for p(x) = 0 in Eq. (5.2). Then H(p) is a continuous function of p ∈ P(Σ). This definition is also
compatible with the interpretation that the Shannon entropy can be written as

H(p) = E
[
log 1

p(X)

]
= −E[logp(X)], (5.3)

where X ∼ p, since outcomes that appear with probability zero do not impact the expectation
value.

Example 5.2 (Binary entropy function). The Shannon entropy of a probability distribution with two
possible outcomes is given by the so-called binary entropy function,

h(p) := H({p, 1− p}) = p log 1
p
+ (1− p) log 1

1− p
,

where p is the probability of one of the outcomes. This function looks as follows (cf. Practice Problem 7.5):

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0 h(p)

Note that it is indeed continuous, but not Lipschitz continuous, as the derivative diverges for p→ 0, 1.

We now list some further properties of the Shannon entropy.

• Nonnegativity: H(p) > 0. Moreover, H(p) = 0 if and only if p is deterministic (i.e., p(x) = 1
for one x and all other probabilities are zero).

Proof. The lower bound holds since f(q) = q log 1q > 0 for any q ∈ [0, 1]. Moreover,
f(q) = 0 iff q ∈ {0, 1}, which implies the second claim. See also the figure above.

Before we state the next property, recall that a function f : D → R defined on a convex set D
(e.g., an interval) is called concave if it holds that qf(a) + (1 − q)f(b) 6 f(qa + (1 − q)b) for
any q ∈ [0, 1] and a, b ∈ D. It is called strictly concave if equality only holds for a = b or q ∈ {0, 1}.
If D is an interval and f is twice differentiable on its interior with f ′′ 6 0 then f is concave. If
f ′′ < 0 then f is strictly concave.

Jensen’s inequality states that, for any concave function f as above,∑
x∈Σ

p(x)f(a(x)) 6 f
(∑
x∈Σ

p(x)a(x)
)

(5.4)

for any probability distribution p ∈ P(Σ) and function a : Σ → D. (If |Σ| = 2 then this simply
restates the definition of concavity.) Moreover, if f is strictly concave then equality in Eq. (5.4)
holds if and only if a is constant on the set {x ∈ Σ : p(x) > 0}. We can also state Eq. (5.4) in
probabilistic terms. If f is a concave function and A a random variable then

E[f(A)] 6 f(E[A]),

and for a strictly concave function we have equality iff A is constant.
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• Upper bound:

H(p) 6 log
∣∣{x : p(x) > 0}∣∣ 6 log |Σ|

Moreover, H(p) = log|Σ| if and only if p is uniform, i.e., p(x) = 1/|Σ| for all x ∈ Σ.

Proof. This follows from Jensen’s inequality, applied to the concave log function and
a(x) = 1/p(x). Indeed,

H(p) =
∑

x∈Σ,p(x)>0

p(x) log 1

p(x)
6 log

∑
x∈Σ,p(x)>0

p(x)
1

p(x)
= log

∣∣{x : p(x) > 0}∣∣,
with equality if and only if all nonzero p(x) are equal. Now the rest is clear.

• Concavity: The Shannon entropy is a strictly concave function of p ∈ P(Σ).

Proof. This follows if we can show that

f(q) = q log 1
q
= −

1

ln 2q lnq

is strictly concave on q ∈ [0,∞). Indeed, for q > 0,

f ′(q) = −
1

ln 2
(lnq+ 1) and so f ′′(q) = −

1

ln 2
1

q
< 0.

Definition 5.3 (Subscripts, entropy of subsystems). When dealing with joint distributions, it is often
useful to use subscripts to denote the distribution of a random variable. Thus, if X and Y are random
variables then we might write pXY for their joint distribution and pX, pY for their marginal distributions,
etc. That is,

pXY(x, y) = Pr(X = x, Y = y),

pX(x) = Pr(X = x) =
∑
y pXY(x, y),

pY(y) = Pr(Y = y) =
∑
x pXY(x, y).

We already discussed and used this convention in Eq. (3.24). It will also be useful to write ΣX for the
domain of a random variable X, i.e., if X ∈ P(ΣX). This is completely analogous to our notation and
conventions in the quantum case, see Definitions 2.5 and 2.8.

Similarly, we will denote the entropies of subsets of the random variables by

H(XY) := H(pXY), H(X) := H(pX), H(Y) := H(pY).

Sometimes we will also write H(XY)p, H(X)p, etc. if we want to be explicit about the underlying
probability distribution.

Today we will use this notation only to state the following two properties, which you will prove
in Homework Problem 5.3.

• Monotonicity: H(XY) > H(X) and H(XY) > H(Y).

• Subadditivity: H(X) +H(Y) > H(XY).

We now turn towards today’s main goal, which is to give an interpretation of the Shannon
entropy in the context of compression.
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5.2 Lossy and lossless compression

Consider a data source modeled by a random variable X ∼ p ∈ P(Σ). We would like to compress
X into a bitstring of length `. By this we mean that we would like to come up with an encoder
E and a decoder D such that X̂ := D(E(X)) is equal to X (i.e., first compressing and then
decompressing does recover the original input). This is illustrated in the following picture:
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How small can we choose ` to be? The answer is given by the raw bit content of p, which is
defined as follows:

H0(p) := log
∣∣{x ∈ Σ : p(x) > 0}

∣∣.
Indeed, the encoder E needs to assign a distinct bitstring in {0, 1}` to each element x that occurs
with nonzero probability – this can be done if and only if ` > H0(p). Clearly, this is not a very
interesting result – we are not doing any compression at all. How can we do better? There are
two main options:

1. Lossy fixed-length compression: We could allow a small probability of error, i.e., only demand
that Pr(X̂ 6= X) 6 δ for some δ > 0.

2. Lossless variable-length compression: We could use bitstrings of different lengths ` = `(x)
and try to minimize the average length.

Here is a concrete example:

Example 5.4. Consider the following distribution on Σ = {A,B,C}:

p(A) = 0.98, p(B) = 0.01, p(C) = 0.01

Clearly, H0(p) = log 3 ≈ 1.58, so we need at least ` = 2 bits to achieve (5.5).
However, if we are willing to tolerate a probability of error δ = 0.01 then we can compress into a single

bit (` = 1). For example, we might define the encoder and decoder by

x E(x)
A 0
B 1
C 1

s D(s)
0 A
1 B

Similarly, if we are willing to use bitstrings of varying length then the following encoder and decoder

x E(x)
A 0
B 10
C 11

s D(s)
0 A
10 B
11 C

achieves an average length of 0.98× 1+ 0.02× 2 = 1.01.
Note that none of the ‘codewords’ E(x) is a prefix of any other – this ensures that we can decode a

given bitstring without having to use an additional ‘end of input’ symbol.
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This goes already in the right direction but is still not very impressive. For example, suppose
that we have a source that emits two symbols A and Bwith probabilities

p(A) = 0.75, p(B) = 0.25.

There should clearly be some potential for savings, since this situation seems much less random
than if the two probabilities were the same. But neither of the two options above seem very
helpful – for a lossy protocol we would need to allow a probability of failure of δ = 25%, while
for a lossless protocol there is no better way than sending ` = 1 bit for both messages (since we
cannot send partial bitstrings).

How can we do better? The key idea is to try to compress not a single symbol at a time but
to focus on blocks of many symbols. We will discuss how this can be done in detail for lossy
compression and defer a discussion of the lossless case to Practice Problem 5.4.

5.3 Block codes, Shannon’s source coding theorem, typical sets

The basic assumption will be that our data source is IID (or memoryless), which means that it
emits symbols

X1, X2, . . . , Xn
IID
∼ p

for some p ∈ P(Σ). This notation means that the Xi are independent and identically distributed
(IID) random variables such that each Xi has distribution p.

Remark 5.5. While the IID assumption may not necessarily be a realistic assumption when it comes to a
concrete data source (e.g., typical data sources may exhibit correlations or may change over time), it is a very
useful base case. For more sophisticated compression schemes, see https://staff.fnwi.uva.nl/m.walter/ iit19/ .

Schematically, what we would like to achieve is the following. We would like to find an encoder
and decoder, now operating on a block or sequence of n symbols, as in the following figure,












































































































toy IMPRESSION LOSSLESSCOMPRESSIONI
PROBLEM

Allowsmallprobability of Usedifferent lengthfordifferent
error Pr x c 8 pay symbols minimizeaverage bits

f EEN O bI 0.98 2002ECA 0 ECB 10
ECB L ECC y 1.0
ECC arbitrary 1
prc X E 8

but typically no significant sawingforsmall 8

Keyidea what if we compressblood of symbols X Xu Xn KE p

IEEE f e
n Fn

5th
pr Xn Z l S

NOTATION X CX Xn X Xn

Det Ch R code for pEPCE Functions
R LnRJE In a 0,14nA and D Long In

s th Pr DCE D XN 5 I 8 for XN p

Z pCx pkn 2 pkn wee pan pCa pCxn
Xn527 DEET xn HEI DCEGn xn

Shannon's SourceCodingTheorem Let 058 1

If R Hcp Fno Fnzno FFCn R S code

If RLHcp Foro trizno FffCh R S code

Thus HCP is eptimatompression rate for anHDSowcecindependentof OC Sci

such that

Pr(X̂n 6= Xn) 6 δ.

Here and below we use the notation Xn = (X1, . . . , Xn) for sequences of length n if we want to
emphasize their length. Note that for n = 1 the above reduces to Eq. (5.5). Our goal now is to
minimize the compression rate

`

n
=

number of bits
block length .

We now formalize the above in a definition and state Shannon’s central theorem, which shows
that the optimal compression rate is directly related to the Shannon entropy (if we allow n→∞).
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Definition 5.6 (Code). An (n, R, δ)-code for p ∈ P(Σ) is a pair of functions

E : Σn → {0, 1}bnRc and D : {0, 1}bnRc → Σn

such that

Pr
(
D(E(Xn)) 6= Xn

)
6 δ (5.6)

for Xn IID
∼ p.

Note that the left-hand side of Eq. (5.6) can also be written as

Pr
(
D(E(Xn)) 6= Xn

)
=

∑
xn∈Σn:D(E(xn)) 6=xn

p(xn) =
∑

xn∈Σn:D(E(xn)) 6=xn
p(x1) · · ·p(xn),

where we write p(xn) := p(x1) · · ·p(xn) for the joint distribution of a sequence xn ∈ Σn.

Theorem 5.7 (Shannon’s source coding). Let p ∈ P(Σ) and δ ∈ (0, 1). Then:

1. If R > H(P) then there exists n0 such that there exists an (n, R, δ)-code for all n > n0.

2. If R < H(P) then there exists n0 such that no (n, R, δ)-codes exist for n > n0.

That is, the optimal asymptotic compression rate for an IID source described by a probability
distribution is given by the Shannon entropy.

To prove Theorem 5.7, we need to make use of the fact that not all sequences xn are equally
likely. For example, for large n, we might expect that with high probability the number of times
that any given symbol x appears in Xn is ≈ n(p(x) ± ε). The following definition captures a
closely related property of ‘typical’ sequences:

Definition 5.8 (Typical set). For p ∈ P(Σ), n ∈ N, and ε > 0, define the typical set

Tn,ε(p) :=
{
xn ∈ Σn :

∣∣∣ 1
n
log 1

p(xn)
−H(p)

∣∣∣ 6 ε}
=
{
xn ∈ Σn :

∣∣∣ 1
n

n∑
i=1

log 1

p(xi)
−H(p)

∣∣∣ 6 ε}

The following lemma summarizes the most important properties of the typical sets.

Lemma 5.9 (Asymptotic Equipartition Property, AEP). The following properties hold:

0. 2−n(H(p)+ε) 6 p(xn) 6 2−n(H(p)−ε) for all xn ∈ Tn,ε(p).

1. |Tn,ε(p)| 6 2n(H(p)+ε).

2. For Xn IID
∼ p, it holds that Pr

(
Xn 6∈ Tn,ε(p)

)
6 σ2

nε2
. Here, σ2 = Var(log 1

p(Xi)
) is a constant

that only depends on p.

Proof. 0. This is just restating the definition.
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1. This follows from

1 > Pr
(
Xn ∈ Tn,ε(p)

)
> |Tn,ε(p)| 2

−n(H(p)+ε),

where the last step is the lower bound in part 0.

2. Define the random variables Ri := log 1
p(Xi)

. Then the R1, . . . , Rn are IID, with expectation
value µ = E[Ri] = H(p) (Eq. (5.3)) and variance σ2. Now,

Pr
(
Xn 6∈ Tn,ε(p)

)
= Pr

(∣∣∣ 1
n

n∑
i=1

log 1

p(Xi)
−H(p)

∣∣∣ > ε) = Pr
(∣∣∣ 1
n

n∑
i=1

Ri − µ
∣∣∣ > ε)

The weak law of large number states that the right-hand side converges to zero for large n.
Let us recall its proof to get a concrete bound. For this, define Y := 1

n

∑n
i=1 Ri. Then,

E[Y] = µ and Var(Y) = 1

n2
Var(R1 + · · ·+ Rn) =

1

n
Var(Ri) =

σ2

n
,

using that the variance of a sum of independent random variables is simply the sum of
the individual variances. Now we can use the Chebyshev inequality, which states that

Pr(|Y − E[Y]| > ε) 6
Var(Y)
ε2

to conclude the proof.

We are now in a good position to prove Shannon’s source coding theorem.

Proof of Theorem 5.7. To prove part 1, let us choose ε = R−H(p)
2 , noting that ε > 0. Then, using

part 1 of Lemma 5.9,

|Tn,ε(p)| 6 2
n(H(p)+ε) = 2n(R−ε) 6 2bnRc;

the final inequality holds provided we assume that n > 1
ε . The above implies that there exists

an injective map E : Tn,ε → {0, 1}bnRc. Let us denote by D : {0, 1}bnRc → Σn its left inverse (i.e.,
D(E(xn)) = xn for xn ∈ Tn,ε). Finally, extend E arbitrarily to all of Σn. Then,

Pr
(
D(E(Xn)) 6= Xn

)
6 Pr(Xn 6∈ Tn,ε(p)) 6

σ2

nε2
6 δ,

where we first used that only sequences outside the typical set can lead to errors (since
D(E(xn)) = xn for xn ∈ Tn,ε) and then part 2 of Lemma 5.9; the final inequality holds if
we assume that n > σ2

ε2δ
. Thus we have proved that there exists an (n, R, δ)-code for any

n > n0 := max{1ε ,
σ2

ε2δ
}. We emphasize that n0 only depends on p, δ, and R, as it should.

How about the proof of part 2? This is your Homework Problem 5.4!

In Practice Problem 5.3 you can reflect on the practicalities of using typical sets for compression.
In Practice Problem 5.4 you can discuss how to translate an (n, R, δ)-code into a corresponding
lossless variable-length compression protocol.

Remark 5.10. The typical sets constructed in the proof are in general not the smallest sets Sn with the
property that Pr(Xn ∈ Sn) > 1− δ. However, they are easy to handle mathematically as n→∞ and
still small enough (this is the content of part 2 of Theorem 5.7).

To obtain the smallest possible Sn, we could sort the strings xn by decreasing probability and add one
string after the other until we reach probability 1− δ.
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Next week we will discuss how to translate the above ideas into the quantum realm. Here
there are many challenges, e.g., the states emitted by a quantum data source need not be
orthogonal, so cannot be perfectly distinguished by the encoder, and at any rate the encoder is
not allowed to measure the information as we typically destroy quantum information when we
measure it – but we will see that all these challenges can be overcome!
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Lecture 6

From classical to quantum compression

Last week we discussed how to compress a classical data source which emits a symbol IID
according to a known probability distribution. We discussed two paradigms for compression –
lossy fixed-length compression and lossless variable-length compression – and their relation.
We then zoomed into the lossy paradigm and proved Shannon’s source coding theorem, which
states that, in the limit of large block lengths, the optimal compression rate of a source is
computed by its Shannon entropy (see Theorem 5.7 for a precise statement). Today, we will see
the quantum analogs of these results. We will define the von Neumann entropy of quantum
states, the notion of a quantum code, and prove Schumacher’s theorem that computes the
optimal compression rate in the quantum scenario.

6.1 Von Neumann Entropy

As last week, we will first define the entropy and then discuss how it naturally arises in the
context of compression.

Definition 6.1 (von Neumann entropy). The von Neumann entropy of a quantum state ρ ∈ D(H)
is defined as the Shannon entropy of its eigenvalues (cf. Definition 5.1). That is,

H(ρ) := H(p) (6.1)

where p = (p(1), . . . , p(d)) is a probability distribution whose entries are the eigenvalues of ρ, repeated
according to their multiplicity, and d = dimH.

We can also write the von Neumann entropy more intrinsically in the following way:

H(ρ) = −Tr[ρ log ρ] (6.2)

On the right-hand side, we take the logarithm of the operator ρ. In general, if Q is positive
definite then its logarithm, denoted logQ or log(Q), is the Hermitian operator with the same
eigenvectors but eigenvalues the logarithm of those of Q. That is, if Q =

∑
i λi|ei〉〈ei| is

an eigendecomposition then logQ =
∑
i log(λi)|ei〉〈ei|. This is completely analogous to the

definition of the square root
√
Q in Lectures 2 and 3. Note that logQ is typically not PSD.

If ρ has some zero eigenvalues then log(ρ) is ill-defined. However, we can still define ρ log(ρ)
by continuity for all ρ ∈ D(H), in precisely the same way that we did for the Shannon entropy
(see discussion below Definition 5.1). Then Eq. (6.2) is well-defined and holds for all ρ ∈ D(H).

We now state some properties of the vonNeumann entropy. The first two follow immediately
from the corresponding properties of the Shannon entropy (see p. 52).
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• Nonnegativity: H(ρ) > 0. Moreover, H(ρ) = 0 if and only if ρ is pure (i.e., ρ = |ψ〉〈ψ| for
some unit vector |ψ〉 ∈ H).

• Upper bound:

H(ρ) 6 log rank(ρ) 6 log dimH.

Moreover, H(ρ) = log dimH if and only if ρ is maximally mixed (i.e., ρ = I
dimH

).

• Invariance under isometries: H(ρ) = H(VρV†) for any isometry V . This holds since the
entropy only depends on the nonzero eigenvalues – but the latter are the same for ρ
and VρV†.

• Continuity: The von Neumann entropy is continuous. This follows because the Shannon
entropy is continuous and the sorted eigenvalues of a Hermitian operator depend continu-
ously of an operator (but we will not prove this). In case you are curious about quantitative
bounds: The Fannes-Audenaert inequality states that, for all ρ, σ ∈ D(H),

|H(ρ) −H(σ)| 6 t log(dimH − 1) + h(t),

where t = T(ρ, σ) is the trace distance between the two states and h(t) denotes the binary
Shannon entropy discussed in Example 5.2 and Practice Problem 7.5.

• Concavity: The von Neumann entropy is a strictly concave function of ρ ∈ D(H). You will
prove concavity in Homework Problem 6.4 (c) and strict concavity in Practice Problem 7.3.
See p. 52 in the last lecture for the definition of concavity and strict concavity.

6.2 Motivation: Classical compression and correlations

Before we turn to compressing quantum data, let us briefly revisit the classical case. Recall from
Definition 5.6 that an (n, R, δ)-code for a probability distribution p ∈ P(Σ) consists of functions
E : Σn → {0, 1}bnRc and D : {0, 1}bnRc → Σn such that

Pr
(
X̃n 6= Xn

)
6 δ (6.3)

for X1, . . . , Xn
IID
∼ p, where X̃n := D(E(Xn)). Pictorially:
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Shannon’s source coding theorem asserts that H(p) is the optimal rate for compression in this
context (see Theorem 5.7 for the precise statement).

Howabout ifXn is correlated to another randomvariable Y? For example, suppose that Y = X1,
or Y = X1 ⊕ . . .⊕ Xn or even Y = Xn. Are these correlations preserved if we replace Xn by X̃n?

To state this question precisely, let pXnY denote the joint distribution of (Xn, Y) and let pX̃nY
denote the joint distribution of (X̃n, Y). Then we would like to ask if it is true that pXnY ≈ pX̃nY .
This can be quantified by using the trace distance for probability distributions which is defined
as follows:
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Definition 6.2 (Trace distance). Given probability distributions p, q ∈ P(Σ), their (normalized) trace
distance or total variation distance is defined as

T(p, q) :=
1

2

∑
z∈Σ

|p(z) − q(z)| =
1

2
‖p− q‖1,

where ‖x‖1 =
∑
z∈Σ|xz| denotes the usual `1-norm of vectors.

Note that this is nothing but the trace distance of the corresponding classical states. In Practice
Problem 6.1, you will prove the following two properties:

1. If Z, Z̃ are random variables over Σ with distributions p, q, respectively, then

T(p, q) = max
S⊆Σ

(
Pr(Z ∈ S) − Pr(Z̃ ∈ S)

)
. (6.5)

2. If Z and Z̃ are as above and have a joint distribution then it holds that

T(p, q) 6 Pr(Z 6= Z̃). (6.6)

Eq. (6.6) is known as the coupling inequality. This is because, in probability theory, a joint
distribution of a given pair of marginal distributions is often called a coupling.

Then we have the following lemma, which shows that not only are correlations preserved in a
precise quantitative sense but that this in fact characterizes a reliable code!

Lemma 6.3. Let p ∈ P(Σ) and E : Σn → {0, 1}bRnc, D : {0, 1}bRnc → Σn be an arbitrary pair of
functions. Then, (E,D) is an (n, R, δ)-code for p if and only if

T(pXnY , pX̃nY) 6 δ

for any joint distribution pXnY of random variables X1, . . . , Xn
IID
∼ p and Y, where pX̃nY denotes the

joint distribution of X̃n = D(E(Xn)) and Y.

Proof. (⇒): Using the coupling inequality Eq. (6.6) for Z = (Xn, Y) and Z̃ = (X̃n, Y),

T(pXnY , pX̃nY) 6 Pr(Z 6= Z̃) = Pr(Xn 6= X̃n) 6 δ,

where the last inequality is Eq. (6.3), using that (E,D) is by assumption an (n, R, δ)-code.
(⇐): Choose Y = Xn. Then,

Pr(X̃n 6= Xn) = Pr(X̃n 6= Y) = Pr(X̃n 6= Y) − Pr(Xn 6= Y)︸ ︷︷ ︸
=0

6 T(pX̃nY , pXnY) 6 δ,

where the first inequality is Eq. (6.5) for the event S = {(xn, y) : xn 6= y}.

6.3 Quantum codes and compression

We just saw that good codes are characterized by the property that they approximately preserve
all correlations. Wewill take this as the definition in the quantum case. Recall fromDefinition 3.8
that C(HA,HB) denotes the set of all quantum channels fromHA to HB.
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Definition 6.4 (Quantum code). An (n, R, δ)-quantum code for ρ ∈ D(HA) is a pair of channels

E ∈ C
(
H⊗nA , (C2)⊗bnRc

)
and D ∈ C

(
(C2)⊗bnRc,H⊗nA

)
such that

F
(
σAnB, (D ◦ E⊗ IB)[σAnB]

)
> 1− δ (6.7)

for all finite-dimensional HB and states σAnB ∈ D(H⊗nA ⊗HB) such that σAn = ρ⊗nA .

Here we use the fidelity rather than the trace distance – otherwise Definition 6.4 is completely
analogous to the condition in Lemma 6.3. The following pictures illustrates the definition:
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Definition 6.4 is perhaps surprising and raises three immediate questions: (1) What does the
definition have to do with compression in the ‘ordinary’ sense of compressing the output of
a source? (2) Is there any way to simplify the condition in Eq. (6.7) so that it no longer refers
to infinitely many options for σAnB? (3) What is the optimal rate of compression – is there an
analog to Shannon’s theorem? We will address these questions one after the other.

First, let us relate Definition 6.4 to compression of a source. In analogy to last lecture, we
imagine that a quantum source emits states ρx ∈ D(HA) for x ∈ Σ according to a knownprobability
distribution p ∈ P(Σ). We will further imagine the source to be IID (or memoryless), which means
that it emits states ρx1 ⊗ · · · ⊗ ρxn according to the IID distribution p(xn) = p(x1) · · ·p(xn).
What would it mean to compress such a quantum source? Clearly, we would like to have
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on average or even with high probability. For example, we might like to show that∑
xn∈Σn

p(x1) · · ·p(xn) F
(
ρx1 ⊗ · · · ⊗ ρxn ,D[E[ρx1 ⊗ · · · ⊗ ρxn ]]

)
> 1− δ. (6.8)

This looks similar to Eqs. (6.3) and (6.4), except that we are now happy to recover ρx1 ⊗ · · · ⊗ ρxn
approximately (since we are dealing with quantum states it turns out that we cannot in general
hope for equality).

We will now show that Eq. (6.8) can indeed be achieved by using quantum codes. For this,
suppose that (E,D) is an (n, R, δ)-quantum code for the average output state of the source, i.e.,

ρ =
∑
x∈Σ

p(x)ρx.
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Why does this help? To make use of Eq. (6.7), we need to construct a state that extends ρ⊗n. We
will consider the following state

σAnXn :=
∑
xn∈Σn

p(xn) ρx1 ⊗ · · · ⊗ ρxn ⊗ |xn〉〈xn|,

on D(H⊗nA ⊗H⊗nX ), whereHX = CΣ. Both the state σAnXn and

(D ◦ E⊗ IXn)[σAnXn ] =
∑
xn∈Σn

p(xn)D[E[ρx1 ⊗ · · · ⊗ ρxn ]]⊗ |xn〉〈xn|

are classical on the Xn-system, with the same probability distribution. Thus,∑
xn∈Σn

p(xn) F
(
ρx1 ⊗ · · · ⊗ ρxn ,D[E[ρx1 ⊗ · · · ⊗ ρxn ]]

)
= F
(
σAnY , (D ◦ E⊗ IXn)[σAnXn ]

)
> 1− δ,

where the equality holds thanks to last week’s Homework Problem 5.1 and the inequality is
simply by Eq. (6.7) in the definition of a quantum code, applied to the state σAnXn .

Thus we have proved that Eq. (6.7) implies Eq. (6.8), meaning that a quantum code for ρ
can be used for compressing any quantum source with average output state ρ. In Homework
Problem 6.1 you will show that in general the converse is not true. This makes sense, since
Eq. (6.8) refers to a single source, while we just proved that Eq. (6.7) ensures that any source
with average output state ρ can be compressed reliably.

We close this section with some warnings to avoid some common traps that one can fall into
when thinking about compressing quantum sources:

• In general, there is no relation between the number of states ρx and the Hilbert space
dimension (i.e., in general |Σ| 6= dimHA).

• The states ρx for x ∈ Σ need not be pure nor pairwise orthogonal.

• The p(x) need not be the eigenvalues of the average state ρ =
∑
x p(x)ρx.

6.4 Channel fidelity

We now turn to the second question raised above – how can we check the condition in Eq. (6.7)
without having to consider all possible states σAnB? We start with a definition that abstracts the
situation.

Definition 6.5 (Channel fidelity). Given a channel TA ∈ C(HA,HA) and a state ρA, define the
channel fidelity as

F(TA, ρA) := inf
{
F
(
σAB, (TA ⊗ IB)[σAB]

)
: HB, σAB ∈ D(HA ⊗HB) such that σA = ρA

}
.

Given this definition, we can rephrase Eq. (6.7) in the definition of a quantum code as

F(D ◦ E, ρ⊗n) > 1− δ. (6.9)

Why is this progress? It turns out that we can always compute the channel fidelity by considering
an arbitrary purification.
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Lemma 6.6. Let σAB = |ΨAB〉〈ΨAB| be an arbitrary purification of ρA. Then,

F(TA, ρA) = F
(
σAB, (TA ⊗ IB)[σAB]

)
.

Proof. This follows readily from the fidelity’s monotonicity and invariance under isometries.

As a consequence we find a simple expression in terms of a Kraus representation.

Corollary 6.7. Let TA[MA] =
∑
i XiMAX

†
i be a Kraus representation. Then,

F(TA, ρA) =

√∑
i

∣∣Tr[XiρA]∣∣2.
Proof. Let σAB = |ΨAB〉〈ΨAB| be an arbitrary purification of ρA. Then,

F(TA, ρA)
2 = F

(
σAB, (TA ⊗ IB)[σAB]

)2
=
〈
ΨAB

∣∣(TA ⊗ IB)
[
|ΨAB〉〈ΨAB|

]∣∣ΨAB〉
=
∑
i

〈
ΨAB

∣∣(Xi ⊗ IB)|ΨAB〉〈ΨAB|(X†i ⊗ IB)∣∣ΨAB〉
=
∑
i

|〈ΨAB|Xi ⊗ IB|ΨAB〉|2 =
∑
i

|Tr[XiρA]|2,

where we first used Lemma 6.6, then Eq. (3.13) to evaluate the fidelity, and finally the Kraus
representation of TA.

6.5 Schumacher’s theorem and typical subspaces

With the preceding theory in hand we shall now address the third and main question of today’s
lecture – what is the optimal rate of quantum compression? The following theorem due to
Schumacher gives a precise solution.

Theorem 6.8 (Schumacher compression). Let ρ ∈ D(HA) and δ ∈ (0, 1). Then:

1. If R > H(ρ) then there exists n0 such that there exists an (n, R, δ)-quantum code for all n > n0.

2. If R < H(ρ) then there exists n0 such that no (n, R, δ)-quantum codes exist for n > n0.

Just like Shannon’s theorem was proved using typical sets, we will prove Schumacher’s theorem
by using the closely related notion of a typical subspace.

Definition 6.9 (Typical subspace and projector). For ρ ∈ D(HA), n ∈ N, and ε > 0, define the
typical subspace

Sn,ε(ρ) = span {|ey1〉 ⊗ · · · ⊗ |eyn〉 : yn ∈ Tn,ε(q)},

where ρ =
∑d
y=1 q(y) |ey〉〈ey| is an eigendecomposition of ρ and d = dimHA.

Moreover, we define the typical projector Πn,ε(ρ) as the orthogonal projection onto the typical
subspace Sn,ε(ρ) ⊆ H⊗nA . We will often abbreviate it by Πn,ε.
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To motivate this definition, note that

ρ⊗n =
∑
yn

q(y1) · · ·q(yn) (|ey1〉 ⊗ · · · ⊗ |eyn〉) (〈ey1 |⊗ · · · ⊗ 〈eyn |)

=
∑
yn

q(y1) · · ·q(yn) |ey1〉〈ey1 |⊗ · · · ⊗ |eyn〉〈eyn |,
(6.10)

so we recognize that the eigenvalues of ρ⊗n are precisely given by the IID probabilities q(yn) :=
q(y1) · · ·q(yn). It is useful to note that the typical projector is diagonal in the same basis, since

Πn,ε =
∑

yn∈Tn,ε(q)

|ey1〉〈ey1 |⊗ · · · ⊗ |eyn〉〈eyn |. (6.11)

In particular, Πn,ε and ρ⊗n commute with each other. The following lemma summarizes the
most important properties of the typical subspaces.

Lemma 6.10 (Quantum Asymptotic Equipartition Property, AEP). With notation as above, the
following properties hold:

0. The nonzero eigenvalues of Πn,ερ⊗nΠn,ε = Πn,ερ⊗n = ρ⊗nΠn,ε are within 2−n(H(ρ)±ε),

1. rankΠn,ε = dimSn,ε(ρ) = |Tn,ε(q)| 6 2n(H(ρ)+ε),

2. Tr[Πn,ερ⊗n] > 1− σ2

nε , where σ
2 is a constant that only depends on the eigenvalues of ρ.

Proof. These properties follow from the corresponding properties in Lemma 5.9. For property 1,
this is immediate. To prove the other properties, note that Eqs. (6.10) and (6.11) imply that

Πn,ερ
⊗nΠn,ε = Πn,ερ

⊗n = ρ⊗nΠn,ε =
∑

yn∈Tn,ε(q)

q(yn) |ey1〉〈ey1 |⊗ · · · ⊗ |eyn〉〈eyn |.

This is an eigendecomposition, so we obtain property 0 from the corresponding property in
Lemma 5.9. And since the preceding implies that

Tr[Πn,ερ⊗n] =
∑

yn∈Tn,ε(q)

q(yn) = Pr(Yn ∈ Tn,ε(q)),

where Y1, . . . , Yn
IID
∼ p, property 2 likewise follows from Lemma 5.9.

We now prove Schumacher’s theorem.

Proof of Theorem 6.8. To prove part 1, we start as in the proof of Shannon’s source coding theorem
and choose ε =

R−H(q)
2 =

R−H(ρ)
2 , which is ε > 0 by assumption. Then, using part 1 of

Lemma 6.10,

rankΠn,ε 6 2n(H(ρ)+ε) = 2n(R−ε) 6 2bnRc = dim
(
(C2)⊗bnRc

)
; (6.12)

the final inequality holds for large enough n (e.g., if n > 1
ε ). Eq. (6.12) implies that there exists a

linear map V : H⊗nA → (C2)⊗bnRc such that

V†V = Πn,ε.
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Indeed, we can simply set V =
∑D
i=1|ψi〉〈ϕi|, where D = rankΠn,ε, {|ϕi〉}Di=1 is a basis of the

typical subspace and {|ψi〉}Di=1 some arbitrary set of orthonormal vectors in (C2)⊗bnRc.1 Finally,
define the compressor and decompressor by

E[M] := VMV† + Tr[
√
I− V†VM

√
I− V†V]α,

D[M] := V†MV + Tr[
√
I− VV†M

√
I− VV†]β,

whereα andβ are arbitrary states. Note that I−V†V and I−VV† are PSD (since V†V = Πn,ε and
VV† have the same nonzero eigenvalues and the former is a projection), so that the square roots
are well-defined PSD operators. It follows that E andD are completely positive and it is also easy
to see that they are trace-preserving. Thus, we have defined channels E ∈ C(H⊗nA , (C2)⊗bnRc)
and D ∈ C((C2)⊗bnRc,H⊗nA ). It remains to verify Eq. (6.7) or, equivalently, Eq. (6.9). For
this, note that E has a Kraus representation that includes the operator V , and D has a Kraus
representation that includes the operator V†. By Practice Problem 4.4, this means that D ◦ E has
a Kraus representation starting with V†V = Πn,ε. Hence, Corollary 6.7 implies that

F(D ◦ E, ρ⊗n) >
∣∣Tr[V†Vρ⊗n]∣∣ = Tr[Πn,ερ⊗n]

But now property 2 in Lemma 6.10 shows that the right-hand side is > 1 − δ if we choose n
sufficiently large. This concludes the proof of part 1.

How about part 2? You already gave this a try in Practice Problem 6.4 and we will follow
the argument sketched therein. Fix δ ∈ (0, 1) and R < H(ρ). First, note that if P is an arbitrary
orthogonal projection of rank 6 2nR then

Tr[Pρ⊗n] = Tr[PΠn,ερ⊗n] + Tr[P(I− Πn,ε)ρ⊗n]
6 ‖P‖1︸ ︷︷ ︸

62nR

‖Πn,ερ⊗n‖∞︸ ︷︷ ︸
62−n(H(ρ)−ε)

+Tr[(I− Πn,ε)ρ⊗n]︸ ︷︷ ︸
1−Tr[Πn,ερ⊗n]

6 2−nε +
(
1− Tr[Πn,ερ⊗n]

)
(6.13)

if we choose ε = H(ρ)−R
2 . Here we estimated the left-hand side term using the Hölder inequality

for operators from Eq. (3.7) and the operator norm using property 0 in Lemma 6.10. For the
right-hand side term, we simply used that P 6 I and rewrote the result. In view of property 2 in
Lemma 6.10, the expression Eq. (6.13) converges to 0 as n→∞.

Now suppose that (E,D) is an (n, R, ε)-code. If {Xi} are Kraus operators for E and {Yj}

are Kraus operators for D, then {Zk} = {YjXi} are Kraus operators for D ◦ E. Since Xi ∈
L(H⊗nA , (C2)⊗bnRc), it has necessarily rank6 2nR. Thus the same is true for the Kraus operators
Zk of D ◦ E. Finally, let Pk denote the orthogonal projections onto the range of Zk, so that the
rank of Pk is likewise 6 2nR. We now evaluate the channel fidelity using Corollary 6.7 and
obtain

F(D ◦ E, ρ⊗n)2 =
∑
k

∣∣Tr[Zkρ⊗n]∣∣2 =∑
k

∣∣Tr[PkZkρ⊗n]∣∣2
=
∑
k

∣∣Tr[Zk√ρ⊗n√ρ⊗nPk]∣∣2 6∑
k

Tr[Z†kZkρ
⊗n]Tr[Pkρ⊗n],

where the inequality is by the Cauchy-Schwarz inequality for operators [Eq. (3.6)]. SinceD ◦ E
is a quantum channel, it is trace-preserving, so

∑
k Z
†
kZk = I by Lemma 4.4. This implies that

1For example, we can use V =
∑
yn∈Tn,ε(q)|E(y

n)〉
(
〈ey1 |⊗ · · · ⊗ 〈eyn |

)
, where E : Tn,ε → {0, 1}bnRc is an arbitrary

injective map and |E(yn)〉 denotes the standard basis vector in (C2)⊗bnRc corresponding to E(yn) ∈ {0, 1}⊗bnRc.
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r(k) := Tr[Z†kZkρ⊗n] is a probability distribution. But then,

F(D ◦ E, ρ⊗n)2 6
∑
k

r(k)Tr[Pkρ⊗n] 6 2−nε +
(
1− Tr[Πn,ερ⊗n]

)
by Eq. (6.13). By property 2 in Lemma 6.10, the right-hand side converges to 0 as n → ∞.
As a consequence, F(D ◦ E, ρ⊗n) > 1 − δ can only hold for finitely many n. In other words,
(n, R, δ)-codes can only exist for finitely many values of n.
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Lecture 7

Entropy and subsystems

Last week we discussed the definition of the von Neumann entropy, which generalizes the
Shannon entropy to quantum states, as well as the problem of compressing quantum information.
The main result was Schumacher’s theorem, which states that the von Neumann entropy is the
‘optimal’ compression rate.

Today we will discuss how the entropies of subsystems are related to the entropy of the
overall system. As you already saw in last week’s Homework Problem 6.3, these entropies are
not independent but constrained by entropy inequalities, and we will discuss several of those.
Then we will introduce the mutual information, which is a very useful correlation measure, and
discuss its mathematical properties.

7.1 Entropies of subsystems

To study the entropies of subsystems, it is useful to first introduce some notation.

Definition 7.1 (Entropy of subsystems). Given a quantum state ρAB, we define

H(AB)ρ := H(ρAB), H(A)ρ := H(ρA), H(B)ρ := H(ρB).

We use analogous notation for more than two subsystems. We will very often leave out the subscript and
writeH(AB),H(A),H(B) when the state is clear. In fact, we already introduced and used this convention
in Homework Problem 6.2, as well as for the Shannon entropy (Definition 5.3).

How are these entropies related? Let us first consider two very extreme cases:

• If ρAB is pure then H(AB) = 0 and

H(A) = H(B). (7.1)

The latter is often called the entanglement entropy of ρAB.

Proof. The former holds because the eigenvalues of a pure state are 1, 0, . . . , 0. The latter
follows from the Schmidt decomposition, which implies that ρA and ρB have the same
nonzero eigenvalues (Corollary 2.13).

• If ρAB is a product state (equivalently, ρAB = ρA ⊗ ρB) then H(AB) = H(A) +H(B). We
say that the entropy is additive with respect to tensor products.
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Proof. If ρA has eigenvalues (pi)dAi=1 and ρB has eigenvalues (qj)dBj=1 then ρAB = ρA ⊗ ρB
has eigenvalues (piqj)i,j. Thus,

H(AB) =
∑
i,j

piqj log
1

piqj
=
∑
i,j

piqj log
1

pi
+
∑
i,j

piqj log
1

qj

=
∑
i

pi log
1

pi
+
∑
j

qj log
1

qj
= H(A) +H(B).

Next, we list some general properties. We first discuss the extent to which the subadditivity
and monotonicity properties of the Shannon entropy (see p. 53 and Homework Problem 5.3)
generalize to the quantum case.

• Subadditivity:

H(A) +H(B) > H(AB) (7.2)

Moreover, equality holds if and only if ρAB = ρA ⊗ ρB.
You proved this inequality on Homework Problem 6.3 and we discussed above that
equality holds for product states. Why does equality hold only for product states? We will
prove this next week.

• The von Neumann entropy is not monotonic. That is, in general, H(AB) 6> H(A) and
H(AB) 6> H(B). You discussed this in Homework Problem 6.2.

• However, for classical-quantum states ρXB we do have the monotonicity inequalities

H(XB) > H(X) and H(XB) > H(B). (7.3)

You proved the first inequality in Homework Problem 6.4; the second will be on Practice
Problem 8.4.

• Araki-Lieb (or triangle) inequality:

H(AB) >
∣∣H(A) −H(B)∣∣. (7.4)

We can think of Eq. (7.4) as a weaker form of monotonicity (not to be confused with
Eq. (7.6) below). Indeed, ifH(AB) > H(A) andH(AB) > H(B)were true then these would
imply Eq. (7.4).

Proof. Choose any purification ρABC of ρAB. Then:

H(AB) = H(C) > H(BC) −H(B) = H(A) −H(B),

where the first and last step hold since ρABC is pure [Eq. (7.1)] and the inequality is
subadditivity [Eq. (7.2)]. Likewise,

H(AB) = H(C) > H(AC) −H(A) = H(B) −H(A),

which proves the other half of Eq. (7.4).
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It turns out that there is a stronger variant of the subadditivity inequality which is very powerful:

• Strong subadditivity: For all ρABC, it holds that

H(AC) +H(BC) > H(ABC) +H(C). (7.5)

Clearly, this inequality reduces to Eq. (7.2) if there is no C system, which justifies the
terminology. Eq. (7.5) is much harder to prove than Eq. (7.2) and we will not have time to
do this in the lecture (cf. the closely related monotonicity property of the quantum relative
entropy that we will discuss in Lecture 8).

• Weak monotonicity: For all ρABC, it holds that

H(AC) +H(BC) > H(A) +H(B). (7.6)

This inequality follows from Eq. (7.5) by using a purification – in the sameway that Eq. (7.4)
follows from Eq. (7.2) – as you get to prove in Practice Problem 7.2. The name is justified
since if H(AC) > H(A) and H(BC) > H(B) were true then these would imply Eq. (7.6).

7.2 Mutual information

In this section we will discuss the mutual information, which is a useful way to quantify
correlations in quantum states.

Definition 7.2 (Mutual information). The mutual information of a quantum state ρAB is defined as

I(A : B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ. (7.7)

As for individual entropies, we will mostly leave the subscript out and write I(A : B) if the state is clear.

We can use the same formula to define the mutual information I(X : Y)p of a joint probability
distribution. These definitions are of course compatible: If ρXY =

∑
x,y p(x, y) |x, y〉〈x, y| is the

classical state corresponding to a joint distribution p(x, y) then I(X : Y)ρ = I(X : Y)p.

Example 7.3. For a maximally entangled state

ρAB = |Φ+
AB〉〈Φ

+
AB|, |Φ+

AB〉 =
1√
2

(
|00〉+ |11〉

)
the mutual information is I(A : B) = 1+ 1− 0 = 2. In contrast, for a classical maximally correlated state

ρAB =
1

2

(
|00〉〈00|+ |11〉〈11|

)
we have I(A : B) = 1+ 1− 1 = 1, since the overall state is not pure but mixed.

Wenow list some useful properties, several ofwhich followdirectly from the results of Section 7.1:

• Nonnegativity: I(A : B) > 0. Moreover, I(A : B) = 0 if and only if ρAB is a product state
(i.e., ρAB = ρA ⊗ ρB). This is a first indication that the mutual information is a useful
correlation measure.

Proof. This is simply a restatement of subadditivity [Eq. (7.2)], including the condition for
equality.
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• Invariance under isometries: For any state ρAB and isometries VA→A ′ ,WB→B ′ , we have

I(A : B)ρ = I(A ′ : B ′)σ,

where σA ′B ′ := (VA→A ′ ⊗WB→B ′)ρAB(V†A→A ′ ⊗W
†
B→B ′).

Proof. This follows from the invariance of the von Neumann entropy under isometries
(see p. 60) once we recognize that σA ′ = VρAV† and σB ′ =WρBW†.

• Pure states: If ρAB is pure then I(A : B) = 2H(A) = 2H(B).

Proof. Recall that H(AB) = 0 and H(A) = H(B) if ρAB is pure.

• Upper bound: Let dA = dimHA and dB = dimHB. Then,

I(A : B) 6 2min {H(A), H(B)} 6 2 logmin {dA, dB}. (7.8)

For classical-quantum states ρXB, we have the stronger upper bound

I(X : B) 6 min {H(X), H(B)} 6 logmin {dX, dB}. (7.9)

In particular, Eq. (7.9) holds for classical states and joint probability distributions. In
Homework Problems 7.1 and 7.2 you will investigate under which conditions the upper
bounds in Eqs. (7.8) and (7.9) hold with equality.

Proof. The first inequality in Eq. (7.8) follows from the Araki-Lieb inequality [Eq. (7.4)].
Indeed,H(A)+H(B)−H(AB) = I(A : B) 6 2H(A) is equivalent toH(AB) > H(B)−H(A),
and similarly for the other bound. Likewise, the first bound in Eq. (7.9) is equivalent to
the monotonicity inequalities in Eq. (7.3).

• Monotonicity: For all ρACE,

I(A : CE) > I(A : C). (7.10)

(We label the subsystems ACE rather than ABC to avoid confusion in the below.)

Proof. This is simply a rewriting of strong subadditivity [Eq. (7.5)].

The latter property is equivalent to the following general result:

Lemma 7.4 (Data processing inequality). Let ρAB ∈ D(HA⊗HB) be a state, TB→C ∈ C(HB,HC)
a channel, andωAC = (IA ⊗ TB→C)[ρAB]. Then,

I(A : B)ρ > I(A : C)ω,

By symmetry, the same holds if we apply a channel on A rather than on B.

The data processing inequality is very intuitive, as it states that we can never increase correlations
by acting locally. The following figure illustrates the situation:
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Clearly, Lemma 7.4 reduces to the monotonicity property of the mutual information (simply
choose B = CE and T = TrE).

Proof of Lemma 7.4. Any channel has a Stinespring representation TB→C[MB] = TrE
[
VMBV

†],
where V = VB→CE ∈ L(HB,HC ⊗HE) is an isometry [Lemma 4.4]. Note that

ωACE =
(
IA ⊗ VB→CE

)
ρAB

(
IA ⊗ VB→CE

)†
is an extension ofωAC (i.e., TrE[ωACE] = ωAC). As a consequence,

I(A : B)ρ = I(A : CE)ω > I(A : C)ω,

using that the mutual information is invariant under isometries and monotonic.

Next week we will discuss a nice application of the data processing inequality known as
Holevo’s Theorem. This theorem introduces a quantity that characterizes how much classical
information can be extracted from a quantum state. The same quantity also turns out to capture
the rate at which classical information can be transmitted through a quantum channel.
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Lecture 8

Holevo bound and relative entropy

Last weekwe discussed various entropic quantities in the quantum case and inequalities between
them. In particular, for a multipartite state ρABC one can consider the entropies of the reduced
states (e.g., H(AB) = H(ρAB) where ρAB = TrC[ρABC]) and the inequalities among them, such
as the strong subadditivity:

H(AB) +H(BC) > H(ABC) +H(B).

This is equivalent to the monotonicity of the mutual information:

I(A : B) 6 I(A : BC)

where I(A : B) = H(A) + H(B) − H(AB). We also saw the data processing inequality for the
mutual information:

I(A : B)ρ > I(A : C)ω (8.1)

where ωAC = (IA ⊗ TB→C)[ρAB] is obtained by applying a channel TB→C on the B system
of ρAB (intuitively, local processing of individual subsystems can only decrease the mutual
information between them).

8.1 Holevo bound

Assume we draw an element x ∈ Σ with probability px, record its value in a classical register X
with Hilbert space HX = CΣ, and create an arbitrary state ρx ∈ D(HB) associated to x in a
separate register B. Then the resulting cq-state

ρXB =
∑
x

px|x〉〈x|⊗ ρx ∈ D(HX ⊗HB) (8.2)

represents the ensemble {px, ρx}. To such an ensemble, or the corresponding cq-state, we
associate the so-called Holevo χ-quantity.

Definition 8.1 (Holevo χ-quantity). The Holevo χ-quantity of an ensemble {px, ρx} is

χ({px, ρx}) := I(X : B) = H
(∑
x

pxρx

)
−
∑
x

pxH(ρx),

where the mutual information is computed in the cq-state ρXB =
∑
x px |x〉〈x|⊗ ρx.
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To verify the second equality, use thatH(XB) = H(p)+
∑
x pxH(ρx), as you proved inHomework

Problem 6.4 (a). Using part (b) of the same homework problem (or the nonnegativity of the
mutual information) we find that χ is nonnegative:

0 6 χ({px, ρx}) 6 H
(∑
x

pxρx

)
6 log dimHB. (8.3)

Why is the Holevo χ-quantity useful?
For this, let us revisit the following fundamental question: How much information can Alice

communicate to Bob by sending a quantum state? We will consider the following setup:

Hole00 s bound Caniceapplication of theabove

If picSx'sensemble consider g stale 5 13 Ipx XXXI Sx
to Koo X quantity of ensemble

X p Sx3 ICX B H PxSx P HESH logdimHis

used HK b Hcp IpxHGH HCA HCpl H D HCEpas4
A IZO implies concavity of H

too manybits can Alice reliably common to Bob bysending a q State
or byusing a g channel

ALICE BOB

SxEDEHB T Z
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mBET 2 X E lo IS uniformlyat random 745 n

Tm
i.e need to send nZm qubits toPr X

communicate m bits reliably

low large can Iki E be u.r.t.pk px.trEpG75 3

Imf Holeed I Z C X foreveryensembleLpa means to
1

Proof DPI More detail nexttime

Here, Alice has a classical message x ∈ Σ with distribution p ∈ P(Σ) which she would like to
communicate to Bob. For this, she sends Bob a quantum state ρx ∈ D(HB), and Bob applies a
measurement µ : Γ → PSD(HB). Using Born’s rule, we see that the joint distribution of Alice’s
random message X and Bob’s random measurement outcome Z on the set Σ× Γ is given by

p(x, z) = p(x)Tr[ρxµ(z)].

In Homework Problem 2.1, you proved the so-called Nayak bound: if x ∈ {0, 1}m is chosen
uniformly at random andHB = (C2)⊗n then Pr(X = Z) 6 2n−m, i.e., we need to send n > m
qubits to communicatem bits reliably. But how about if the distribution of x is not uniform?

It turns out that there is a general useful bound on the mutual information I(X : Z) between
Alice’s message and Bob’s measurement result. This is the content of the following theorem:

Theorem 8.2 (Holevo). I(X : Z) 6 χ({px, ρx}) for any ensemble {px, ρx} and measurement µ.

Holevo’s theorem is a simple consequence of the data processing inequality (Lemma 7.4), which
in turn relies on the very nontrivial strong subadditivity inequality.

Proof. Let ρXB be the cq-state from Eq. (8.2) that represents the ensemble {px, ρx}, let µ : Γ →
PSD(HB) be an arbitrary measurement on system B, and let ΦB→Z[σ] :=

∑
z∈Γ Tr[σµ(z)] |z〉〈z|,

with output spaceHZ, be the quantum channel corresponding to µ. Then by the data processing
inequality for the mutual information, Eq. (8.1),

χ({px, ρx}) = I(X : B)ρ > I(X : Z)ω

where

ωXZ = (IX ⊗ΦB→Z)[ρXB] =
∑
x∈Σ

px|x〉〈x|⊗Φ[ρx] =
∑

x∈Σ,z∈Γ
p(x, z)|x〉〈x|⊗ |z〉〈z|

is the resulting output state after the measurement. That was easy!

Recall from Eq. (8.3) that χ({px, ρx}) 6 log dimHB where ρx ∈ D(HB). Together with
Holevo’s bound this implies that I(X : Z) 6 log dimHB where dimHB is the dimension of the
quantum states in the ensemble. What this means intuitively is that Alice cannot transmit more
than logdimHB classical bits to Bob by sending a quantum state of dimension dimHB. In other
words, by sending n qubits she cannot reliably transmit more than n classical bits.
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Remark 8.3. The above considerations are closely related to one of the most fundamental problems in
quantum information theory: Given access to a quantum channel NA→B (which could, e.g., describe
an optical fiber), what is the optimal rate at which we can use it to communicate classical information?
This rate is called the classical capacity of the channel. The Holevo-Schumacher-Westmoreland theorem
computes this capacity in terms of the Holevo quantity. To state this result, note that for any ensemble
of input states {px, ρA,x} we get an ensemble of output states {px, σB,x}, where σB,x := NA→B[ρA,x].
Let χ(NA→B) denote the supremum of χ({px, σB,x}) over all ensembles obtained in this way. Then the
classical capacity of NA→B is given by limn→∞ 1

nχ(N
⊗n
A→B). Proving this result is out of scope for this

introductory lecture, but you can consult the books by Watrous or Wilde for details.

8.2 Relative entropy

Quantum relative entropy is a useful mathematical tool for analyzing the von Neumann entropy.
Let us first consider its classical version (also known as Kullback–Leibler divergence).

Definition 8.4 (Relative entropy). Let p, q ∈ P(Σ) be probability distributions. The relative entropy
of p with respect to q is

D(p‖q) =

{∑
x∈Σ p(x) log

p(x)
q(x) if {x : q(x) = 0} ⊆ {x : p(x) = 0},∞ otherwise.

(8.4)

To make sense of the expression p(x) log p(x)q(x) for all possible values of p(x), q(x) ∈ [0, 1], recall
from p. 51 that lima→0 a loga = 0. So the expression is equal to 0 whenever p(x) = 0, and has
a finite non-zero value when both p(x) > 0 and q(x) > 0. The only problematic case is when
p(x) > 0 but q(x) = 0, in which case the value becomes infinite.

p(x) q(x) p(x) log p(x)q(x)

= 0 = 0 0

= 0 > 0 0

> 0 = 0 ∞
> 0 > 0 finite

The condition for whenD(p‖q) in Eq. (8.4) is finite can also be stated as ∀x : q(x) = 0⇒ p(x) = 0
or equivalently as ∀x : p(x) > 0⇒ q(x) > 0.

Here are some basic properties of the relative entropy:

• Nonnegativity: D(p‖q) > 0, with equality iff p = q.

Proof. Without loss of generality, we assume that p(x) > 0 for all x. Note that lna 6 a− 1,
with equality iff a = 1.

1-a ln(a)

2 4 6 8 10

-2

-1

1

2
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Since loga = lna
ln2 ,

D(p‖q) =
∑
x

p(x)

(
− log q(x)

p(x)

)
>

1

ln 2
∑
x

p(x)

(
1−

q(x)

p(x)

)

=
1

ln 2

(∑
x

p(x) −
∑
x

q(x)

)
= 0,

completing the proof.

In statistics, functions with this property are known as divergences. A divergence is a
weaker notion than a distance since it does not need to be symmetric or obey the triangle
inequality. For example, the cost of a plane ticket from one destination to another is
generally a divergence but not a distance.

• Note that D(p‖q) is not symmetric, i.e., generally D(p‖q) 6= D(q‖p).

Let us consider two simple applications of the classical relative entropy. Let p, q ∈ P(Σ) be
probability distributions and assume that q(x) = 1/|Σ| is uniform. Then

D(p‖q) =
∑
x∈Σ

p(x) logp(x) −
∑
x∈Σ

p(x) logq(x)

= −H(p) − log 1

|Σ|
,

implying that H(p) 6 log |Σ|, with equality if and only if p is uniform. We proved this already
on p. 53 in Lecture 5.

As another application, let pXY ∈ P(Σ× Γ) be an arbitrary distribution and let qXY(x, y) =
pX(x)pY(y) be the product of its marginals (recall that the marginals are obtained by summing
over the remaining indices: pX(x) =

∑
y∈Σ pXY(x, y) and pY(y) =

∑
x∈Σ pXY(x, y)). Then

D(pXY‖qXY) = −H(pXY) −
∑
x∈Σ

∑
y∈Γ

pXY(x, y) log(pX(x)pY(y))

= −H(pXY) −
∑
x∈Σ

pX(x) logpX(x) −
∑
y∈Σ

pY(y) logpY(y)

= H(pX) +H(pY) −H(pXY)

= I(X : Y)pXY ,

implying that I(X : Y)pXY > 0, with equality if and only if pXY is a product distribution, i.e.,
pXY(x, y) = pX(x)pY(y) (that is, X and Y are independent).

8.3 Quantum relative entropy

Now thatwe are familiarwith the classical relative entropy, we can define the quantumversion by
noting that p(x) log p(x)q(x) = p(x) logp(x) − p(x) logq(x) and replacing probability distributions
by density matrices.

78



Definition 8.5 (Quantum relative entropy). Let ρ, σ ∈ D(H) be quantum states. The quantum
relative entropy of ρ with respect to σ is

D(ρ‖σ) =

{
Tr[ρ log ρ] − Tr[ρ logσ] if kerσ ⊆ ker ρ,∞ otherwise.

The interpretation here is similar to the classical case. Note that the first term is equal to −H(ρ)
so we only need to make sense of ρ logσ in the second term. It is unambiguous how ρ logσ
acts on (kerσ)⊥ since logσ there is well-defined. Assuming kerσ ⊆ ker ρ, we can define ρ logσ
as zero on kerσ. If this condition is not met, the expression becomes infinite just like in the
classical case. Note that the condition kerσ ⊆ ker ρ is equivalent to im ρ ⊆ imσ. For example,
D(|0〉〈0| ‖ |+〉〈+|) =∞ since span{|0〉} * span{|+〉}.

Here is a list of various properties of quantum relative entropy:

• Classical states: If ρ =
∑
x p(x) |x〉〈x| and σ =

∑
x q(x) |x〉〈x| then D(ρ‖σ) = D(p‖q).

• Monotonicity: For any ρ, σ ∈ D(H) and any Φ ∈ C(H,H ′):

D(ρ‖σ) > D(Φ[ρ]‖Φ[σ]). (8.5)

This property is very important and could well be called the “fundamental theorem of
quantum information theory” (it even implies the strong subadditivity inequality as we
will discuss below). Unfortunately, we will not have time to prove since it would require a
separate lecture (see p. 280 of Watrous’ book).

• Nonnegativity (Klein’s inequality): D(ρ‖σ) > 0, with equality iff ρ = σ.

Proof. Let µ : Ω → PSD(H) be a quantum measurement and denote by Φ ∈ C(H,X)
where X = CΩ the quantum channel

Φ[ω] :=
∑
x∈Ω

Tr[µ(x)ω] |x〉〈x|

that implements the measurement µ. Denote by p and q the probability distributions
resulting from measuring ρ and σ, respectively:

p(x) := Tr[µ(x)ρ], q(x) := Tr[µ(x)σ].

Note that

Φ[ρ] =
∑
x∈Ω

p(x)|x〉〈x|, Φ[σ] =
∑
x∈Ω

q(x)|x〉〈x|

are diagonal. By monotonicity,

D(ρ‖σ) > D(Φ[ρ]‖Φ[σ]) = D(p‖q) > 0,

where we used the fact that the output states Φ[ρ] and Φ[σ] are diagonal to reduce
to the classical nonegativity inequality. For the equality condition, note that if ρ = σ

then D(ρ‖σ) = 0. To prove the converse, you will show in Homework Problem 8.1
that, for any ρ, σ ∈ D(H), there exists a measurement whose output distributions p
and q on the two states satisfy ‖p − q‖1 = ‖ρ − σ‖1. In particular, if ρ 6= σ then
‖p − q‖1 = ‖ρ − σ‖1 > 0, meaning that p 6= q. Since the classical relative entropy is a
divergence, D(ρ‖σ) > D(p‖q) > 0 by a similar argument as above. Hence the quantum
relative entropy is also a divergence.
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• Joint convexity: Let Σ be a finite set, p ∈ P(Σ) a probability distribution, and (ρx)x∈Σ and
(σx)x∈Σ families of states in D(H).

D(
∑
x∈Σ

pxρx‖
∑
x∈Σ

pxσx) 6
∑
x∈Σ

pxD(ρx‖σx).

You will show this in Homework Problem 8.3.

• Just like in the classical case, D(ρ‖σ) is not symmetric, i.e., generally D(ρ‖σ) 6= D(σ‖ρ).

Along the same lines as in the classical case, we can use the quantum relative entropy to quickly
derive some entropy inequalities we have seen earlier.

Let ρ, σ ∈ D(Cd) where σ = I/d is the maximally mixed state. You will show in Practice
Problem 8.3 that

D(ρ‖σ) = −H(ρ) + logd,

implying that H(ρ) 6 logd, with equality iff ρ = I/d is maximally mixed. We know this already
from p. 60 in Lecture 6.

Let ρAB be a bipartite state with marginals ρA = TrB ρAB and ρB = TrA ρAB. You will show
in Practice Problem 8.3 that

D(ρAB‖ρA ⊗ ρB) = I(A : B)ρAB ,

implying I(A : B)ρAB > 0, with equality iff ρAB = ρA ⊗ ρB is a product state. Thus we recover
not only the subadditivity inequality but also characterize when equality holds. This proves a
claim made below Eq. (7.2) in Lecture 7.

Finally, we can also derive the monotonicity of the mutual information [Eq. (7.10)] from the
monotonicity of the relative entropy [Eq. (8.5)]. Namely, by choosingΦ = TrE, we obtain

I(A : BE)ρABE = D(ρABE‖ρA ⊗ ρBE) > D(ρAB‖ρA ⊗ ρB) = I(A : B)ρAB .

As discussed last week, this inequality is in turn equivalent to strong subadditivity [Eq. (7.5)].
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Lecture 9

Entanglement

Last week we discussed a scenario where Alice wants to transmit a classical message to Bob by
sending a quantum state, and we proved Holevo’s bound which establishes an upper bound
on how much classical information can be extracted from an ensemble of quantum states. An
important consequence of Holevo’s bound is that one cannot reliably transmit more than n
classical bits by sending n qubits.

Last time we also introduced the classical and quantum relative entropy, and saw how
it can be used to quickly rederive entropic inequalities. The main idea was to evaluate the
relative entropy on a particular pair of states, and then use nonegativity (Klein’s inequality) or
monotonicity of the relative entropy.

This week we will look at the opposite problem from last week, namely the problem of
transmitting quantum information by sending classical bits. Wait, does this even make sense?
This is clearly impossible for several reasons:

• Classical information is a special case of quantum information. We would not need
quantum information (or quantum mechanics for that matter) if we could do the same
things classically.

• There are more quantum states than bit strings. Indeed, the set of quantum states of a
given dimension is continuous and infinite while the set of n-bit strings is discrete and
finite.

If Alice wants to classically send an n-qubit state ρ to Bob, the only thing she can do is
to send him a “recipe” for preparing this state. For example, she could send him a list of all
matrix entries of ρ. This would be an exponentially long list since ρ is of size 2n× 2n. Moreover,
it would describe ρ only approximately since the matrix entries can be given only to a finite
precision. And even if they went through all this trouble, the state reconstructed by Bob would
not preserve the correlations Alice’s state might have had with an external system. For example,
if ρA = TrR[|ΨAR〉〈ΨAR|]where R is some reference system that is not accessible to Bob, the state
he reconstructs would not be correlated with R.

Nevertheless, one can still wonder if this can be achieved in some weaker sense. That is, can
we somehow transmit a quantum state without ever actually sending any qubits (at least, not
any qubits that depend on the state that we want to transmit)? In other words, would it help if
we were to exchange some qubits before we get the actual state but cannot exchange any further
qubits afterwards? Surprisingly, in such scenario it is possible to perfectly transmit a quantum
state by sending only classical information, a procedure known as quantum teleportation.
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9.1 Pauli matrices and Bell states

Mathematically, the quantum teleportation protocol has to do with a nice interplay between the
Pauli matrices, Bell states, and the swap operation.

Recall from Eq. (1.10) of Lecture 1 that the Pauli matrices are as follows:

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

Note that X2 = Y2 = Z2 = I. You can check that ZX = −XZ = iY, so the four Pauli matrices (up
the annoying i in Y) can also be expressed as follows:

Z0X0 = I, Z0X1 = X, Z1X0 = Z, Z1X1 = iY.

They are related in a nice way to the two-qubit swap operation, which is defined as

W|a, b〉 = |b, a〉,

for all a, b ∈ {0, 1}. In Practice Problem 9.4 you will show that

W =
1

2
(I⊗ I+ X⊗ X+ Y ⊗ Y + Z⊗ Z)

=
1

2

∑
z,x∈{0,1}

ZzXx ⊗ XxZz.

We denote the canonical two-qubit maximally entangled state between systems A and B by

|Φ+
AB〉 =

1√
2
(|00〉+ |11〉).

This state is one of the four Bell states:

|Φ00〉 = 1√
2
(|00〉+ |11〉), |Φ01〉 = 1√

2
(|01〉+ |10〉),

|Φ10〉 = 1√
2
(|00〉− |11〉), |Φ11〉 = 1√

2
(|01〉− |10〉).

(9.1)

These two-qubit states form an orthonormal basis of CΣ×Σ where Σ = {0, 1}.
Youwill show in Practice Problem 9.1 that the four Pauli matrices (again, up to the annoying i

in Y) are related to the four Bell states as follows:

|Φzx〉 = (ZzXx ⊗ I)|Φ+〉
= (I⊗ XxZz)|Φ+〉,

for all z, x ∈ {0, 1}. This local conversion property of Bell states is very surprising – if Alice and
Bob each posses one qubit of a Bell state, any of them can apply a Pauli matrix on their respective
qubit and convert their joint state to any of the other four Bell states.

We still need onemore property of Bell states, namely that they can be prepared / unprepared
from the corresponding standard basis state |z, x〉 as follows:

|Φzx〉 = CNOT (H⊗ I) |z, x〉, |z, x〉 = (H⊗ I)CNOT |Φzx〉, (9.2)
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where CNOT := |0〉〈0|⊗ I+ |1〉〈1|⊗ X is the controlled-NOT operation and H is the Hadamard
operation:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , H =
1√
2

(
1 1

1 −1

)
.

Note that both operations are their own inverses: CNOT† = CNOT and H† = H, hence it is
enough to verify only one of the identities in Eq. (9.2) and the other follows automatically.

9.2 Teleportation

Let |ψ〉 ∈ C2 be an arbitrary qubit state. The teleportation protocol can be derived from the
following teleportation identity:

|ψA〉 ⊗ |Φ00A ′B〉 =
1

2

∑
z,x∈{0,1}

|ΦzxAA ′〉 ⊗ XxZz|ψB〉, (9.3)

which you will prove in Homework Problem 9.1. The teleportation protocol is then as follows:

1. Start with state |ψA〉 ⊗ |Φ00A ′B〉 where registers AA ′ belong to Alice and B belongs to Bob.

2. Alice measures her registers AA ′ in the Bell basis |ΦzxAA ′〉 and sends the two measurement
outcomes z, x ∈ {0, 1} to Bob. Note from Eq. (9.2) that measuring in the Bell basis is
equivalent to applying (H⊗ I)CNOT and then measuring in the standard basis.

3. Bob applies the Pauli correction ZzXx on his qubit B to recover Alice’s state |ψ〉.

Here is a graphical1 depiction of the teleportation protocol:

H

Xx Zz |ψ〉

|ψ〉

|Φ00〉

Alice

Bob

z

x

A

A ′

B

Before we verify that this protocol indeed works, we need a way to compute the post-
measurement state on Bob’s system. Recall Axiom 2.6 that describes the Born’s rule for
measuring a subsystem: if you measure the A system of a state ρAB ∈ D(HA ⊗ HB) with
measurement µA : Ω→ PSD(HA), you get the outcomeω ∈ Ω with probability

pω = Tr
[
ρAB(µA(ω)⊗ IB)

]
.

The measurement channel corresponding to µA has classical output spaceHX = CΩ and acts as

ΦA→X[σA] =
∑
ω∈Ω

Tr
[
σAµA(ω)

]
|ω〉〈ω|X,

1Confusingly, in quantum circuits time goes from left to right, so the order of gates is reversed compared to
symbolic expressions.
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for all σA ∈ D(HA). You derived in Practice Problem 5.2 that the joint post-measurement state
on XB is classical-quantum:

ρXB = (ΦA→X ⊗ IB)[ρAB] =
∑
ω∈Ω

|ω〉〈ω|X ⊗ TrA
[
ρAB(µA(ω)⊗ IB)

]
.

By appropriately normalizing each term, we can think of this as an ensemble {pω, ρB,ω}. Let us
formalize this observation as an axiom.

Axiom 9.1 (Post-measurement state). If a quantum system AB is in state ρAB and we perform a
measurement µA : Ω→ PSD(HA) on subsystem A, then we obtain outcome ω ∈ Ω with probability
given by Born’s rule [Eq. (2.6)], i.e.,

pω = Tr
[
ρAB(µA(ω)⊗ IB)

]
.

In case the outcome isω then the state of system B after the measurement is given by

ρB,ω =
1

pω
TrA

[
ρAB(µA(ω)⊗ IB)

]
.

This state is called the post-measurement state corresponding to outcomeω. The ensemble {pω, ρB,ω} of
post-measurement states is described by the classical-quantum state ρXB =

∑
ω∈Ω pω|ω〉〈ω|X ⊗ ρB,ω.

To verify the correctness of the teleportation protocol, note from Eq. (9.3) that the original
input state |ψA〉 ⊗ |Φ00A ′B〉 is equivalent to a linear combination of four terms. In each term,
Alice’s qubits are in one of the four Bell states |ΦzxAA ′〉while Bob’s qubit in the corresponding
term is in the state XxZz|ψB〉. If Alice measures her two qubits in the Bell basis, she gets each of
the four possible outcomes with probability 1/4. If she sends the measurement outcomes z and
x to Bob, he can recover the original state |ψ〉 by applying ZzXx to cancel out the undesirable
Pauli factor in XxZz|ψB〉 (recall that X2 = Z2 = I).

You will show in Homework Problem 9.1 that the teleportation protocol not only transmits
Alice’s state to Bob but also preserves any correlations it might have had with some external
reference system. If you were to trace out this reference system, the remaining state on Alice’s
system A ′ would be mixed. Hence you can think of this as an argument that proves the
correctness of the teleportation protocol also for mixed states.

There is another interesting protocol known as superdense codingwhich is dual to teleportation
since it achieves the opposite conversion: it lets you transmit two classical bits by sending only
one qubit (you will derive this protocol in Homework Problem 9.2). At first this might seem to
violate Holevo’s bound from the previous lecture, since each qubit can transmit at most one
classical bit. However, the catch is that the protocol also consumes one shared copy of the
two-qubit state |Φ00〉. This state is often called an EPR pair, for Einstein, Podolsky, and Rosen
who wrote a famous paper about it, or an ebit, for “entangled bit”. Teleportation and superdense
coding can thus be summarized as the following two resource inequalities:

teleportation: ebit+ 2[c→ c] > [q→ q],

superdense coding: ebit+ [q→ q] > 2[c→ c],

where [c → c] denotes one bit of classical communication and [q → q] denotes one qubit of
quantum communication. You can read the inequality sign as “is at least as good as” or “can be
used to implement”.
Remark 9.2. Quantum teleportation is analogous to the classical one-time pad, a protocol for transmitting
a private probabilistic bit from Alice to Bob by using only public communication and a shared uniformly
random bit.
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9.3 Entangled vs separable states

Teleportation and superdense coding raise many questions. For example:

• What is so special about |Φ+
AB〉, the Bell states, or any other maximally entangled state? Recall

that a general maximally entangled state is of the form 1√
n

∑n
i=1|αi〉 ⊗ |βi〉where {|αi〉}

and {|βi〉} are some orthonormal bases.

• What is entanglement anyway? We will see a formal definition in this class! One can also
study more complicated forms of entanglement, such as between more than two systems,
however in this course we focus only on the bipartite case which already is complicated
enough, especially for mixed states.

• How can we detect if a given state is entangled? We will see some results today. In particular,
for mixed states it is generally very hard, but for pure states it is quite easy.

• How much entanglement is there in a given state |ΨAB〉? You will see an example today in
class, and another one in Practice Problem 9.3. One can also give a more operational
answer to this question by asking how many qubits can be teleported by using |ΨAB〉 as a
resource, or how many shared ebits are needed to construct |ΨAB〉 without using further
quantum communication? We will discuss this more in subsequent lectures.

• How can we manipulate entanglement? Teleportation and superdense coding shows that we
should treat entanglement as a resource, so the set of allowed operations for manipulating
it should be such that they cannot create more entanglement out of thin air (in particular,
quantum communication is not allowed). We will see in the next lecture that Local
Operations and Classical Communication (LOCC) is the right set of allowed operations.

Instead of defining what entanglement is, let us define what it is not – the technical term for
“not entangled” is separable.

Remark 9.3. For the notion of entanglement to make sense in the first place, you need a system consisting
of at least two (complementary) subsystems, say A and B. For example, it does not make sense to talk
about the entanglement of a single-qubit state.

Definition 9.4 (Separability). LetHA and HB be two Hilbert spaces. Then

• an operatorMAB ∈ PSD(HA ⊗HB) is separable if

MAB =
∑
i

PA,i ⊗QB,i (9.4)

for some PA,i ∈ PSD(HA) and QB,i ∈ PSD(HB);

• a state ρAB ∈ D(HA ⊗HB) is separable if

ρAB =
∑
i

piρA,i ⊗ ρB,i (9.5)

for some probability distribution p and states ρA,i ∈ D(HA) and ρB,i ∈ D(HB);
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• a pure state ρAB = |ΨAB〉〈ΨAB| ∈ D(HA ⊗HB) is separable if and only if it is a product state,
that is, if and only if

|ΨAB〉〈ΨAB| = |αA〉〈αA|⊗ |βB〉〈βB| (9.6)

or, equivalently,

|ΨAB〉 = |αA〉 ⊗ |βB〉 (9.7)

for unit vectors |αA〉 ∈ HA and |βB〉 ∈ HB.

We denote the set of separable operators onHA ⊗HB by Sep(HA ⊗HB) and the set of separable states
by SepD(HA ⊗HB). A state is called entangled if it is not separable.

You will show in Practice Problem 9.1 that subsequent parts of the above definition are
obtained by simply restricting the general notion of a separable operator first to mixed and then
to pure states. In particular, if a pure state can be written as in Eq. (9.4) or Eq. (9.5), then it is
actually a product, as in Eq. (9.6)!

Note that there is no sum in Eq. (9.7) – we simply demand that |ΨAB〉 = |αA〉 ⊗ |βB〉. Indeed,
if we had a sum in this condition, it would not be restrictive at all since any pure state can be
expressed as |ΨAB〉 =

∑
i ci|αA,i〉 ⊗ |βB,i〉 for some ci ∈ C (or even ci > 0) and pure states

|αA,i〉 ∈ HA and |βB,i〉 ∈ HB thanks to the Schmidt decomposition.
As an example, note that any classical state ρXY is separable since

ρXY =
∑
x,y

p(x, y) |x〉〈x|⊗ |y〉〈y|.

This justifies the idea that entanglement captures the non-classical part of correlations.

Remark 9.5. In the classical case, the distinction between a product and a correlated distribution is
similar to the distinction between a product and an entangled pure state. A probability distribution
pXY ∈ P(Σ × Γ) is product if pXY(x, y) = pX(x)pY(y) for all x ∈ Σ and y ∈ Γ , and correlated
otherwise. Entanglement captures an even stronger notion of correlations since classical states are not
entangled even if they are classically correlated.

Remark 9.6. Whether a given state is entangled or not is not affected by how we choose the local basis
within each subsystem. For example, (UA ⊗ UB)|Φ+

AB〉 is (maximally) entangled for any choice of
the local unitaries UA and UB. However, a global basis change can map entangled states to separable
states and vice versa. For example, recall from Eq. (9.2) that we can map any Bell state |Φzx〉 to the
corresponding standard basis state |z, x〉 by the operation UAB = (H ⊗ I)CNOT. This is a global
operation thanks to the CNOT gate that acts on both qubits. While the Bell states are maximally entangled,
the standard basis states |z〉 ⊗ |x〉 are product.

Now that we have introduced the notion of entanglement, one may ask how to determine
whether a given state is entangled or not, and how to measure the amount of entanglement?
Recall from Eq. (7.1) that H(A) = H(B)whenever ρAB is a pure state. This quantity is a useful
measure of entanglement.

Definition 9.7 (Entanglement entropy). If |ψAB〉 ∈ HA ⊗HB then H(A) = H(B). This quantity is
known as entanglement entropy of |ψAB〉.

In Practice Problem 9.1, you will show that a pure state |ψAB〉 is separable if and only if
its entanglement entropy is zero. This is also equivalent to |ψAB〉 having Schmidt rank one
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(recall from Lemma 2.12 that Schmidt rank is the number of non-zero coefficients in the Schmidt
decomposition).

The set of separable states is clearly convex – it is defined as the convex hull of product states.
In fact, it is also the convex hull of pure product states, since without loss of generality we can
take the states ρA,i and ρB,i in Eq. (9.5) to be pure. Indeed, if ρA,i =

∑
j pj|ψj〉〈ψj| for some

pure states |ψj〉, we can simply substitute this in Eq. (9.5) and expand it further by appropriately
increasing the range of the summation.

The set of separable states is also compact (i.e., closed and bounded). This can be shown
by noting that the set of pure states (i.e., the unit sphere) is closed and bounded, and that
compactness is preserved under tensor products and convex hulls.

Since the set of separable states is convex and compact, we can use the hyperplane separation
theorem. That is, for any entangled state ρAB ∈ D(HA⊗HB), we can find a Hermitian operator
H ∈ L(HA ⊗HB) such that

1. 〈H, ρAB〉HS < 0 and

2. 〈H,σAB〉HS > 0, for any separable state σAB ∈ SepD(HA ⊗HB).

where 〈M,N〉HS := Tr[M†N] is the Hilbert-Schmidt inner product, see Eq. (3.3). SuchH is called
an entanglement witness for ρAB. Here is a graphical depiction of the situation:

SepD

ρAB

H

It is not immediately clear how to find an entanglement witnessH for a given entangled state
ρAB. Specifically, how to check that 〈H,σAB〉HS > 0 for all σAB ∈ SepD(HA ⊗HB)? Indeed, if
one could easily check this by somehow iterating through all separable states σAB, there would
be no need to look for an entanglement witness in the first place – one could instead just iterate
through all σAB ∈ SepD(HA ⊗HB) and check whether σAB = ρAB. The following theorem
offers an alternative way of checking separability. While it suffers from the same issue, we will
later specialize it to a weaker (one-way) test that can be executed more easily.

Theorem 9.8 (Horodecki). A state ρAB ∈ D(HA ⊗HB) is separable iff (IA ⊗ ΨB→A)[ρAB] > 0 for
all unital positive superoperators ΨB→A : L(HB)→ L(HA).

Recall that a superoperator ΨB→A is unital if Ψ[IB] = IA and positive if Ψ[P] > 0 for all P > 0.
Note that the roles of systems A and B in Theorem 9.8 can be exchanged due to symmetry.

Proof. The forward implication is straightforward: if ρAB is separable then

(IA ⊗ ΨB→A)[ρAB] = (IA ⊗ ΨB→A)

[∑
i

piρA,i ⊗ ρB,i

]
=
∑
i

piρA,i ⊗ ΨB→A[ρB,i] > 0
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since Ψ is positive.
We will prove the converse by showing the contrapositive. That is, for any entangled state

ρAB there exists a unital positive ΨB→A such that (IA ⊗ ΨB→A)[ρAB] � 0 (i.e., it has a negative
eigenvalue). We will do this in two steps. First, let Φ+

AA = |Φ+
AA〉〈Φ

+
AA| be the canonical

maximally entangled state onHA ⊗HA and note that

〈Φ+
AA| (IA ⊗ ΨB→A)[ρAB] |Φ

+
AA〉 = 〈Φ

+
AA, (IA ⊗ ΨB→A)[ρAB]〉HS

= 〈(IA ⊗ Ψ†A→B)[Φ
+
AA], ρAB〉HS (9.8)

= dim(HA) 〈JΨ
†
AB, ρAB〉HS

where JΨ†AB is the Choi operator of Ψ†, see Eq. (4.2). Next, note that for any positive operators
P ∈ L(HA) and Q ∈ L(HB),

〈P,Ψ(Q)〉HS = Tr
[
P†Ψ(Q)

]
= dim(HA) 〈Φ+|

(
P ⊗ Ψ(Q)

)
|Φ+〉

= dim(HA) 〈Φ+, (I⊗ Ψ)[P ⊗Q]〉HS (9.9)
= dim(HA) 〈(I⊗ Ψ†)[Φ+], P ⊗Q〉HS

= 〈JΨ†AB, P ⊗Q〉HS.

Sincewe assumedρAB to be entangled, letH be its entanglementwitness, i.e.,H is aHermitian
matrix such that (i) 〈H, ρAB〉HS < 0 and (ii) 〈H,σAB〉HS > 0 for all σAB ∈ SepD(HA ⊗HB). We
can use this H to define the superoperator Ψ by setting JΨ† = H. Note that (IA ⊗ΨB→A)[ρAB] is
not positive semidefinite since 〈Φ+

AA| (IA ⊗ ΨB→A)[ρAB] |Φ
+
AA〉 = dim(HA) 〈JΨ

†
AB, ρAB〉HS < 0

thanks to Eq. (9.8) and property (i). Moreover, Ψ is positive since 〈P,Ψ(Q)〉 = 〈JΨ† , P⊗Q〉HS > 0
thanks to Eq. (9.9) and property (ii).

What remains to show is that Ψ can be made unital without ruining the other two properties.
The idea is to slightly perturbΨ so thatΨ(I) is full rank. Then we can define a new superoperator
Ψ̃ :M 7→ Ψ(I)−1/2Ψ(M)Ψ(I)−1/2 which is clearly unital. Moreover Ψ̃ is also positive and, when
applied to the B system of ρAB, produces an operator that is not positive semidefinite.

Although the separability test provided by the above theorem is “if and only if”, i.e., it can
conclusively certify both entanglement as well as separability, it is hard to apply in practice. For
separable states one has to iterate through all Ψ, which is not feasible, while for entangled states
it is not clear what Ψ to choose. Luckily, in the second case one particular map – the transpose
map – often does the job and the resulting test, known as the partial transpose test, can certify the
entanglement of many states. However, this test is one-sided – it can only certify entanglement
but not separability. In other words, we cannot claim a state to be separable if it fails the partial
transpose test. It could simply be that this particular choice of Ψwas not suitable for detecting
the entanglement in this particular state and that we should try other maps.

Corollary 9.9 (Partial transpose test). Let T[X] = XT denote the transpose map. If (TA ⊗ IB)[ρAB]
has a negative eigenvalue then the state ρAB ∈ D(HA ⊗HB) is entangled.

We refer to TA ⊗ IB as the partial transposition operation and call (TA ⊗ IB)[ρAB] the partial
transpose of ρAB. Note that due to symmetrywe could equally well apply the transpose operation
on the other system in the partial transpose test. This would not affect the conclusion since

(IA ⊗ TB)[ρAB] =
(
(TA ⊗ IB)[ρAB]

)T
,
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so in both cases the resulting operator has the same spectrum.
As an example, let us use the partial transpose test to show that our favorite two-qubit state

|Φ+
AB〉 = (|00〉+ |11〉)/

√
2 is indeed entangled. Recall from Remark 2.9 that

|Φ+
AB〉 =

1√
2


1

0

0

1

 , Φ+
AB = |Φ+

AB〉〈Φ
+
AB| =

1

2


1

0

0

1

(1 0 0 1
)
=
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .
It may not be immediately obvious how to transpose, say, the system A. However, we already
did this in the example on Page 42. First, note that

Φ+
AB =

1

2

(
|00〉+ |11〉

)(
〈00|+ 〈11|

)
=
1

2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
=
1

2

(
|0〉〈0|⊗ |0〉〈0|+ |0〉〈1|⊗ |0〉〈1|+ |1〉〈0|⊗ |1〉〈0|+ |1〉〈1|⊗ |1〉〈1|

)
By linearity, we can now apply T on the first register of each term and note that (|0〉〈1|)T = |1〉〈0|:

(TA ⊗ IB)[Φ
+
AB] =

1

2

(
|0〉〈0|⊗ |0〉〈0|+ |1〉〈0|⊗ |0〉〈1|+ |0〉〈1|⊗ |1〉〈0|+ |1〉〈1|⊗ |1〉〈1|

)
=
1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .
This matrix has a negative eigenvalue because of the central 2 × 2 block that looks like the
Pauli Xmatrix. More concretely, you can verify that

1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



0

1

−1
0

 = −
1

2


0

1

−1
0

 ,
so the partial transpose ofΦ+

AB has a negative eigenvalue: −1/2.
You will have an opportunity to apply the partial transpose test in Homework Problem 9.3.

It is useful to know (particularly in Homework Problem 9.4) that, for small systems, the partial
transpose test can be shown to work both ways, i.e., it can also conclusively detect separability.

Remark 9.10 (Converse for 2 × 2 and 2 × 3 systems). If dim(HA) = 2 and dim(HB) 6 3 then
(TA ⊗ IB)[ρAB] > 0 implies that ρAB ∈ D(HA ⊗HB) is separable.
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Lecture 10

Separable maps and LOCC

Last week we started discussing entanglement – a notion that applies to quantum systems
with at least two subsystems, A and B. Recall from Definition 9.4 that a quantum state
ρAB ∈ D(HA ⊗HB) is entangled if it is not separable, and we call ρAB separable if

ρAB =
∑
i

piρA,i ⊗ ρB,i

for some probability distribution p and states ρA,i ∈ D(HA) and ρB,i ∈ D(HB).
Entanglement is a synonymfor “quantumcorrelations” – the correlations between subsystems

A and B that do not have classical origin. In particular, entanglement cannot be created or
increased by the following operations:

• local operations, such as unitary operations, isometries, measurement or, more generally, a
quantum channel applied to one of the subsystems (e.g., ΦA→A ′ or ΨB→B ′);

• classical communication (exchanging classical messages between the two subsystems) can
increase classical correlations but not quantum.

In contrast, global operations and quantum communication can create or increase entanglement.
We refer to the set of operations that include both Local Operations and Classical Communi-

cation as LOCC. We can then alternatively think of entanglement as the resource that cannot be
increased by LOCC. This is a very useful perspective, in particular when it comes to comparing
or measuring the amount of entanglement in different states. For example, if a state |ΨAB〉 can
be converted to some other state |Ψ ′AB〉 by LOCC then we know that |ΨAB〉 has at least as much
entanglement as |Ψ ′AB〉, since LOCC could not increase the entanglement.

10.1 Separable superoperators

While LOCC plays a central role in quantum information theory, unfortunately it is very hard
to deal with mathematically. Therefore we often relax it to a slightly larger class of operations
known as separable operations or SepC:

LOCC

SepC

Let us define this set more formally. Recall from Definition 3.8 that we denote the set of all
completely positive maps fromHA to HB by CP(HA,HB) ⊂ L(L(HA),L(HB)).
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Definition 10.1 (Separable channel). A completely positive map Ξ ∈ CP(HA ⊗HB,HC ⊗HD) is
separable if

Ξ =
∑
i

Φi ⊗ Ψi,

for some Φi ∈ CP(HA,HC) and Ψi ∈ CP(HB,HD) whereΦi acts on Alice’s side and Ψi on Bob’s:

A C

B D

Ξ

Alice

Bob
=
∑
i

A C

B D

Φi

Ψi

A trace-preserving separable map is called a separable quantum channel. We denote the sets of separable
maps and separable quantum channels by SepCP(HA,HC : HB,HD) and SepC(HA,HC : HB,HD),
respectively.

By definition, the sets of separable maps and separable quantum channels are related as
follows:

SepC(HA,HC : HB,HD) = SepCP(HA,HC : HB,HD) ∩ C(HA ⊗HB,HC ⊗HD)

where C denotes the set of quantum channels. Just like for separable states, the colon “:” in the
notation signifies how the systems are split between the two parties.

You will show in Practice Problem 10.2 that the composition of separable maps is also
separable, and that a completely positivemap Ξ is separable if and only if its Kraus representation
is of the form

Ξ(X) =
∑
x∈Σ

(Ax ⊗ Bx)X(Ax ⊗ Bx)†, (10.1)

for some Ax ∈ L(HA,HC) and Bx ∈ L(HB,HD).
Thanks to the Choi-Jamiołkowski isomorphism (see Lemma 4.1) we can relate the separability

of superoperators to the separability of operators, a notion we are already familiar with from
the previous lecture (see Definition 9.4).

Before we do this, it is useful to formally introduce the following correspondence between
matrices and bipartite pure states, the reverse of which we already encountered in Eq. (4.9).
Intuitively, this is equivalent to cutting a matrixM into column vectors and then stacking them
on top of each other to obtain one long column vector.

Definition 10.2 (Vectorization). Let M ∈ L(HA,HB) where HA = CΣ and HB = CΓ . The
vectorization ofM is given by

|MAB〉 :=
∑
a∈Σ
b∈Γ

〈b|M|a〉 |a, b〉 ∈ HA ⊗HB.

In particular, ifM = |b〉〈a|, for some a ∈ Σ and b ∈ Γ , then |MAB〉 = |a, b〉.

In Practice Problem 10.1, you will prove the following extremely useful vectorization identity:

(A⊗ B)|M〉 = |BMAT〉, (10.2)

for all A ∈ L(HA,HC), B ∈ L(HB,HD),M ∈ L(HA,HB).
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Lemma 10.3. Let Ξ ∈ CP(HA ⊗HB,HC ⊗HD). Then

Ξ ∈ SepCP(HA,HC : HB,HD) ⇐⇒ VJΞAB,CDV
† ∈ Sep(HA ⊗HC : HB ⊗HD)

where V |a, b, c, d〉 = |a, c, b, d〉, for all |a〉 ∈ HA, |b〉 ∈ HB, |c〉 ∈ HC, |d〉 ∈ HD.

Proof. Recall from Eq. (10.1) that

Ξ(X) =
∑
x∈Σ

(Ax ⊗ Bx)X(Ax ⊗ Bx)†.

For simplicity, let us assume that the sum contains only one term andAx = |c〉〈a| andBx = |d〉〈b|,
for some standard basis states |a〉, |b〉, |c〉, |d〉. Then according to Eq. (4.1) or Eq. (4.2),

JΞAB,CD = |a, b, c, d〉〈a, b, c, d|

and hence

VJΞAB,CDV
† = |a, c, b, d〉〈a, c, b, d| = |a, c〉〈a, c|⊗ |b, d〉〈b, d|.

This is clearly a product operator and hence separable. More generally, you can show that

VJΞAB,CDV
† =
∑
x

|Ax〉〈Ax|⊗ |Bx〉〈Bx| (10.3)

where |Ax〉 =
∑
a,c〈c|Ax|a〉 |a, c〉 and |Bx〉 =

∑
b,d〈d|Bx|b〉 |b, d〉 are the vectorizations of the

Kraus operators Ax and Bx. The operator in Eq. (10.3) is clearly separable across AB : CD. The
reverse implication follows by running the same argument backwards.

10.2 Entanglement rank

In the previous lecture we encountered two types of states – those that are entangled and those
that are not (i.e., separable states). Presumably some entangled states are more entangled
than others, however we do not yet have any way of measuring this. The following definition
provides a first (albeit somewhat rough) way to quantify the amount of entanglement of a
general state. The idea essentially is to extend the notion of Schmidt rank to mixed states.

Recall from Lemma 2.12 that the Schmidt rank of |ΨAB〉 is the number of non-zero coefficients
in a Schmidt decomposition of |ΨAB〉. For pure states, this is a meaningful measure of
entanglement since product states have Schmidt rank 1while a maximally entangled state of
dimension d has Schmidt rank d. We can extend this notion to a general PSD operator by
decomposing it in terms of pure states with as small Schmidt rank as possible.

Definition 10.4 (Entanglement rank). We write PAB ∈ Entr(HA : HB) ⊆ PSD(HA ⊗HB) if

PAB =
∑
x

|ΨAB,x〉〈ΨAB,x|,

where each |ΨAB,x〉 ∈ HA ⊗ HB has Schmidt rank at most r. The entanglement rank of PAB ∈
PSD(HA ⊗HB) is the smallest r such that PAB ∈ Entr(HA : HB).
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For pure states, the entanglement rank coincides with the Schmidt rank since the decom-
position consists only of a single term. Sometimes it is useful to write the vectors |ΨAB,x〉 as
|Mx〉, for someMx ∈ L(HA,HB). In this case it is useful to note that the Schmidt rank of |Mx〉
is equal to rank(Mx).

Note that larger entanglement rank corresponds to more entanglement since

Sep = Ent1 ⊂ · · · ⊂ Entr ⊂ Entr+1 ⊂ · · · ⊂ Entn = PSD

where n = min{dimHA,dimHB} and all inclusions are strict. While entanglement rank is only
a rough measure of entanglement as it only takes on integer values, r ∈ {1, . . . , n}, it is still
meaningful. Indeed, the next theorem shows that separable quantum channels cannot increase
the entanglement rank (in particular, they cannot create entangled states out of separable ones).

Theorem 10.5 (Separable maps cannot increase entanglement rank). If Ξ ∈ SepCP(HA,HC :
HB,HD) and P ∈ Entr(HA : HB) then Ξ(P) ∈ Entr(HC : HD).

Proof. We can write P =
∑
y|My〉〈My|, for someMy ∈ L(HA,HB) such that rank(My) 6 r.

Recall from Eq. (10.1) that there exist Kraus operators Ax ∈ L(HA,HC) and Bx ∈ L(HB,HD)
such that

Ξ(P) =
∑
x

∑
y

(Ax ⊗ Bx)|My〉〈My|(Ax ⊗ Bx)†

=
∑
x

∑
y

|BxMyA
T
x〉〈BxMyA

T
x|,

wherewe used the vectorization identity from Eq. (10.2). Since rank(BxMyA
T
x) 6 rank(My) 6 r,

we conclude that Ξ(P) ∈ Entr(HC : HD).

As a special case of this theorem, we conclude that the set of separable operators is closed
under separable maps.

Corollary 10.6 (Separable maps preserve separability). If Ξ ∈ SepCP(HA,HC : HB,HD) and
P ∈ Sep(HA : HB) then Ξ(P) ∈ Sep(HC : HD).

We will shortly define LOCC channels and you will show that they are separable. Because
of this, the above two results specialize also to LOCC. In particular, LOCC maps cannot increase
the entanglement rank.

10.3 LOCC channels

Before we can formally define LOCC, let us first introduce the most general type of operation
that produces a classical outcome as well as a leftover quantum state (you can think of this as
smashing together the notions of a quantum channel and a measurement).

Definition 10.7 (Instrument). An instrument is a collection of completely positive maps {Φω : ω ∈
Ω} ⊂ CP(HA,HB) such that

∑
ω∈ΩΦω ∈ C(HA,HB). When applied to a state ρ ∈ D(HA), it

produces an outcomeω ∈ Ω with probability Tr[Φω[ρ]] and changes ρ to

ρω =
Φω[ρ]

Tr[Φω[ρ]]
∈ D(HB).
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You will show in Practice Problem 10.4 that any instrument can be implemented by a quantum
channel, followed by an orthonormal measurement.

We can now formally define the set of LOCC quantum channels that can be implemented
only by local operations and classical communication.

Definition 10.8 (LOCC channel). Let Ξ ∈ C(HA ⊗HB,HC ⊗HD). Then

• Ξ is a one-way right LOCC channel if

Ξ =
∑
ω∈Ω

Φω ⊗ Ψω

where {Φω : ω ∈ Ω} ⊂ CP(HA,HC) is an instrument and eachΨω ∈ C(HB,HD) is a quantum
channel;

• Ξ is a one-way left LOCC channel if it is of the same form but each Φω ∈ C(HA,HC) is a
quantum channel and {Ψω : ω ∈ Ω} ⊂ CP(HB,HD) is an instrument;

• Ξ is an LOCC channel if it is a finite composition of the above.

We denote the set of all LOCC channels with inputA : B and outputC : D byLOCC(HA,HC : HB,HD).

Intuitively, a one-way right LOCC protocol consists of Alice performing a local channel,
followed by a measurement. She then sends the measurement outcome ω ∈ Ω to Bob.
Depending on the value ofω, bob applies a channel Ψω. One-way right LOCC protocols are
similar, except the communication is from Bob to Alice and Alice’s channel Φω depends on
Bob’s measurement outcomeω ∈ Ω.

You will show in Practice Problem 10.3 than any LOCC channel is separable, i.e.,

LOCC(HA,HC : HB,HD) ⊆ SepC(HA,HC : HB,HD). (10.4)

10.4 Separable and LOCC measurements

It is often useful to consider measurements that are either separable or LOCC. For example,
in the context of state discrimination. Imagine that Alice and Bob share a state selected from
some ensemble, and they want to determine which state it is, however they cannot exchange any
quantum information and can communication only classically. This corresponds to performing
an LOCC measurement. In this context, it is interesting to compare how well do LOCC
measurements perform compared to the slightly more general separable measurements. Before
we can ask these questions, we first need to define these two types of measurements.

Definition 10.9 (Separable and LOCC measurements). Let µ : Ω → PSD(HA ⊗ HB) be a
measurement on systems A and B. Let HX = HY = CΩ and Φµ ∈ C(HA ⊗HB,HX ⊗HY) be the
quantum-to-classical channel corresponding to µ:

Φµ(X) =
∑
ω∈Ω

Tr
[
µ[ω]X

]
|ω〉〈ω|X ⊗ |ω〉〈ω|Y .

The measurement µ is separable / LOCC if the channel Φµ is separable / LOCC.

You can check that a measurement is separable iff each measurement operator is separable.
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Lemma 10.10. A measurement µ : Ω → PSD(HA ⊗ HB) is separable across A : B iff µ(ω) ∈
Sep(HA : HB), for eachω ∈ Ω.

We can also define one-way right and left LOCC measurements. This is a joint measurement
where the first party performs a local measurement ν, sends the outcome γ ∈ Γ to the second
party who then adaptively performs a measurement πγ that depends on the received value γ.

Definition 10.11 (One-way right / left LOCCmeasurement). Ameasurement µ : Ω→ PSD(HA⊗
HB) is one-way right LOCC if there exists a measurement ν : Γ → PSD(HA) on Alice’s side and, for
each γ ∈ Γ , a measurement πγ : Ω→ PSD(HB) on Bob’s side such that

µ(ω)AB =
∑
γ∈Γ

ν(γ)A ⊗ πγ(ω)B,

for everyω ∈ Ω. Similarly, a the measurement µ is one-way left LOCC if

µ(ω)AB =
∑
γ∈Γ

πγ(ω)A ⊗ ν(γ)B,

where the roles of Alice and Bob have been exchanged.

While one-wayLOCCmeasurementsmay seem rather limited, they canperfectly discriminate
any two orthogonal pure bipartite states, even if the states are entangled.

Theorem 10.12 (Perfect one-way LOCC measurement for discriminating orthogonal pure states).
If |Ψ0〉, |Ψ1〉 ∈ HA ⊗ HB are orthogonal states, then there exists a one-way LOCC measurement
µ : {0, 1}→ PSD(HA ⊗HB) such that 〈Ψ0|µ(0)|Ψ0〉 = 〈Ψ1|µ(1)|Ψ1〉 = 1.

This theorem has a nice proof that is not too complicated, but we will not prove it the class. It is
quite surprising, since it shows that LOCC measurements are as good as global measurements
for the task of discriminating orthogonal pure states.
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Lecture 11

Majorization and Nielsen’s theorem

Last week we looked at separable and LOCC maps and measurements. While separable maps
are easier to define and work with mathematically, LOCC is more important from physical and
operational perspective. Recall that LOCC is a subset of separable maps.

In Homework Problem 10.2 you saw the following set of orthogonal product states:

|Ψ1〉 = |0〉 ⊗ |0〉, |Ψ2〉 = |0〉 ⊗ |1〉, |Ψ3〉 = |1〉 ⊗ |+〉, |Ψ4〉 = |1〉 ⊗ |−〉

where |±〉 = (|0〉 ± |1〉)/
√
2. They correspond to the tiles shown on the left:

Alice
0 1

Bob
0

1
±

SepC

LOCC

B-to-A
one-way
LOCC

Alice
0 1 2

Bob

0

1

2

±

±

±

±

These states can be perfectly discriminated by a separable measurement or a one-way LOCC
measurement from Alice to Bob, but not by a one-way LOCC measurement from Bob to Alice.
Hence, as illustrated in the above diagram, the corresponding measurement is in LOCC but not
in one-way LOCC from Bob to Alice. Using the same idea, one can come up with a slightly more
complicated set of orthogonal product states in C3 ⊗ C3 that cannot be perfectly discriminated
by LOCC, even with two-way communication. However, the corresponding measurement is
clearly separable since these states form an orthonormal product basis.

In this class, we will look at a different problem. Instead of trying to discriminate states by
an LOCC measurement, we will try to perfectly convert one state into another. You can think of
the discrimination problem as a special case of this, since a measurement effectively converts
given states to different standard basis states. The general problem of converting one arbitrary
set of states to another by LOCC is complicated, so we will only consider the case of converting
a single pure state to another pure state. Since the answer to this problem is closely tied with
the notion of majorization, we first need to learn the basics of majorization.

11.1 Wealth inequality and majorization

The concept of majorization is most intuitive in the context it was first introduced, namely as a
way to measure wealth inequality. It is convenient to describe the distribution of wealth by a
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probability distribution p where p(i) is the fraction of wealth owned by person i ∈ {1, . . . , n}.
Alternatively, you can think of the total wealth as being normalized to 1 and p(i) simply denoting
the wealth of person i. You can depict the distribution p as follows:

Fraction
of wealth

People

0

1

1 ni

p(i)

p(i) > 0
n∑
i=1

p(i) = 1

Given two probability distributions p and q, how can we tell which one corresponds to a
“more equal” distribution of wealth? Clearly, p = (1, 0, . . . , 0) is the least equal distribution of
wealth and q = ( 1n ,

1
n , . . . ,

1
n) is the most equal. How about the rest and how can we compare

two distributions?
One obvious way to increase equality is to take from the rich and give to the poor. Let’s call

this a Robin Hood move. Mathematically, it is described by the following 2× 2matrix, which
should be applied to the corresponding two entries of the distribution:

M(c) = cI+ (1− c)X =

(
c 1− c

1− c c

)
,

for some c ∈ [0, 1]. If c ∈ (0, 1), applying this to the wealth of two individuals always has
the effect of decreasing the gap between their wealth because the new values are convex
combinations of the old ones1:

p

7→

q =M(c)p

Any sequence of such Robin Hood moves on a wealth distribution makes the distribution more
equal. Note that the overall transformation amounts to a convex combination of permutations.

Another way to compare wealth distributions is by considering the fraction of wealth
owned by the richest. More specifically, let us plot the cumulative wealth of the richest
fraction of the population. For this, we need to sort the probability distribution p so that
p(1) > p(2) > · · · > p(n), and let fp(k) =

∑k
i=1 p(i) be the total wealth of the k richest people.

We can try to compare different wealth distributions p by plotting the corresponding cumulative
wealth function fp:

1When c > 1/2, the roles of the two individuals in terms of their richness are swapped.
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0

1

0 1

Fraction
of wealth

Richest fraction
of population

equal

somewhat
equal

quite unequalcompletely unequal

If fq lies completely below fp then the distribution q is more equal than p. Each Robin Hood
move has the effect of pushing the corresponding cumulative curve downwards. Note that not
all pairs of curves can be compared since it is possible for two curves to intersect.

Let us now turn these two intuitive ways of comparing wealth inequality into precise
mathematical statements and show that the two approaches discussed above are actually
equivalent. Before we do this, let us introduce two central concepts – doubly stochastic and
permutation matrices.

Definition 11.1 (Stochastic and doubly stochastic matrices). Let A ∈ L(RΣ).

• We call A stochastic if

1. Aij > 0, for all i, j ∈ Σ,
2.
∑
i∈ΣAij = 1, for all j ∈ Σ.

This is equivalent to saying that each column of A is a probability distribution.

• We call A doubly stochastic if it is stochastic and

3.
∑
j∈ΣAij = 1, for all i ∈ Σ.

Equivalently, each row and each column of A is a probability distribution.

• We say that A is a permutation matrix if it is doubly stochastic and

4. Aij ∈ {0, 1}, for all i, j ∈ Σ.

Equivalently, each row and each column of A contains exactly one entry 1 and the rest are zeroes.

It is a simple but important observation that stochastic matrices are precisely those that
preserve the `1-norm of vectors. Note that stochastic and even doubly stochastic matrices are
generally not invertible, e.g., the matrix 12

(
1 1
1 1

)
. Permutation matrices stand out as precisely

those stochastic matrices that are invertible andwhose inverse is also stochastic. In fact, inverting
a permutation matrix A is particularly simple since AT is the inverse of A. Note also that any
convex combination of permutations is doubly stochastic, since each row and column is a convex
combination of the standard basis vectors and hence a probability distribution. Surprisingly,
the converse claim is also true.
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Theorem 11.2 (Birkhoff–von Neumann). A ∈ L(RΣ) is doubly stochastic iff there exists a probability
distribution p over SΣ (the set of all permutations acting on Σ) such that

A =
∑
π∈SΣ

p(π)Vπ,

where Vπ ∈ L(RΣ) is the permutation matrix corresponding to π, i.e., (Vπ)ij = δi,π(j).

Let us mention another fact without proof, namely that a matrix is doubly stochastic iff it
can be decomposed as a sequence of Robin Hood moves. Since each Robin Hood move makes a
wealth distribution more equal, so does a doubly stochastic matrix. This motivates the following
definition.

Definition 11.3 (Majorization). Let u, v ∈ RΣ. Then u majorizes v if v = Au, for some doubly
stochastic A ∈ L(RΣ). We write this as u � v or v ≺ u.

To remember this notation, think of “�” as pointing in the direction in which the mapping is
applied, i.e., u � vmeans that u is converted to v by applying some mapping A. If u and v are
probability distributions, then u � vmeans that v is more equal than u. It is not immediately
clear how to check this condition since it seems to require going through all doubly stochastic
matrices. Luckily, there is an equivalent condition that is simpler to check.

Let r(u) ∈ RΣ denote the reverse sorting of vector u ∈ RΣ, i.e.,

r1(u) > · · · > rn(u) and {r1(u), . . . , rn(u)} = {u1, . . . , un}.

Then the following theorem provides a simple way to check the majorization condition (you
will derive other equivalent conditions in Practice Problem 11.2).

Theorem 11.4. Let u, v ∈ Rn. Then v ≺ u iff
∑m
i=1 ri(v) 6

∑m
i=1 ri(u), for allm ∈ {1, . . . , n− 1},

and
∑n
i=1 ri(v) =

∑n
i=1 ri(u).

When restricted to probability distributions, we do not need to check the last condition since
the entries automatically sum to one.

Example 11.5 (Extreme distributions). Let p = (1, 0, . . . , 0) denote a deterministic distribution and
q = ( 1n ,

1
n , . . . ,

1
n) denote the uniform distribution on n elements. Intuitively, they correspond to a

maximally unequal and maximally equal way to distribute wealth, respectively. Indeed, one can easily
check using Theorem 11.4 that, for any probability distribution s on n elements,

q ≺ s ≺ p.

This means that one can always perform the conversions

q 7→s 7→p

either by a sequence of Robin Hood moves or by applying doubly stochastic matrices.

11.2 Majorization for Hermitian operators

Recall that a diagonal density matrix can be identified with the probability distribution it
contains on the diagonal and hence considered classical. Thus one might wonder whether
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the theory of majorization has a “quantum” extension that deals with Hermitian operators
instead of vectors? Indeed, such a generalization is possible. To obtain it, we need to ask what
operations will play the role of permutations?

Recall from our earlier discussion that stochastic matrices are precisely those that map
probability distributions to probability distributions, i.e., they preserve the `1-norm of vectors.
Quantum channels play the same role for quantum states – they map density matrices to density
matrices (even when applied to a subsystem). Among all stochastic matrices, permutations
stand out as precisely those that are invertible and whose inverse is also stochastic. In the
quantum case, unitary channels are the invertible ones. This motivates the following definition
for a quantum analogue of a doubly stochastic matrix.

Definition 11.6 (Mixed-unitary channel). Φ ∈ C(H) is amixed-unitary channel if

Φ(M) =
∑
i∈Σ

p(i)UiMU
†
i ,

for some set Σ, a probability distribution p ∈ P(Σ), and unitaries Ui ∈ U(H).

The following is then a quantum generalization of Definition 11.3.

Definition 11.7 (Majorization for Hermitian operators). Let A and B be Hermitian operators on H.
Then A majorizes B if B = Φ(A), for some mixed-unitaryΦ ∈ C(H). We write this as A � B or B ≺ A.

It is even less obvious how one is supposed to check this condition compared to the classical
one in Definition 11.3. Luckily, the following theorem2 expresses this condition entirely in
terms of the much simpler classical condition, which we already know how to check thanks to
Theorem 11.4.

Theorem 11.8 (Uhlmann). Let A and B be Hermitian operators onH. Then B ≺ A iff λ(B) ≺ λ(A),
where λ(A) ⊂ R denotes the spectrum (i.e., the set of eigenvalues) of A.

Note that for diagonal matrices A, the spectrum λ(A) is just the set of diagonal entries of A.
Hence, majorization for diagonal operators reduces to majorization for vectors, thus recovering
the classical notion.

11.3 Nielsen’s theorem

Other than generalizing the notion of majorization to operators, this lecture so far has been
almost entirely classical (indeed, we have not seen a single bra or ket yet). Also, it is not clear
how all this relates to our main topic of the last two weeks – entanglement and LOCC. This
connection is established by Nielsen’s theorem, which establishes a condition under which one
bipartite pure state can be converted into another under (one-way) LOCC. This condition is
expressed succinctly in terms of majorization of the reduced states.

Theorem 11.9 (Nielsen). Let |uAB〉, |vAB〉 ∈ HA ⊗HB be pure states. The following are equivalent:

1. TrA
[
|u〉〈u|

]
≺ TrA

[
|v〉〈v|

]
.

2. Ξ
[
|u〉〈u|

]
= |v〉〈v|, for some one-way LOCC protocol Ξ ∈ LOCC(A : B) from Alice to Bob.

2Not to be confused with the more famous Uhlmann’s Theorem 3.5.
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3. Same, but Ξ is one-way LOCC from Bob to Alice.

4. Same, but Ξ ∈ SepC(A : B).

Remark 11.10. Note that here, unlike in Definitions 11.3 and 11.7, the direction of majorization is
opposite to the direction in which the processing occurs: we transform |u〉 to |v〉, while the majorization
sign is pointing towards |u〉. See Example 11.11 below for an illustration of why it is so.

Proof. (1⇒ 2) Themain ideaof theproof is to take themixed-unitary channel fromDefinition 11.6,
which we get thanks to the majorization condition, and turn it into a one-way LOCC protocol.
Doing this is not straightforward at all and takes a number of steps.

First, you will show in Practice Problem 11.3 that, for any L, R ∈ L(HA,HB),

TrA
[
|L〉〈R|

]
= LR†. (11.1)

In particular, if u, v ∈ L(HA,HB) are operators whose vectorizations coincide with |u〉 and |v〉,
respectively, then the majorization identity between the reduced states is equivalent to

uu† ≺ vv†.

By Definition 11.7, there exists a mixed-unitary channelΦ ∈ C(HB) such that uu† = Φ(vv†).
Recall from Definition 11.6 that Φ(M) =

∑
i∈Σ p(i)WiMW

†
i , for some set Σ, a probability

distribution p over Σ, and unitariesWi ∈ U(HB). Hence,

uu† =
∑
i∈Σ

p(i)Wivv
†W†i .

Based on this relation, we want to construct a one-way LOCC protocol from Alice to Bob.
Let us first write the relation in a more symmetric way by introducing another sum:

uu† =

(∑
i∈Σ

√
p(i)(Wiv)⊗ 〈i|

)(∑
i ′∈Σ

√
p(i ′)(Wi ′v)⊗ |i ′〉

)
= ww†

where w ∈ L(HC,HB) withHC := HA ⊗ CΣ is defined as

w :=
∑
i∈Σ

√
p(i)(Wiv)⊗ 〈i|.

Given that uu† = ww†, how are the operators u and w related?
To find a relationship between u and w, let

u =

r∑
j=1

sj|bj〉〈aj| (11.2)

be the singular value decomposition of u (see Lemma 2.16). Here r := rank(u) is the rank of u
or the Schmidt rank of |u〉 (see Lemma 2.12), sj > 0 are the singular values of u or the Schmidt
coefficients of |u〉, and {|aj〉 : j = 1, . . . , r} and {|bj〉 : j = 1, . . . , r} are some orthonormal sets of
vectors inHA and HB, respectively. Note from Eq. (11.2) that

uu† =

r∑
j,k=1

sjsk|bj〉〈aj|ak〉〈bk| =
r∑
j=1

s2j |bj〉〈bj| = ww†, (11.3)
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so uu† and ww† both have eigenvalues s2j with corresponding eigenvectors |bj〉. Hence w has
singular value decomposition

w =

r∑
j=1

sj|bj〉〈cj|,

for some orthonormal set of vectors {|cj〉 : j = 1, . . . , r} in HC. Note from Eq. (11.2) that u and w
have the same singular values sj and left singular vectors |bj〉.

Since {|aj〉 : j = 1, . . . , r} and {|cj〉 : j = 1, . . . , r} are two orthonormal bases of the same
dimension, we can find an isometry V ∈ U(HA,HC) such that V |aj〉 = |cj〉, for all j ∈ Σ.
Equivalently,

uV† = w =
∑
i∈Σ

√
p(i)(Wiv)⊗ 〈i|. (11.4)

Based on this observation, let us devise a one-way LOCC protocol from Alice to Bob. Recall
from Definition 10.8 that such protocol is described by a channel Ξ ∈ C(HA ⊗HB) of the form

Ξ =
∑
i∈Σ

Φi ⊗ Ψi,

where {Φi : i ∈ Σ} ⊂ CP(HA) is an instrument (see Definition 10.7) on Alice’s side and each
Ψi ∈ C(HB) is a channel on Bob’s side. Let us choose the superoperatorsΦi and Ψi as follows:

Φi(MA) := AiMAA
†
i , Ψi(MB) := UiMBU

†
i , (11.5)

for allMA ∈ L(HA) andMB ∈ L(HB), where

{Ai : i ∈ Σ} ⊂ L(HA), {Ui : i ∈ Σ} ⊂ U(HB)

are Kraus operators of Alice’s measurement and the corresponding basis change operators for
Bob. The overall one-way LOCC protocol then acts as

Ξ(MAB) =
∑
i∈Σ

(Ai ⊗Ui)MAB(Ai ⊗Ui)†,

for allMAB ∈ L(HA ⊗HB). Note that here Σ plays the role of possible messages Alice may
transmit to Bob: if Alice gets measurement outcome i ∈ Σ, she sends the value of i to Bob and
he applies the corresponding basis change Ui.

Note from Eq. (11.5) that eachΨi is indeed a quantum channel, as it is just a unitary change of
basis. Moreover, eachΦi is indeed completely positive. Hence, we only need to make sure that
{Φi : i ∈ Σ} is indeed an instrument by checking that

∑
i∈ΣΦi is trace-preserving. According to

Lemma 4.4, this amounts to checking that∑
i∈Σ

A
†
iAi = IA. (11.6)

Let us nowproceed to actually construct the protocol by appropriately choosing the operators
Ai and Ui in Eq. (11.5). Recall from Eq. (10.2) that

(Ai ⊗Ui)|u〉 = |UiuA
T
i 〉.
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We would like this to be equal to
√
p(i)|v〉 since then the output of the channel would be

Ξ(|u〉〈u|) =
∑
i∈Σ

(Ai ⊗Ui)|u〉〈u|(Ai ⊗Ui)† =
∑
i∈Σ

|UiuA
T
i 〉〈UiuAT

i | =
∑
i∈Σ

p(i)|v〉〈v| = |v〉〈v|,

as desired. The unvectorized version of the desired identity |UiuA
T
i 〉 =

√
p(i)|v〉 is

UiuA
T
i =

√
p(i)v. (11.7)

Recall from Eq. (11.4) that

uV† =
∑
i∈Σ

√
p(i)(Wiv)⊗ 〈i|.

We can make this look more like the desired identity in Eq. (11.7) by selecting only one value of
i ∈ Σ and canceling out the undesired unitaryWi:

W
†
i (uV

†)(IA ⊗ |i〉) =
√
p(i)v.

To recover Eq. (11.7), we choose

Ui :=W
†
i , AT

i := V
†(IA ⊗ |i〉).

In other words, A†i = VT(IA ⊗ |i〉) and Ai = (IA ⊗ 〈i|)V .
It remains to verify that this corresponds to a well-defined one-way LOCC protocol from

Alice to Bob. Bob’s superoperators Ψi in Eq. (11.5) are clearly quantum channels since all Ui are
unitary. To show that Alice’s superoperatorsΦi form a proper instrument, we need to verify
Eq. (11.6) to make sure that Ai are valid Kraus operators:∑

i∈Σ
A
†
iAi =

∑
i∈Σ

VT(IA ⊗ |i〉)(IA ⊗ 〈i|)V

=
∑
i∈Σ

VT(IA ⊗ |i〉〈i|)V

= VT(IA ⊗ I|Σ|)V
= VTV

= V†V

= IA,

where we used the fact that V ∈ U(HA,HC), whereHC = HA ⊗ CΣ, is an isometry.
(1⇒ 3) Same, but with the roles of Alice and Bob exchanged.
(2⇒ 4) and (3⇒ 4) Every LOCC channel is separable, see Eq. (10.4).
(4⇒ 1) The main idea of the proof is to restate the desired majorization condition in terms

of the simpler notion for probability distributions (Theorem 11.8) and then restate that again
in terms of partial sums (Theorem 11.4). This simplified condition is similar to a variational
characterization of eigenvalues. We can prove it by truncating the singular value decomposition
of u and combining it with Kraus operators of Ξ.

Let Ξ ∈ SepC(A : B) be a separable channel (see Definition 10.1) with Kraus operators
{Ai ⊗ Bi : i ∈ Σ} ⊂ L(HA ⊗HB) such that

Ξ(|u〉〈u|) =
∑
i∈Σ

(Ai ⊗ Bi)|u〉〈u|(Ai ⊗ Bi)† = |v〉〈v|. (11.8)
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Since |v〉〈v| is a rank-1 matrix, each term in the above sum must be of the form p(i)|v〉〈v|, for
some probability distribution p ∈ P(Σ). By using our most beloved vectorization identity from
Eq. (10.2), we conclude that

|BiuA
T
i 〉〈BiuAT

i | = p(i)|v〉〈v|,

for every i ∈ Σ. Taking partial trace over A and using Eq. (11.1) (which is now our second most
beloved vectorization identity),

BiuA
T
iAiu

†B†i = p(i)vv
†. (11.9)

Recall that our goal is to show that uu† ≺ vv†. By Theorem 11.8 (which is now our second
most favorite Uhlmann’s Theorem), this is equivalent to

λ(uu†) ≺ λ(vv†), (11.10)

where λ(M) denotes the spectrum ofM and “≺” is the much simpler notion of majorization for
vectors (see Definition 11.3). We can restate our goal further by invoking Theorem 11.4, which
expresses the majorization condition for vectors in terms of partial sums.

Let n = dim(HB) and let λj(M) denote the j-th largest eigenvalue ofM ∈ PSD(HB), i.e.,

λ1(M) > · · · > λj(M) > · · · > λn(M).

Since uu† = TrA
[
|u〉〈u|

]
and |u〉 is a unit vector,

n∑
j=1

λj(uu
†) = Tr[uu†] = 1 = Tr[vv†] =

n∑
j=1

λj(vv
†),

which is the last condition in Theorem 11.4. It remains to show that, for allm ∈ {1, . . . , n},
n∑
j=m

λj(vv
†) 6

n∑
j=m

λj(uu
†), (11.11)

which (thanks to Practice Problem 11.2) is equivalent3 to the remaining conditions in Theo-
rem 11.4.

Since λj(cM) = cλj(M), for any j ∈ {1, . . . , n}, c > 0, andM ∈ PSD(HB),

n∑
j=m

λj(vv
†) =

n∑
j=m

∑
i∈Σ

λj(p(i)vv
†) =

∑
i∈Σ

n∑
j=m

λj
(
BiuA

T
iAiu

†B†i
)
, (11.12)

where we used Eq. (11.9) and the distribution p defined earlier. Let us denote the monstrous
argument of λj by Pi ∈ PSD(HB). Since the sum is over the n−m+ 1 smallest eigenvalues of Pi,

n∑
j=m

λj(Pi) 6 Tr
[
Πi,mPi

]
, (11.13)

for any projector Πi,m ∈ PSD(HB) of rank(Πi,m) > n − m + 1, thanks to the variational
characterization of the eigenvalues of Pi.

3Note that the roles of u and v in λ(uu†) ≺ λ(vv†) in Eq. (11.10) are reversed compared to Definition 11.3
and Theorem 11.4, which are stated for v ≺ u. However, the order of summation in Eq. (11.11) is also reversed, which
gives us back the correct inequality thanks to the equivalence of the first two conditions in Practice Problem 11.2.
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For each i ∈ Σ, let us choose the projectorΠi,m so thatΠi,mBi|bj〉 = 0, for all j ∈ {1, . . . ,m−1},
where Bi comes from Eq. (11.8) and |bj〉 is the j-th left singular vector of u (see Eq. (11.2)) or 0 if
j > r = rank(u). Since span {Bi|bj〉 : j = 1, . . . ,m− 1} has dimension at mostm− 1, we do not
violate the restriction that rank(Πi,m) > n−m+ 1.

Next, let us truncate the singular value decomposition of u in Eq. (11.2) and define

um :=

r∑
j=m

sj|bj〉〈aj|. (11.14)

By our choice of Πi,m,

Πi,mBiu =

r∑
j=1

sjΠi,mBi|bj〉〈aj| =
r∑

j=m

sjΠi,mBi|bj〉〈aj| = Πi,mBium.

By taking the conjugate transpose of both sides, u†B†iΠi,m = u†mB
†
iΠi,m. As a consequence,

Tr
[
Πi,mPi

]
= Tr

[
Πi,mPi,m

]
(11.15)

where Pi,m := BiumA
T
iAiu

†
mB
†
i is the truncated cousin of Pi = BiuAT

iAiu
†B†i .

To summarize, we know from Eq. (11.12) that
n∑
j=m

λj(vv
†) =

∑
i∈Σ

n∑
j=m

λj(Pi).

Moreover, by combining Eqs. (11.13) and (11.15), we also know that
n∑
j=m

λj(Pi) 6 Tr
[
Πi,mPi

]
= Tr

[
Πi,mPi,m

]
6 Tr

[
Pi,m

]
.

Putting these two observations together,
n∑
j=m

λj(vv
†) 6

∑
i∈Σ

Tr
[
Pi,m

]
= Tr

[∑
i∈Σ

Pi,m

]
. (11.16)

Our goal is to relate the right-hand side to
∑n
j=m λj(uu

†), so that we can finally prove Eq. (11.11).
Let us investigate the operators Pi,m in more detail. By using both vectorization identities

(Eqs. (4.9) and (11.1)) backwards,

Pi,m = BiumA
T
iAiu

†
mB
†
i

= TrA
[
|BiumA

T
i 〉〈BiumAT

i |
]

= TrA
[
(Ai ⊗ Bi)|um〉〈um|(Ai ⊗ Bi)†

]
.

Note that ∑
i∈Σ

Pi,m = TrA
[
Ξ
[
|um〉〈um|

]]
,

where Ξ is the separable channel from Eq. (11.8) that we started with. Since Ξ is trace-preserving
and TrA

[
|um〉〈um|

]
= umu

†
m,

Tr
[∑
i∈Σ

Pi,m

]
= Tr

[
Ξ
[
|um〉〈um|

]]
= Tr

[
|um〉〈um|

]
= Tr

[
TrA

[
|um〉〈um|

]]
= Tr

[
umu

†
m

]
.
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Substituting the singular value decomposition of um from Eq. (11.14),

Tr
[
umu

†
m

]
= Tr

 r∑
j=m

sj|bj〉〈aj|
r∑

k=m

sk|ak〉〈bk|

 =

r∑
j=m

s2j

since 〈aj|ak〉 = 〈bj|bk〉 = δj,k. Combining this with Eq. (11.16),

n∑
j=m

λj(vv
†) 6 Tr

[∑
i∈Σ

Pi,m

]
= Tr

[
umu

†
m

]
=

r∑
j=m

s2j .

We will be done with proving Eq. (11.11) if we manage to show that

r∑
j=m

s2j =

n∑
j=m

s2j =

n∑
j=m

λj(uu
†).

The first equality follows since rank(u) = r, so sj = 0 for j > r. For the second equality, note
that s2j = λj(uu

†), for all j ∈ {1, . . . , n}, which follows from an earlier calculation in Eq. (11.3)
showing that

uu† =

r∑
j=1

s2j |bj〉〈bj|.

This concludes the proof of the final implication and hence the theorem.

To illustrate the use of Nielsen’s theorem, consider the following example, which is a
quantum version of Example 11.5.

Example 11.11 (Product and maximally entangled states). Consider a bipartite systemHA ⊗HB
whereHA = HB = Cn. Let |ΨAB〉 = |αA〉 ⊗ |βB〉, for some |αA〉 ∈ HA and |βB〉 ∈ HB, denote any
product state and let |Φ+

AB〉 :=
1√
n

∑n
i=1|iA〉⊗ |iB〉 denote the maximally entangled state on this system.

We see from Example 11.5 that

TrA
[
|Φ+
AB〉〈Φ

+
AB|
]
≺ TrA

[
|ΩAB〉〈ΩAB|

]
≺ TrA

[
|ΨAB〉〈ΨAB|

]
.

It follows from Nielsen’s theorem that, for any pure state |ΩAB〉 ∈ HA ⊗ HB, one can perform the
following sequence of conversions by one-way LOCC:

|Φ+
AB〉 7→ |ΩAB〉 7→ |ΨAB〉.

In other words, the maximally entangled state can be converted to any pure state, and any state can be
converted to a product state (the second claim is straightforward since Alice and Bob can simply discard
their state and prepare their halves of the product state locally).
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Lecture 12

Distillable entanglement and
entanglement cost

Last week we looked at majorization and Nielsen’s theorem. Majorization provides a way to
compare probability distributions in terms of how uniform they are. This Intuitively corresponds
to comparing how unequal are the wealth distributions corresponding to these probability
distributions – a distribution q is more equal than p, written q ≺ p, if q can be obtained from p

by taking away from the rich and giving to the poor.
This notion has a natural quantum counterpart where probability distributions are replaced

by density matrices. Using this more general notion of majorization for Hermitian operators,
Nielsen’s theorem provides an elegant answer to the following problem: can |uAB〉 be converted
to |vAB〉 by LOCC between systems A and B? This is possible if and only if TrA

[
|u〉〈u|

]
≺

TrA
[
|v〉〈v|

]
. This condition is easy to check by computing the eigenvalues of the reduced states

and checking whether they obey the desired majorization relation.
Intuitively, if |uAB〉 be converted to |vAB〉 by LOCC then |uAB〉 is more entangled than

|vAB〉 because local operations and classical communicaiton should not be able to create more
entanglement. Thus, one can think of Nielsen’s theorem as a way to compare the amount of
entanglement in different states. However, not every pair of states is comparable (the same is
also true for probability distributions). Even when two states are comparable, Nielsen’s theorem
doesn’t tell us how much more entangled one state is compared to the other.

Ideally, we would like to assign a single number to every state which tells us how much
entanglement the state has. This number should be easy to compute and also have some intuitive
operational interpretation. In this class we will see how this can be done for bipartite pure states.

12.1 Entanglement transformations

A convenient way to measure the amount of entanglement for bipartite states would be to choose
a “golden standard” state and ask how many of these states can be obtained from the given
state by LOCC. The canonical maximally entangled two-qbuit state

|Φ+〉 = 1√
2
(|0, 0〉+ |1, 1〉) = 1√

2


1

0

0

1
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is a natural choice of such “golden standard”. We will denote its density matrix by

φ := |Φ+〉〈Φ+| =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .
This approach is analogous to the idea of distillation – a process by which a large amount of an
impure substance is refined to a smaller amount of a more concentrated and pure substance.

One can also ask the opposite question – how many copies of |Φ+
AB〉 are required to produce

one copy of some desired state? Recall from Example 11.11 that, according to Nielsen’s theorem,
any pure two-qubit state can be obtained from |Φ+

AB〉 by LOCC. However, if the desired target
state is not too entangled, more copies might be obtainable from a single copy of |Φ+

AB〉.
Unfortunately, Nielsen’s theorem does not directly address this question.

Another shortcoming of Nielsen’s theorem is exactness – the theorem gives an iff condition
for when one bipartite state can be converted to another exactly. However, from practical
perspective, getting sufficiently close to the desired target state might already be good enough.

To address these shortcomings, we would like to introduce a robust way to quantify the
amount of entanglement in any bipartite state. Since we are interested in conversion rates –
namely, the number of copies consumed versus the number of copies produced – we need
to refer to bipartite spaces that consist of several copies of the same system. There is a slight
ambiguity of how the registers are ordered. If we have n copies of HA ⊗HB, the resulting
Hilbert space is

(HA ⊗HB)
⊗n = (HA ⊗HB)⊗ · · · ⊗ (HA ⊗HB).

However, since the LOCC protocol is performed with respect to the Alice versus Bob separation,
we need to group together all A systems and all B systems:

H⊗nA ⊗H⊗nB = (HA ⊗ · · · ⊗HA︸ ︷︷ ︸
Alice

)⊗ (HB ⊗ · · · ⊗HB︸ ︷︷ ︸
Bob

)

Permuting the systems around amounts to a non-trivial operation. However, we will not
explicitly write it since the order of registers should be clear from the context.

Since the input and output systems can generally have different dimensions, we will denote
them by A : B and C : D, where A and C belgon to Alice and B and D belong to Bob. Then the
opposite processes of entanglement distillation and creation can be illustrated as follows:

distilling ρAB by Ψn

creating ρAB by Φn

H⊗nA

H⊗nB

H
⊗bαnc
C

H
⊗bαnc
D

LOCC

Alice

Bob

ρ⊗nAB φ
⊗bαnc
CD

Using these conventions, let us formally define the rates of entanglement distillation and creation
for a given state ρAB.
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Definition 12.1 (Distillable entanglement). The distillable entanglement ED(ρAB) of state ρAB ∈
D(HA ⊗HB) is the supremum over all α > 0 for which there exists a sequence of LOCC channels

Ψn ∈ LOCC(H⊗nA ,H
⊗bαnc
C : H⊗nB ,H

⊗bαnc
D )

such that

lim
n→∞ F

(
Ψn(ρ

⊗n
AB), φ

⊗bαnc
CD

)
= 1.

Definition 12.2 (Entanglement cost). The entanglement cost EC(ρAB) of state ρAB ∈ D(HA⊗HB)
is the infimum over all α > 0 for which there exists a sequence of LOCC channels

Φn ∈ LOCC(H⊗bαncC ,H⊗nA : H
⊗bαnc
D ,H⊗nB )

such that

lim
n→∞ F

(
Φn(φ

⊗bαnc
CD ), ρ⊗nAB

)
= 1.

How does distillable entanglement and entanglement cost compare? Think of the following
analogy: if you go to a currency exchange to exchange money, the buying rate is always lower
than the selling rate. If this were not the case, you could make money by repeatedly exchanging
it back and forth. But there is no such thing as a free lunch! Similarly, one should not be able to
obtain an increasingly large amount of entanglement by repeatedly distilling and then recreating
a state by LOCC. This should be as impossible as constructing a perpetual motion machine that
keeps generating energy for free. However, proving this formally is actually not so trivial! The
following lemma captures our intuition that it is more difficult to create than destroy.

Lemma 12.3 (No free lunch). For any state ρAB ∈ D(HA ⊗HB), EC(ρAB) > ED(ρAB).

Proof. Let’s try to approximately implement by LOCC the map Ψn ◦Φn such that

φ⊗m
Φn7−−→ ρ⊗n

Ψn7−−→ φ⊗k,

for some integersm,n, k > 0. Note that φ⊗m is equivalent to a maximally entangled state of
dimension 2m, hence its Schmidt rank is 2m. For pure states, Schmidt rank coincides with the
entanglement rank (see Definition 10.4). Since Ψn ◦Φn is also LOCC (and thus separable), the
output state (Ψn ◦Φn)(φ⊗m) has entanglement rank at most 2m by Theorem 10.5. You will
show in Homework Problem 12.3 that F(σ,φ⊗k)2 6 r/2k, for any state σ of entanglement rank r.
Hence,

F
(
(Ψn ◦Φn)(φ⊗m), φ⊗k

)2
6 2m/2k = 2m−k. (12.1)

By Definitions 12.1 and 12.2 of entanglement cost and distillable entanglement, for all ε > 0
there exists n such that

F
(
Φn(φ

⊗m), ρ⊗n
)
> 1− ε,

F
(
Ψn(ρ

⊗n), φ⊗k
)
> 1− ε.

By Practice Problem 12.2,

F
(
(Ψn ◦Φn)(φ⊗m), φ⊗k

)
> 1− 4ε.
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Taking ε < 1/16,

F
(
(Ψn ◦Φn)(φ⊗m), φ⊗k

)2
>
(
1−

1

4

)2
=
9

16
>
1

2
.

Comparing with Eq. (12.1) we get 2m−k > 2−1, concluding thatm > k− 1 orm > k. In other
words, we get at most as many copies of φ as we started with. Sincem = bαnc and k = bβnc,
α > β and thus EC(ρAB) > ED(ρAB).

12.2 For pure states, distillation and creation cost the same

Since Definitions 12.1 and 12.2 and Lemma 12.3 apply to general mixed states ρAB, it is tempting
to ask if EC(ρAB) and ED(ρAB) are actually equal for any mixed state ρAB? Surprisingly, the
answer is “No!” – there are mixed states for which EC(ρAB) > ED(ρAB). Such states are
called bound entangled because the entanglement in them is bound or confined within them
and cannot be extracted back. This is what makes mixed state entanglement so much more
interesting and also difficult! For example, bound entangled states are responsible for such
strange phenomena as superactivation of quantum channels – the counterintuitive fact that two
zero-capacity quantum channels can have positive capacity when used together in parallel.

Unfortunately, we will not have time to go into these interesting but more advanced topics.
Instead, wewill fully resolve the case of pure states. Here the situation is muchmore simple since
the distillable entanglement and entanglement cost are the same, and equal to entanglement
entropy (see Definition 9.7).

Theorem 12.4. For any pure state ρAB = |u〉〈u|AB ∈ D(HA ⊗HB),

ED(ρAB) = H(ρA) = H(ρB) = EC(ρAB).

Proof. We already know that ED(ρAB) 6 EC(ρAB), and we know from Schmidt decomposition
that H(ρA) = H(ρB) = H(p), where√p are the Schmidt coefficients of |uAB〉:

|uAB〉 =
∑
x∈Σ

√
p(x) |ax〉A ⊗ |bx〉B.

Our strategy will be to show that EC(ρAB) 6 H(p) 6 ED(ρAB). We divide the rest of the proof
into two parts that show these two inequalities.

Let us first show that EC(ρAB) 6 H(p). Recall from Definition 5.8 and Lemma 5.9 that,
for any n > 1 and ε > 0, the set Tn,ε(p) of ε-typical strings with respect to p consists of those
x1 · · · xn ∈ Σn for which

2−n(H(p)+ε) < p(x1) · · ·p(xn) < 2−n(H(p)−ε).

Define a vector

|vn,ε〉 :=
∑

x1···xn∈Tn,ε(p)

√
p(x1) · · ·p(xn)

(
|a1〉 ⊗ · · · ⊗ |an〉

)
⊗
(
|b1〉 ⊗ · · · ⊗ |bn〉

)
and note that

pn,ε := ‖|vn,ε〉‖2 =
∑

x1···xn∈Tn,ε(p)

p(x1) · · ·p(xn) = Pr
(
Xn ∈ Tn,ε(p)

)
,
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where X is a random variable on Σ distributed according to p. Recall from the AEP Lemma 5.9
that this probability is close to 1:

pn,ε > 1−
σ2

nε2
, (12.2)

where σ is a constant that depends only on p. Just like in the proof of Shannon’s source coding
Theorem 5.7, this probability goes to 1 as n→∞, so the state |vn,ε〉 is asymptotically normalized.
However, for finite n, pn,ε 6 1, so let

|wn,ε〉 :=
|vn,ε〉√
pn,ε

denote the normalized version of |vn,ε〉.
The reduced state of |wn,ε〉 on systems A1 · · ·An has eigenvalues of the form p(x)/pn,ε, for

some x ∈ Tn,ε(p), so by the AEP Lemma 5.9 they satisfy

2−n(H(p)+ε)

pn,ε
< λj

(
TrB1···Bn

[
|wn,ε〉〈wn,ε|

])
<
2−n(H(p)−ε)

pn,ε
, (12.3)

for all j = 1, . . . , |Tn,ε(p)|, while the remaining eigenvalues are zero.
Let us now bound the entanglement cost EC(ρAB) of |uAB〉. Recall that EC(ρAB) is the

infimum over all α > 0 such that φ⊗bαnc can be approximately converted to ρ⊗n by LOCC.
Take any α > H(p) and let ε > 0 be sufficiently small so that α > H(p) + 2ε. Let n > 1/ε so that
nε > 1. Then

m := bαnc >
⌊
n(H(p) + ε) + nε

⌋
> n(H(p) + ε). (12.4)

We want to create as many copies of |uAB〉 as possible fromm copies of φCD = |Φ+
CD〉〈Φ

+
CD|.

Since the reduced state of φ⊗m is maximally mixed,

λj
(
TrD1···Dm [φ

⊗m]
)
= 2−m, (12.5)

for j = 1, . . . , 2m. Note from Eq. (12.4) that

2−m 6 2−n(H(p)+ε) 6
2−n(H(p)+ε)

pn,ε

since pn,ε 6 1. Combining this with Eqs. (12.3) and (12.5),

λj
(
TrD1···Dm [φ

⊗m]
)
< λj

(
TrB1···Bn

[
|wn,ε〉〈wn,ε|

])
,

for all j = 1, . . . , |Tn,ε(p)|. Hence, we get the following majorization relation:

k∑
j=1

λj
(
TrD1···Dm [φ

⊗m]
)
6

k∑
j=1

λj
(
TrB1···Bn

[
|wn,ε〉〈wn,ε|

])
,

for all k = 1, . . . , 2m, where the right-hand side is equal to 1 for any k > |Tn,ε(p)|. By Nielsen’s
Theorem 11.9, there exists an LOCC channelΦn such that

Φn(φ
⊗m) = |wn,ε〉〈wn,ε|,

with the conversion being exact.
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While the resulting state |wn,ε〉 is not exactly the same as the desired target state |u〉⊗n, they
are sufficiently close. Indeed, the fidelity between the two states is

F
(
|u〉〈u|⊗n, |wn,ε〉〈wn,ε|

)2
=
∣∣〈u|⊗n|wn,ε〉∣∣2 = 1

pn,ε

∣∣〈u|⊗n|vn,ε〉∣∣2
=

1

pn,ε

 ∑
x1···xn∈Tn,ε(p)

p(x1) · · ·p(xn)

2 (12.6)

=
p2n,ε
pn,ε

= pn,ε.

Recall from Eq. (12.2) that we can make this arbitrarily close to 1 by choosing n large enough. In
particular, we can achieve squared fidelity larger than 1− δ by choosing n > max{1ε ,

σ2

ε2δ
}, just

like in the proof of Theorem 5.7.
The proof of the second inequality H(p) 6 ED(ρAB) is very similar. Let α < H(p) and

ε ∈ (0, 1) be small enough so that α < H(p)−2ε. Let n > −1ε log(1−ε) so that−nε 6 log(1−ε).
Then

m := bαnc 6 n(H(p) − ε) − nε 6 n(H(p) − ε) + log(1− ε), (12.7)

so

2−m > 2−n(H(p)−ε)−log(1−ε) =
2−n(H(p)−ε)

1− ε
.

Since pn,ε → 1 as n→∞,

2−m >
2−n(H(p)−ε)

pn,ε
,

for all sufficiently large n.
Recall from Eqs. (12.3) and (12.5) that the eigenvalues of the reduced states satisfy

λj
(
TrB1···Bn

[
|wn,ε〉〈wn,ε|

])
<
2−n(H(p)−ε)

pn,ε
6 2−m = λj

(
TrD1···Dm [φ

⊗m]
)
,

for all j = 1, . . . , 2m (for distillation we are in the regime |Tn,ε(p)| > 2m). This implies the
majorization relation

k∑
j=1

λj
(
TrB1···Bn

[
|wn,ε〉〈wn,ε|

])
6

k∑
j=1

λj
(
TrD1···Dm [φ

⊗m]
)

for all k, where the right-hand side hits 1 at k = 2m. By Nielsen’s Theorem 11.9, there exists an
LOCC channel Ψn such that

Ψn(|wn,ε〉〈wn,ε|) = φ⊗m.

By monotonicity of fidelity under Ψn (see Homework Problem 4.1),

F
(
Ψn
(
|u〉〈u|⊗n

)
, φ⊗m

)2
= F
(
Ψn
(
|u〉〈u|⊗n

)
, Ψn

(
|wn,ε〉〈wn,ε|

))2
> F
(
|u〉〈u|⊗n, |wn,ε〉〈wn,ε|

)2
= pn,ε,

where the last equality follows from Eq. (12.6). Since this goes to 1 as n→∞, we have proved
that ED(ρAB) > H(p).
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Lecture 13

Monogamy of entanglement

Last week, we looked at ways to quantify entanglement. Using the canonical two-qubit
maximally entangled state as a “golden standard”, we asked how many copies of it can be
extracted from a given state, or howmany copies are needed to produce the given state by LOCC.
In Theorem 12.4, we showed that for pure states these two quantities – distillable entanglement
and entanglement cost – coincide and are equal to entanglement entropy.

In this lecture, we will take a different approach. Instead of the usual bipartite setting, we
will extend it to include multiple parties and observe a curious property of entanglement known
as monogamy – namely, one cannot simultaneously share a large amount of entanglement with
multiple parties. Using this observation, we will draw a non-trivial conclusion about bipartite
entanglement. Namely, a bipartite state that admits a symmetric extension to a multipartite
setting cannot be too entangled, otherwise the extended would violate monogamy.

13.1 Sharing classical vs quantum correlations

You showed in Homework Problem 2.3 (d) that if ρABC is a state such that ρAB is pure, then
ρABC = ρAB⊗ρC. In particular, this implies that ρAC = ρA⊗ρC and ρBC = ρB⊗ρC, meaning
that A and C are not correlated, and neither are B and C. Hence, one cannot share a pure
entangled state with more than one system – this is known as monogamy of entanglement.

A B

C

|ΨAB〉

ρC

ρABC =

In contrast, a classical state that is maximally correlation can be shared with an arbitrary
number of parties. To see this, consider the following classical tripartite state

ρABC =
1

2
(|000〉〈000|+ |111〉〈111|), (13.1)

which corresponds to flipping an unbiased coin and telling the outcome to all three parties.
Note that any two parties are maximally correlated since

ρAB = ρBC = ρAC =
1

2
(|00〉〈00|+ |11〉〈11|). (13.2)

Moreover, one can easily distribute this correlation even further by attaching a fresh qubit in
state |0〉 and performing a CNOT operation with this qubit as a target.
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Why does this not work in the quantum case? Let’s see what happens if we try to use the
same construction. The natural equivalent of Eq. (13.1) for pure states is

|ΨABC〉 =
1√
2
(|000〉+ |111〉).

Are all pairs of parties in this state maximally entangled? For this to be the case, all two-party
reduced states should be |Φ+〉 = 1√

2
(|00〉+ |11〉). Written as a density matrix,

|Φ+〉〈Φ+| =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|) = 1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|).

However, the actual reduced states are exactly the same as in Eq. (13.2):

ρAB = ρBC = ρAC =
1

2
(|00〉〈00|+ |11〉〈11|),

meaning that each pair of parties shares a maximal classical correlation, not a maximally
entangled state. This is a very stark manifestation of monogamy of entanglement – we were
hoping for all pairs of parties to be a maximally entangled, while in reality each pair shares a
separable state that has no entanglement whatsoever!

The only way to actually share a maximally entangled state with two parties is by increasing
the dimension. For example, if Bob has two qubits B and B ′, he can share a maximally entangled
with A and C as follows:

Bob

A B B ′ C

|Φ+
AB〉 |Φ+

B ′C〉

However, the system B is completely uncorrelated with C, and B ′ is completely uncorrelated
with A. Even if the dimension of system A is increased, Bob cannot share more entanglement
with it while still maintaining a maximally entangled state with C.

Let us now consider a more complicated situation with n parties denoted by A1, . . . , An.
Assume their joint state ρA1···An is such that all two-party reduced states ρAiAj are the same for
all i 6= j. Let us denote this reduced state by ρAB.

A1

A2

A3A4

A5

Intuitively, ρAB should not be too entangled because each party shares this state with the
remaining n − 1 other parties. The goal of this lecture is to prove Theorem 13.13 which
establishes a quantitative bound on how close ρAB is to the set of separable states, given that it
has such a symmetric n-party extension. Results of this form are known as de Finetti theorems.
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13.2 The symmetric subspace

Since the setup of our de Finetti theorem involves a state with a high degree of symmetry, we
first need to develop the mathematical machinery for dealing with such states. These states live
in the so-called symmetric subspace.

Definition 13.1 (Symmetric subspace). Let H be a Hilbert space, let n > 1, and let Sn denote the set
of all permutations acting on {1, . . . , n}. For every π ∈ Sn, let Rπ ∈ U(H⊗n) denote the operator that
acts on n systems and permutes them according to π:

Rπ
(
|ψ1〉 ⊗ · · · ⊗ |ψn〉

)
:= |ψπ−1(1)〉 ⊗ · · · ⊗ |ψπ−1(n)〉, (13.3)

for all |ψ1〉, . . . , |ψn〉 ∈ H. The symmetric subspace of H⊗n is then defined as

Symn(H) :=
{
|Φ〉 ∈ H⊗n : Rπ|Φ〉 = |Φ〉, ∀π ∈ Sn

}
.

Remark 13.2. The reason for using π−1 instead of π on the right-hand side of Eq. (13.3) is so that
RπRτ = Rπτ, for any π, τ ∈ Sn. You will show this and R†π = Rπ−1 , for any π ∈ Sn, in Practice
Problem 13.1 (c), which makes the map π 7→ Rπ a unitary representation of the symmetric group Sn.

Remark 13.3. Make sure to not confuse Rπ with the permutation matrix Vπ from Theorem 11.2! The
distinction is that Rπ permutes the systems while Vπ permutes the standard basis states according to π.
In particular, Rπ is of size dn × dn, where dimH = d, while Vπ is of size n× n.

Here are some basic observations about Symn(H):

• For any |ψ〉 ∈ H, |ψ〉⊗n ∈ Symn(H) since Rπ|ψ〉⊗n = |ψ〉⊗n.

• For any π ∈ Sn, |Φ〉 ∈ Symn(H) iff Rπ|Φ〉 ∈ Symn(H).

• If |Φ1〉, |Φ2〉 ∈ Symn(H) then |Φ1〉+ |Φ2〉 ∈ Symn(H).

In other words, all tensor power states are in the symmetric subspace, the order in which the
systems are arranged does not affect whether a state is symmetric or not, and the symmetric
subspace is indeed a subspace.

Example 13.4 (Two qubits). The case of two qubits corresponds to n = 2 and d = 2. In this case,

Sym2(C2) = span
{
|0, 0〉, |1, 1〉, |0, 1〉+ |1, 0〉√

2

}
.

The remaining vector (|0, 1〉− |1, 0〉)/
√
2 (also known as the singlet state) is anti-symmetric.

Since Symn(H) is a subspace of H⊗n, we can write down a projector onto this subspace.
You will show in Practice Problem 13.1 (d) that the following is an orthogonal projection onto
Symn(H):

Πn :=
1

n!
∑
π∈Sn

Rπ. (13.4)

In particular, Π†n = Πn and Π2n = Πn, i.e., Πn is Hermitian and a projector. Intuitively, applying
Πn to a state corresponds to “symmetrizing” it:

Πn|Φ〉 =
1

n!
∑
π∈Sn

Rπ|Φ〉.
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As part of your argument in Practice Problem 13.1 (d) you will show that Πn|Φ〉 ∈ Symn(H),
for any |Φ〉 ∈ H⊗n. Moreover, if |Φ〉 ∈ Symn(H) then Πn|Φ〉 = |Φ〉. In fact, for any k > 0 and
|Φ〉 ∈ Symk+n, the following more general identity holds:

(Ik ⊗ Πn)|Φ〉 = |Φ〉, (13.5)

where Ik denotes the identity operator on the first k systems.

Example 13.5 (Projector Π2). For n = 2, it follows immediately from Eq. (13.4) that

Π2 =
1

2
(I+ F),

where F ∈ U(H⊗2) is the swap operator: F(|α〉 ⊗ |β〉) = |β〉 ⊗ |α〉, for all |α〉, |β〉 ∈ H.

Recall from Example 13.4 that the symmetric subspace for two qubits is spanned by |00〉,
|11〉, and (|01〉 + |10〉)/

√
2. How can we find all states in Symn(Cd), for any n > 1 and d > 1?

We can symmetrize the standard basis states, thus projecting them to the symmetric subspace.
Let Λn,d denote the set of all integers t1, . . . , td > 0 such that

∑d
i=1 ti = n:

Λn,d :=
{
(t1, . . . , td) ∈ Zd : t1, . . . , td > 0,

d∑
i=1

ti = n
}
.

For any (t1, . . . , td) ∈ Λn,d, let |Tt1,...,td〉 ∈ (Cd)⊗n denote the following state:

|Tt1,...,td〉 :=
t1︷ ︸︸ ︷

|1〉 ⊗ · · · ⊗ |1〉⊗
t2︷ ︸︸ ︷

|2〉 ⊗ · · · ⊗ |2〉⊗ · · · ⊗
td︷ ︸︸ ︷

|d〉 ⊗ · · · ⊗ |d〉︸ ︷︷ ︸
n

, (13.6)

where ti denotes the number of terms |i〉 occurring in the tensor product.

Example 13.6 (Two qubits). The set Λd,n and the corresponding basis states for two qubits are

Λ2,2 = {(2, 0), (1, 1), (0, 2)}, |T2,0〉 = |0, 0〉, |T1,1〉 = |0, 1〉, |T0,2〉 = |1, 1〉.

To match with the case of general d, one should use {|1〉, |2〉} instead of {|0〉, |1〉} for the qubit standard basis
here. However, we used |0〉 and |1〉 to emphasize the correspondence with the states in Example 13.4.

We can get a basis for the symmetric subspace by symmetrizing the states |Tt1,...,td〉.

Lemma 13.7 (Basis of symmetric subspace). The following is an orthogonal basis for Symn(Cd):

Symn(Cd) = span
{
Πn|Tt1,...,td〉 : (t1, . . . , td) ∈ Λn,d

}
.

Proof. Since Πn projects onto the symmetric subspace, we need to find the image of (Cd)⊗n
under Πn. For this, it suffices to apply Πn to all standard basis vectors of (Cd)⊗n. Since
ΠnRπ|Φ〉 = Πn|Φ〉, for all π ∈ Sn and |Φ〉 ∈ (Cd)⊗n, we can first permute the systems and
sort the basis vectors to obtain one of the states |Tt1,...,td〉. You can think of the resulting
sequence t1, . . . , td as a “generalized Hamming weight” of the original string of basis vectors,
since ti counts the number of appearances of |i〉. To obtain a basis of Symn(Cd), it suffices to
apply Πn to all vectors |Tt1,...,td〉 with (t1, . . . , td) ∈ Λn,d. Note that all terms in the expansion
of Πn|Tt1,...,td〉 have the same Hamming weight, and for different choices of t1, . . . , td the
Hamming weights are different. The resulting basis is orthogonal since all vectors have disjoint
supports, i.e., their standard basis expansions do not contain a single common term.
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Remark 13.8. While the states Πn|Tt1,...,td〉 with (t1, . . . , td) ∈ Λn,d are mutually orthogonal, they
are not normalized in general since Πn is a projector.

You will work out some examples in Practice Problem 13.1 (b). Using Lemma 13.7, we can
easily find the dimension of the symmetric subspace.

Lemma 13.9. The dimension of the symmetric subspace is

dim
(
Symn(Cd)

)
= |Λn,d| =

(
n+ d− 1

n

)
=

(n+ d− 1)!
n!(d− 1)!

Proof. Recall from Lemma 13.7 that the statesΠn|Tt1,...,td〉with (t1, . . . , td) ∈ Λn,d aremutually
orthogonal since they have disjoint supports. Hence, the dimension of Symn(Cd) is equal to
|Λn,d|. Note that |Λn,d| is the number of ways of grouping n elements into d (possibly empty)
groups. Using the method of stars and bars, this can be determined by separating n stars with
d− 1 bars. This corresponds to choosing d− 1 out of n+ d− 1 elements to be the bars and the
rest be stars, yielding the desired binomial coefficient.

We will need the following result, which we state without proof.

Lemma 13.10. Let A ∈ L(H⊗n) for some Hilbert space H and n > 1. Then

U⊗nAU†⊗n = A, ∀U ∈ U(H),

iff A =
∑
π∈Sn cπRπ, for some cπ ∈ C.

Using this, we can provide an alternative expression for the projectorΠn defined in Eq. (13.4).
Instead of a discrete sum over permutations, this expression involves a continuous integral over
pure quantum states.

Lemma 13.11. For any n > 1 and d > 2,

Πn =

(
n+ d− 1

n

) ∫
dψ (|ψ〉〈ψ|)⊗n,

where dψ is the uniform probability measure on pure states in Cd.

Proof. You will prove this in Practice Problem 13.2.

Example 13.12 (Integral for Πn when d = 2 and n = 2). The uniform measure for pure qubit states
is the same as for the points on the unit sphere in R3 (a.k.a. the Bloch sphere, see Section 1.4):

dψ =
1

4π
sin θdθdϕ,

where θ ∈ [0, π] and ϕ ∈ [0, 2π) are the angles in the spherical coordinates. The corresponding point on
the unit sphere in R3 has coordinates

(x, y, z) := (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ R3.
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This corresponds to the pure state

|ψ(θ,ϕ)〉 :=
(

cos θ2
eiϕ sin θ2

)
∈ C2,

as can be seen by comparing the density matrix ρ(θ,ϕ) := |ψ(θ,ϕ)〉〈ψ(θ,ϕ)| with

ρ(x, y, z) :=
1

2
(I+ xX+ yY + zZ) =

1

2

(
1+ z x− iy
x+ iy 1− z

)
.

By taking d = 2 and explicitly evaluating the integral from Lemma 13.11, one can check for n = 2 that

(
n+ d− 1

n

)
1

4π

∫π
θ=0

∫2π
ϕ=0

ρ(θ,ϕ)⊗n sin θdθdϕ =
1

2


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 = Π2.

13.3 The quantum de Finetti theorem

If |ΦA1···An〉 ∈ Symn(H), then all its two-party reduced density matrices ΦAiAj for i 6= j are
identical. If a given mixed state ρAA ′ can be extended to such symmetric pure state |ΦA1···An〉,
for some large value of n, then ρAA ′ must be very close to separable (in fact, the distance goes
to zero as n→∞). This is made rigorous by the quantum de Finetti theorem.

Theorem 13.13 (Quantum de Finetti theorem). Let k > 1, n > 0, and consider k + n systems
A1 · · ·Ak+n, each of dimension d > 2. For any |Φ〉 ∈ Symk+n(Cd), there exists a probability density
function p on pure states in Cd such that

1

2

∥∥∥∥ΦA1···Ak − ∫ dψp(ψ) (|ψ〉〈ψ|)⊗k∥∥∥∥
1

6

√
dk

k+ n
, (13.7)

where ΦA1···Ak = TrAk+1···Ak+n
[
|Φ〉〈Φ|

]
.

Proof. Recall from Eq. (13.5) that (IA1···Ak ⊗ Πn)|Φ〉 = |Φ〉, so

ΦA1···Ak = TrAk+1···Ak+n
[
|Φ〉〈Φ|

]
= TrAk+1···Ak+n

[
(IA1···Ak ⊗ Πn)|Φ〉〈Φ|

]
=

(
n+ d− 1

n

) ∫
dψ TrAk+1···Ak+n

[(
IA1···Ak ⊗

(
|ψ〉⊗n〈ψ|⊗n

)
Ak+1···Ak+n

)
|Φ〉〈Φ|

]
=

(
n+ d− 1

n

) ∫
dψ
(
IA1···Ak ⊗ 〈ψ|

⊗n)|Φ〉〈Φ|
(
IA1···Ak ⊗ |ψ〉⊗n

)
,

where we substituted the integral formula forΠn from Lemma 13.11 and then used the following
cyclic property of the partial trace:

TrB
[(
IA ⊗ |ψ〉〈ψ|B

)
ΦAB

]
=
(
IA ⊗ 〈ψ|B

)
ΦAB

(
IA ⊗ |ψ〉B

)
, (13.8)

which holds for anyΦAB ∈ L(HA⊗HB) and unit vector |ψ〉B ∈ HB. To prove this identity, first
choose UB ∈ U(HB) such that UB|j〉B = |ψ〉B, where |j〉B is an arbitrary standard basis vector of
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HB, and then use the unitary invariance of the partial trace:

TrB
[(
IA ⊗ |ψ〉〈ψ|B

)
ΦAB

]
= TrB

[(
IA ⊗UB

)(
IA ⊗ |j〉〈j|B

)(
IA ⊗U†B

)
ΦAB

]
= TrB

[(
IA ⊗ |j〉〈j|B

)(
IA ⊗U†B

)
ΦAB

(
IA ⊗UB

)]
= TrB

[(
IA ⊗ |j〉〈j|B

)
Φ̂AB

]
,

where Φ̂AB := (IA ⊗U†B)ΦAB(IA ⊗UB). Then we simply evaluate the partial trace according
to Definition 2.7:

TrB
[(
IA ⊗ |j〉〈j|B

)
Φ̂AB

]
=
∑
i

(
IA ⊗ 〈i|B

)(
IA ⊗ |j〉〈j|B

)
Φ̂AB

(
IA ⊗ |i〉B

)
=
∑
i

(
IA ⊗ 〈i|j〉〈j|B

)
Φ̂AB

(
IA ⊗ |i〉B

)
=
(
IA ⊗ 〈j|B

)
Φ̂AB

(
IA ⊗ |j〉B

)
,

After substituting back Φ̂AB and using UB|j〉B, we recover Eq. (13.8).
Let us continue with the proof and rewrite the integral as follows:

ΦA1···Ak =

∫
dψp(ψ) |Φψ〉〈Φψ|, (13.9)

where |Φψ〉A1···Ak ∈ (Cd)⊗k and p are such that

√
p(ψ) |Φψ〉 :=

√(
n+ d− 1

n

)(
IA1···Ak ⊗ 〈ψ|

⊗n)|Φ〉. (13.10)

If we rescale |Φψ〉 to a unit vector, p becomes a probability density function on pure states in
Cd, as can be seen by taking trace on both sides of Eq. (13.9). More specifically, p(ψ) is given by

p(ψ) :=

(
n+ d− 1

n

)∥∥(IA1···Ak ⊗ 〈ψ|⊗n)|Φ〉∥∥2.
Let us compare the integral in Eq. (13.9) with Φ̃A1···Ak =

∫
dψp(ψ) |ψ〉⊗k〈ψ|⊗k, where p is

the same probability density function. Using triangle inequality and the formula from Eq. (3.11)
for the trace distance between pure states,

1

2

∥∥ΦA1···Ak − Φ̃A1···Ak∥∥1 6 ∫ dψp(ψ) 12∥∥|Φψ〉〈Φψ|− |ψ〉⊗k〈ψ|⊗k
∥∥
1

=

∫
dψp(ψ)

√
1−

∣∣〈ψ|⊗k|Φψ〉∣∣2
6

√∫
dψp(ψ)

(
1−

∣∣〈ψ|⊗k|Φψ〉∣∣2)
=

√
1−

∫
dψp(ψ)

∣∣〈ψ|⊗k|Φψ〉∣∣2,
where we used Jensen’s inequality from Eq. (5.4) to bring the integral underneath the square
root, a concave function.
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For the rest of the proof, let us focus on bounding the integral. Note from Eq. (13.10) that

√
p(ψ) 〈ψ|⊗k|Φψ〉 =

√(
n+ d− 1

n

)(
〈ψ|⊗k ⊗ 〈ψ|⊗n

)
|Φ〉

=

√(
n+ d− 1

n

)
〈ψ|⊗k+n|Φ〉.

Hence, ∫
dψp(ψ)

∣∣〈ψ|⊗k|Φψ〉∣∣2 = (n+ d− 1

n

) ∫
dψ 〈Φ|

(
|ψ〉〈ψ|⊗k+n

)
|Φ〉

=

(
n+ d− 1

n

)(
k+ n+ d− 1

k+ n

)−1 ∫
dψ 〈Φ|Πk+n|Φ〉

=

(
n+ d− 1

n

)(
k+ n+ d− 1

k+ n

)−1

,

where we used the integral formula from Lemma 13.11 and the assumption |Φ〉 ∈ Symk+n(Cd)
which implies that Πk+n|Φ〉 = |Φ〉.

The ratio of the two binomial coefficients can be expressed as follows:(
n+ d− 1

n

)(
k+ n+ d− 1

k+ n

)−1

=
(n+ d− 1)!
n!����(d− 1)! ·

(k+ n)!����(d− 1)!
(k+ n+ d− 1)!

=
(n+ d− 1)!

n! · (k+ n)!
(k+ n+ d− 1)!

=
(n+ d− 1) · · · (n+ 1)

(k+ n+ d− 1) · · · (k+ n+ 1)
.

Note that a+1b+1 − a
b = b−a

b(b+1) > 0 when b > a, so a+1b+1 > a
b and hence

n+ d− 1

k+ n+ d− 1
· · · n+ 1

k+ n+ 1
=

(
n+ 1

k+ n+ 1

)d−1
>

(
1−

k

k+ n+ 1

)d−1
> 1− (d− 1)

k

k+ n+ 1

> 1−
dk

k+ n
,

where we used (1− α)x > 1− αx for α ∈ (0, 1) and x > 1. Putting everything together,

1

2

∥∥ΦA1···Ak − Φ̃A1···Ak∥∥1 =
√
1−

∫
dψp(ψ)

∣∣〈ψ|⊗k|Φψ〉∣∣2
=

√
1−

(
n+ d− 1

n

)(
k+ n+ d− 1

k+ n

)−1

6

√
dk

n+ k
,

which is the desired bound.
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Lecture 14

Quantum state merging

Last week, we introduced the notion of monogamy of entanglement, which can be stated
informally as the fact that you cannot simultaneously share a lot of entanglement with many
other people. To make this more formal, we defined the symmetric subspace that contains
multipartite pure states that are invariant under any permutation of parties. These states have
a very high degree of symmetry – in particular, all k-party reduced states are identical. Our
main result was the quantum de Finetti theorem (Theorem 13.13), which shows that the k-party
reduced state of a symmetric state is close to separable.

In this lecture, we will look at entanglement from yet another perspective. We will revisit
Schumacher compression and entanglement distillation from Lectures 6 and 12, respectively,
and consider a more general problem called quantum state merging that generalizes both.

14.1 Special cases of quantum state merging

The general quantum state merging problem is concerned with a pure tripartite state |ΨABR〉,
where A and B are held by Alice and Bob, respectively, and R is a reference system that is not
accessible to them. We assume that the reduced stateΨAB is known to Alice and Bob so that they
are able to manipulate it. Before we discuss the general problem, let us consider two special cases
you are already familiar with – Schumacher compression and entanglement distillation. They
correspond to state merging for states of the form |ΨAR〉 ⊗ |ψB〉 and |ΨAB〉 ⊗ |ψR〉, respectively.

Recall from Theorem 6.8 that Schumacher compression can compress n copies of a mixed
state ρA to roughly nH(ρA) qubits. Just like in the classical case (see Lemma 6.3), quantum
compression also has the property that it approximately preserves correlations with an external
reference system R. Hence, if instead of ρA we compress the A subsystem of its purification
|ΨAR〉, we recover the original correlations with R after decompressing the state. This scenario
can be illustrated as follows:

A

Alice

B

Bob

R

qubits at rate
H(A)

|ΨAR〉⊗n =⇒

A

Alice

B

Bob

R

≈ |ΨAR〉⊗n

Using Schumacher’s Theorem 6.8, Alice can compresses the registers A1 · · ·An of |ΨAR〉⊗n and
send them to Bob at rate H(A) = H(ρA). After Bob decompresses, he approximately recovers
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the original state |ΨAR〉⊗n, which is still correlated with the reference system R. This is a special
case of quantum state merging and is characterized by the property that the reduced state on
AR is pure (i.e., B is in product with AR). Having no B register at all is a special case of this.

Another interesting special case is when there is no reference system R at all or, more
generally, when the initial state factorizes as |ΨABR〉 = |ΨAB〉 ⊗ |ψR〉. In this case, we can ignore
the reference system altogether and Bob can simply prepare n copies of the desired target state
|ΨAB〉 all by himself on a new pair of registers CC ′. Since he still shares the state |ΨAB〉⊗n
with Alice and they don’t need it anymore, they might as well convert it by LOCC to as large
number of maximally entangled states as possible and keep them for later use. According to
Theorem 12.4, they can distill roughly nH(A) copies of |Φ+

AB〉. The overall transformation in
this case looks as follows:

A

Alice

B

Bob

R

|ΨAB〉⊗n

|ψR〉⊗n

=⇒

A

Alice

B

Bob

R

C C ′

|ΨAB〉⊗n

|ψR〉⊗n

≈ |Φ+
AB〉

⊗nH(A)

ebits at rate
H(A)

14.2 General problem

Quantum stage merging generalizes these two problems to a case where all three parties holding
the state |ΨABR〉 are entangled in some non-trivial way. Given n copies of such state, the goal is
for Alice to transmit some qubits to Bob so that he can recover the full state |ΨABR〉⊗n, where
systems A and B are now both on Bob’s side and the state is still correlated to the reference
system R the same way as before. Moreover, as the last example suggests, we should also
account for the possibility that after achieving the desired transformation Alice and Bob may
still be able to extract additional shared maximally entangled states which they can keep for
later use. Here is an illustration of the general quantum state merging task:

A

Alice

B

Bob

R

qubits at rate
1
2
I(A : R)

|ΨABR〉⊗n
=⇒

A

Alice

B

Bob

R

≈ |ΨABR〉⊗n

ebits at rate
1
2
I(A : B)

Note that this task involves two rates:

• quantum communication rate – the rate at which Alice needs to send qubits to Bob,

• distillation rate – the rate at which Alice and Bob can produce entanglement by LOCC.

The values of these rates achieved by the quantum state merging protocol are 12I(A : R) and
1
2I(A : B), respectively. Note that quantum state merging in general cannot be achieved by
LOCC since it requires quantum communication.
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Before we discuss the communication and distillation rates, recall from Definition 7.2 that
the quantum mutual information is defined as follows:

I(A : B) = H(A) +H(B) −H(AB).

Moreover, recall from Eq. (7.8) that

1

2
I(A : B) 6 min {H(A), H(B)},

with equality if and only if ΨAB is pure (this can be proved using the Araki-Lieb inequality from
Eq. (7.4)). In particular,

1

2
I(A : R) 6 H(R),

1

2
I(A : B) 6 H(B). (14.1)

As a sanity check, let us verify that the desired communication and distillation rates do not
contradict what we discussed in Section 14.1 for the special cases of Schumacher compression
and entanglement distillation. Recall that in the two special cases the rates were as follows:

• Schumacher compression: |ΨAR〉 pure (or no B) – communication at rate 12I(A : R) = H(A),

• entanglement distillation: |ΨAB〉 pure (or no R) – distillation at rate 12I(A : B) = H(B).

This is consistent with the rates involved in state merging. Since Schumacher compression and
(pure-state) entanglement distillation rates are optimal, the rates obtained through state merging
cannot exceed them according to Eq. (14.1). In fact, state merging achieves optimal rates in these
two special cases. Note that the communication rate will generally be lower than H(A) since
Bob already has some part of the state. Similarly, the distillation rate will also generally be lower
than H(B) since some of Bob’s entanglement might be shared with R instead of Alice.

The general quantum state merging problem interpolates between Schumacher compression
and entanglement distillation. While the rates achieved by state merging are not optimal in
general, the quantum state merging protocol is fairly intuitive and it shines more light on
bipartite mixed-state entanglement. In particular, it is curious to note that

I(A : R)

2
+
I(A : B)

2
=
1

2

(
H(A) +H(R) −H(AR) +H(A) +H(B) −H(AB)

)
= H(A)

sinceH(R) = H(AB) andH(B) = H(AR) as the global state is pure. Intuitively, the state merging
protocol splits Alice’s correlations into two kinds – ones she has with R (which need to be
compressed and sent to Bob) and ones she has with Bob (which need to be distilled).

14.3 Perfect decoupling

Beforewe discuss the general quantum statemerging protocol, let us consider another illustrative
special case – the perfectly decoupled case. It illustrates the intuition behind the decoupling technique
we will use in Section 14.4.

Assume that Alice’s system is maximally entangled with Bob’s. Since the overall state
|ΨABR〉 is pure, the reference system R cannot be entangled with Alice at all due to monogamy
of entanglement. Moreover, to accommodate the other half of the maximally entangled state,
Bob’s system has to be at least as large as Alice’s and it can be partitioned as B = B ′B ′′, where
dimB ′ = dimA and B ′ is maximally entangled with Alice’s system A while B ′′ is in product
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with A due to monogamy. In other words, by applying a suitable basis change on Bob’s side, we
can assume the overall state to be of the form

|ΨABR〉 = |ΦAB ′〉 ⊗ |ΩB ′′R〉, (14.2)

where |ΦAB ′〉 is maximally entangled and |ΩB ′′R〉 is some remaining state that can still exhibit
correlations with R. Equivalently, the reduced state on AR can be factorized as

ΨAR =
IA
dA
⊗ ΨR

where Alice’s system is maximally mixed and ΨR is some arbitrary state on R.
To recover the desired state |ΨABR〉 fully on Bob’s side, he simply needs to create two fresh

registers C and C ′ of the same dimension as A and prepare a local copy of the maximally
entangled state |ΦCC ′〉 in them:

A B ′ B ′′

Alice Bob

R

|ΦAB ′〉

|ΩB ′′R〉 =⇒

A B ′ C C ′ B ′′

Alice Bob

R

|ΦAB ′〉 |ΦCC ′〉

|ΩB ′′R〉

Note that the final state is of the form

|ΦAB ′〉 ⊗ |ΦCC ′〉 ⊗ |ΩB ′′R〉,

where Bob holds all registers except A and R. In particular, note from Eq. (14.2) that the last two
terms coincide with the desired target state once the registers C ′ and B ′′ are grouped together:

|ΦCC ′〉 ⊗ |ΩB ′′R〉 = |ΨC,C ′B ′′,R〉.

In other words, Bob has managed to prepare the desired target state all by himself without Alice
having to send him any qubits. Moreover, they even have a maximally entangled state |ΦAB ′〉
left over that is not part of the target state and thus can be kept for later use. The reason we refer
to this as the “perfectly decoupled” case is because Bob’s system can be factorized to completely
decouple A from R, and A is maximally entangled with the B ′ subsystem of B.

14.4 Decoupling
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Appendix A

Practice Problems
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Quantum Information Theory, Spring 2020
Practice problem set #1

You do not have to hand in these exercises, they are for your practice only.

1. Dirac notation quiz: In the Dirac notation, every vector is written as a ‘ket’ |ψ〉 and every
linear functional is written as a ‘bra’ 〈ψ| = |ψ〉†, where † denotes the adjoint. One can think
of kets as column vectors and bras as row vectors. Hence, if |ψ〉 is a column vector, then 〈ψ|
denotes the row vector obtained by taking the conjugate transpose of the column vector.

(a) Let |ψ〉 and |φ〉 be vectors in Cn and A an n × n matrix. Which of the following
expressions are syntactically correct? For those that do, what kind of object do they
represent (e.g., numbers, vectors, . . . )? Can you write them using ‘ordinary’ notation?

i. |ψ〉+ 〈φ|
ii. |ψ〉〈φ|
iii. A〈ψ|

iv. 〈ψ|A
v. 〈ψ|A+ 〈ψ|
vi. |ψ〉〈φ|+A

vii. |ψ〉〈φ|A
viii. |ψ〉A〈φ|
ix. 〈ψ|A|φ〉

x. 〈ψ|A|φ〉+〈ψ|φ〉
xi. 〈ψ|φ〉〈ψ|
xii. 〈ψ|φ〉A

(b) Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be two pure states on the same system. Verify that

Tr[ρσ] = |〈ψ|φ〉|2.

Hint: You may use that the trace is cyclic, i.e. Tr[ABC] = Tr[CAB] = Tr[BCA].

2. Positive semidefinite operators: Recall from class that an operator A ∈ L(H) is called
positive semidefinite if it is Hermitian and all its eigenvalues are nonnegative. We denote
by PSD(H) the set of positive semidefinite operators on a Hilbert space H. Argue that the
following conditions are equivalent:

(a) A is positive semidefinite.
(b) A = B†B for an operator B ∈ L(H).
(c) A = B†B for an operator B ∈ L(H,K) and some Hilbert space K.
(d) 〈ψ|A|ψ〉 > 0 for every ψ ∈ H.
(e) Tr[AC] > 0 for every C ∈ PSD(H).

3. Convexity: Recall that a set S is convex if px+ (1− p)y ∈ S for every x, y ∈ S and p ∈ [0, 1].

(a) Show that PSD(H) is convex and closed under multiplication by R>0 (i.e., a convex cone).
(b) Show that D(H) is convex.

4. Positive semidefinite order: Given two operators A and B, we write A 6 B if the operator
B−A is positive semidefinite. Show that the following three conditions are equivalent:

(a) 0 6 A 6 I.
(b) A is Hermitian and has eigenvalues in [0, 1].
(c) 〈ψ|A|ψ〉 ∈ [0, 1] for every unit vector |ψ〉 ∈ H.

5. Bloch sphere: Recall from the lecture that the state ρ of a single qubit can be parameterized
by the Bloch vector~r ∈ R3, ‖~r‖ 6 1. Namely:

ρ =
1

2
(I+ rxX+ ryY + rzZ).
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(a) Show that rx = Tr[ρX], ry = Tr[ρY], and rz = Tr[ρZ].
(b) Let σ be another qubit state, with Bloch vector ~s. Verify that Tr[ρσ] = 1

2
(1+~r · ~s) .

(c) Let {|ψi〉}i=0,1 denote an orthonormal basis of C2, µ : {0, 1}→ PSD(C2) the correspond-
ing basis measurement (i.e., µ(i) = |ψi〉〈ψi| for i ∈ {0, 1}), and ~ri the Bloch vector of
|ψi〉〈ψi|. Show that the probability of obtaining outcome i ∈ {0, 1}when measuring ρ
using µ is given by 12(1+~r ·~ri). Show that~r0 = −~r1. How can you visualize these two
facts on the Bloch sphere?

(d) Now imagine that ρ is an unknown qubit state ρwhose Bloch vector~r you would like to
characterize completely. Consider the following measurement with six outcomes:

µ : {x, y, z}× {0, 1}→ PSD(C2), µ(a, b) =
I+ (−1)bσa

6
,

where σx = X, σy = Y, and σz = Z are the three Pauli matrices. Show that µ is a valid
measurement and that the probabilities of measurement outcomes are given by

p(a, b) =
1+ (−1)bra

6
.

How can you visualize this formula on the Bloch sphere? Describe how measuring
many copies of ρ by using µ allows for estimating the entries of~r to arbitrary accuracy.
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Quantum Information Theory, Spring 2020

Practice problem set #2

You do not have to hand in these exercises, they are for your practice only.

Throughout, A, B, C denote quantum systems with Hilbert spacesHA,HB,HC. The sets {|a〉}
and {|b〉} denote arbitrary orthonormal bases of HA and HB; |a, b〉 = |a〉 ⊗ |b〉 denotes the
product basis.

1. Singular values and eigenvalues: Recall that the singular values of an operator M are
the square roots of the nonzero eigenvalues ofM†M orMM† (which are always positive
semidefinite).

(a) Show that ifM is Hermitian then its singular values are equal to its nonzero absolute
eigenvalues. How about if the operator is positive semidefinite?

(b) Argue that ‖M‖1 = Tr[M] ifM is positive semidefinite. In particular, ‖ρ‖1 = 1 for any
state.

2. Reducedstatesof classical states: Consider the ‘classical’ stateρXY =
∑
x,y p(x, y) |x, y〉〈x, y|

onHX⊗HY , whereHX = CΣX ,HY = CΣY , andp(x, y) is an arbitraryprobability distribution.
Compute the reduced states ρX and ρY .

3. Reduced states of a pure state: Compute the reduced states ρA and ρB of the two-qubit
pure state ρAB = |ΨAB〉〈ΨAB| given by |ΨAB〉 = 1

3 |0, 0〉+
2
3 |0, 1〉+

2
3 |1, 0〉.

Hint: If this calculation seems too painful to carry out, see the next problem.

4. Schmidt decomposition: Let ρAB = |ΨAB〉〈ΨAB| be an arbitrary pure state. Fix bases
|a〉 and |b〉, write |ΨAB〉 =

∑
a,bMab|a, b〉, and define a corresponding operator M =∑

a,bMab|a〉〈b|.

(a) Verify that ρA =MM† and ρB =MTM.
(b) LetM =

∑
i si|ei〉〈fi| be a singular value decomposition. Show that |ΨAB〉 =

∑
i si|ei〉⊗

|fi〉 is a Schmidt decomposition.
(c) Explain how to find a Schmidt decomposition of the following two-qubit pure state:

|Ψ〉 =
√
2+ 1√
12

(
|00〉+ |11〉

)
+

√
2− 1√
12

(
|01〉+ |10〉

)
Note: The transpose and the complex conjugate are computed with respect to the fixed bases.

5. Partial trace trickery: Verify the following calculational rules for the partial trace:

(a) Let XA, YA ∈ L(HA) andMAB ∈ L(HA ⊗HB). Then,

TrB[(XA ⊗ IB)MAB(YA ⊗ IB)] = XA TrB[MAB]YA.

(b) Let NABC ∈ L(HA ⊗HB ⊗HC). Then,

TrAB[NABC] = TrA[TrB[NABC]] = TrB[TrA[NABC]].

What does this last rule look like if there is no C-system?
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6. Observables (for those of you who have taken a quantum mechanics course): In this
problem we discuss the relationship between ‘measurements’ as defined in the lecture and
‘observables’ as introduced in a first quantummechanics course. An observable on a quantum
system is by definition a Hermitian operator on the corresponding Hilbert spaceH.

(a) Let µ : Ω→ PSD(H) be a projective measurement with outcomes in the real numbers,
i.e., a finite subsetΩ ⊆ R. Show that the following operator is an observable:

O =
∑
ω∈Ω

ωµ(ω) (A.1)

In fact, this is always an eigendecomposition, but you need not prove this.
(b) Argue that, conversely, any observable can be written as in Eq. (A.1) for some suitable µ.
(c) Now suppose that the system is in state ρ and we perform the measurement µ. Show

that the expectation value of the measurement outcome is given by Tr[ρO].
For a pure state ρ = |ψ〉〈ψ|, this can also be written as 〈ψ|O|ψ〉. Do you recognize these
formulas from your quantum mechanics class?
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Quantum Information Theory, Spring 2020

Practice problem set #3

You do not have to hand in these exercises, they are for your practice only.

1. Positive semidefinite operators: For all Q ∈ PSD(H), show that:

(a) A†QA is positive semidefinite for all A ∈ L(H).
(b) If Q is invertible, its inverse Q−1 is again positive semidefinite.

A positive semidefinite operator that is invertible is often called positive definite.

2. Properties of the trace distance: Show that the trace distance T(ρ, σ) := 1
2‖ρ− σ‖1 satisfies

the following properties:

(a) Invariance: T(ρ, σ) = T(VρV†, VσV†) for all states ρ, σ and any isometry V .
(b) Monotonicity: T(ρA, σA) 6 T(ρAB, σAB) for all states ρAB, σAB.

The fidelity F(ρ, σ) := ‖√ρ
√
σ‖1 is likewise invariant under isometries (can you see why?).

However, its monotonicity goes the opposite way (see the homework). Why is this intuitive?

3. Quantum channels: Show that the following maps Φ are quantum channels by directly
verifying that they are trace-preserving and completely positive.

(a) Basis change: Φ[M] = UMU† for a unitary U.
(b) Add state: Φ[MA] =MA ⊗ σB for a state σB.
(c) Partial trace: Φ[MAB] = TrB[MAB].
(d) Classical channel: Φ[M] =

∑
x,y p(y|x) 〈x|M|x〉 |y〉〈y|, where p(y|x) is a conditional

probability distribution (i.e., p(y|x) is a probability distribution in y for each fixed x).

4. Composing channels: If ΦA→B, ΨB→C are quantum channels, then so is ΨB→C ◦ΦA→B.
If ΦA→B, ΞC→D are quantum channels, then so isΦA→B ⊗ ΞC→D.

5. Schmidt decomposition: Let ρA =
∑r
i=1 pi|ei〉〈ei| be an arbitrary eigendecomposition,

where p1, . . . , pr are the nonzero eigenvalues of ρA and the |ei〉 corresponding eigenvectors.
If some eigenvalue appears more than once then this decomposition is not unique.

(a) Show that, nevertheless, any purification |ΨAB〉 of ρA has a Schmidt decomposition of
the form |ΨAB〉 =

∑r
i=1 si|ei〉 ⊗ |fi〉, with the same |ei〉 as above.

Hint: Start with an arbitrary Schmidt decomposition and rewrite it in the desired form.
(b) Conclude that any two purifications |ΨAB〉 and |ΦAB〉 are related by a unitary UB – as

claimed in Lecture 2.

How about if we consider purifications on different Hilbert spaces?
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Quantum Information Theory, Spring 2020
Practice problem set #4

You do not have to hand in these exercises, they are for your practice only.

1. Functionals: Let λ : L(H)→ C be a linear function.

(a) Show that there exists a unique X ∈ L(H) such that λ[M] = Tr[X†M] for allM ∈ L(H).
(b) How about if λ[M] > 0 for allM > 0?

2. Depolarizing and dephasing channels: The completely depolarizing channel on L(H) is given
by

D[M] = Tr[M]
I

d
∀M ∈ L(H),

where d = dimH. For H = CΣ, the completely dephasing channel is defined by

∆[M] =
∑
x

〈x|M|x〉 |x〉〈x| ∀M ∈ L(H).

(a) Compute the Choi operator of either channel.
(b) What is the result of acting by either channel on half of a maximally entangled state?
(c) For qubits,H = C2, how does either channel act on Bloch vectors?

3. Kraus and Stinespring: Find Kraus and Stinespring representations for the following
quantum channels:

(a) Trace: Φ[M] = Tr[M]
(b) Add pure state: Φ[MA] =MA ⊗ |φ〉〈φ|B for a unit vector |φB〉 ∈ HB.
(c) Completely dephasing channel: ∆[M] =

∑
x〈x|M|x〉 |x〉〈x| (same as above).

4. Kraus and Stinespring: Given Kraus or Stinespring representations of two channelsΦA→B
and ΨB→C, explain how to obtain the same representation for ΨB→C ◦ΦA→B.

5. Stinespring with unitaries: Use the Stinespring representation to prove that any quantum
channel ΦA→B can be written in the following form:

ΦA→B[MA] = TrE
[
UAC→BE(MA ⊗ σC)U†AC→BE

]
∀MA,

where HC, HE are auxiliary Hilbert spaces, σC ∈ D(HE) is a pure state, and UAC→BE a
unitary.

6. Adjoint superoperator: Recall that the Hilbert-Schmidt inner product on L(H) is given
by 〈M,N〉HS = Tr[M†N]. This allows us to define the adjoint of a superoperator Φ ∈
L(L(HA),L(HB)). Explicitly, this is the superoperator Φ† ∈ L(L(HB),L(HA)) such that

〈MA, Φ
†[NB]〉HS = 〈Φ[MA], NB〉HS ∀MA, NB.

(a) Given a Kraus representation of Φ, explain how to find one for Φ†.
(b) Show that Φ is completely positive if and only ifΦ† is completely positive.
(c) Show that Φ is trace-preserving if and only if Φ† is unital (i.e.,Φ†[IB] = IA).
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Quantum Information Theory, Spring 2020

Practice problem set #5

You do not have to hand in these exercises, they are for your practice only.

1. Fidelity and trace distance: For any ρ, σ ∈ D(H), prove that T(ρ, σ) 6
√
1− F(ρ, σ)2. This

is one of the Fuchs-van de Graaf inequalities.
Hint: Use Uhlmann’s theorem and the monotonicity property of the trace distance.

2. Classical-quantum states: Let HX = CΣ. We say that a state ρXB is classical on subsystem X
or a classical-quantum state if it can be written in the form

ρXB =
∑
x∈Σ

p(x) |x〉〈x|⊗ ρB,x

for a probability distribution p on Σ and states ρB,x. By convention, we will always denote
subsystems by X, Y, . . . if we know them to be classical (and A, B, . . . otherwise).

(a) Discuss how this generalizes the notion of classical states.
(b) Show that ρXB is classical on subsystem X if and only if (∆X ⊗ IB)[ρXB] = ρXB, where

∆X[M] =
∑
x∈Σ|x〉〈x|M|x〉〈x| is the completely dephasing channel on the X-system.

(c) LetΦA→X be the channel corresponding to ameasurement µA, as on the previous home-
work. Show that, for any systemB andany stateρAB, the stateρXB = (ΦA→X ⊗ IB) [ρAB]
is a classical-quantum state and compute the probabilities p(x) and the states ρB,x.

3. How to compress it? Suppose you would like compress an IID source. In class we showed
how such a source can in principle be compressed by using typical sets. Discuss how this
can be applied in practice. What parameters have to be fixed? How do the encoder and
decoder work? What if you don’t know the distribution of symbols emitted by the source?
Is this a practicalway of compressing?

4. Lossy vs. lossless compression: In class, we mostly discussed lossy compression protocols
which compress any input sequence into a fixed number of bits but may fail with some
small probability. In practice, it is also interesting to consider lossless compression protocols
that use a variable number of bits (depending on the input sequence) and never fail.
Given an (n, R, δ)-code, which achieves lossy compression, can you construct a lossless
compression protocol with average rate ≈ R (for large n and small δ)?

5. Lexicographic order (for the bonus problem): The lexicographic order 6lex on {0, 1}n is
defined as follows: Given bitstrings xn and yn, we let xn 6lex y

n if either xn = yn or
xi < yi for the smallest i such that xi 6= yi. For example, 001 6lex 010. The lexicographic
order defines a total order on {0, 1}n, hence also on the bitstrings of length nwith k ones,
which we denote by B(n, k).

(a) Write down B(5, 2) in lexicographic order (smallest element first).
(b) How can you recursively compute them-th element of B(n, k)?
(c) How can you recursively compute the index of a given element in B(n, k)?

Hint: |B(n, k)| =
(
n
k

)
. Moreover,

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for all 1 6 k 6 n− 1.
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Quantum Information Theory, Spring 2020

Practice problem set #6

You do not have to hand in these exercises, they are for your practice only.

1. Trace distance of probability distributions: In today’s lecture, we defined the (normalized)
trace distance between p, q ∈ P(Σ) by T(p, q) := 1

2

∑
x∈Σ|p(x) − q(x)|. This quantity is also

known as the total variation distance between p and q.

(a) Show that T(p, q) = T(ρ, σ), where ρ =
∑
x p(x)|x〉〈x| and σ =

∑
x q(x)|x〉〈x|.

(b) Let X, Y be random variables with distributions p, q, respectively. Show that

T(p, q) = max
S⊆Σ

(
Pr(X ∈ S) − Pr(Y ∈ S)

)
.

Do you recognize this as the probability theory analog of a formula that you proved for
quantum states?

(c) Suppose X, Y are random variables as above and have a joint distribution. Use part (b)
to show that T(p, q) 6 Pr(X 6= Y). This beautiful inequality is known as the coupling
inequality.

2. Compression vs correlations: In today’s lecture we characterized (n, R, δ)-codes in terms
of how well they preserve correlations with an auxiliary random variable. Revisit the proof
sketch in light of the results from Problem 1 and make sure you understand each step.

3. On the definition of quantum codes: The definition of an (n, R, δ)-quantum code in the
lecture was perhaps surprising. Why did we not simply demand that F(D[E[ρ⊗n]], ρ⊗n) >
1− δ? Argue that such a definition would not correspond to a reliable compression protocol.
What is the probability theory analog of this condition?

4. Converse of Schumacher’s theorem: In this problem you can try to prove part 2 of
Schumacher’s Theorem 6.8 yourself. Fix ρ ∈ D(HA), δ ∈ (0, 1), and R < H(ρ).

(a) Show that there exists ε > 0 such that, for any orthogonal projection P of rank 6 2nR,

Tr[Pρ⊗n] 6 2−εn +
(
1− Tr[Πn,ερ⊗n]

)
.

(b) Show that, in any (n, R, δ)-code for ρ, the Kraus operators of D ◦ E have rank 6 2nR.
(c) Show that there exist (n, R, δ)-codes for ρ for at most finitely many values of n.

Hint: Use the formula for the channel fidelity from class and the Cauchy-Schwarz inequality for
operators.
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Quantum Information Theory, Spring 2020

Practice problem set #7

You do not have to hand in these exercises, they are for your practice only.

1. Mutual information upper bound: From class we know that I(A : B) 6 logdA + logdB,
where dA = dimHA and dB = dimHB. Give a simple proof of this fact.

2. Weak monotonicity: Use a purification to deduce the weak monotonicity inequality
H(AC) +H(BC) > H(A) +H(B) from the strong subadditivity inequality, and vice versa.

3. Strict concavity of the von Neumann entropy: In Homework Problem 6.4 you proved
that H(ρ) is a concave function of ρ ∈ D(H). Revisit your proof and show that it is strictly
concave using the equality condition for the subadditivity inequality from today’s lecture.

4. Equality condition for monotonicity: In Homework Problem 5.3, you proved that the
Shannon entropy satisfies the following monotonicity inequality: H(XY) > H(X) for any
probability distribution pXY . (Warning: This inequality is in general false for quantum states!)
Show that equality holds if and only if pXY(x, y) = pX(x)δf(x),y for a function f : ΣX → ΣY .
In terms of random variables, this means that Y = f(X), i.e., the second is a function of the first!

5. Binary entropy function: The Shannon entropy of a probability distribution with two
possible outcomes is given by the so-called binary entropy function:

h(p) := H({p, 1− p}) = p log 1
p
+ (1− p) log 1

1− p
,

(a) Sketch this function.
(b) Does there exists a constant L > 0 such that |h(p) − h(q)| 6 L|p− q| for all 0 6 p, q 6 1?

That is, is h Lipschitz continuous?
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Quantum Information Theory, Spring 2020

Practice problem set #8

You do not have to hand in these exercises, they are for your practice only.

1. Warmup:

(a) Show that, if ρ and σ are both pure states, D(ρ‖σ) ∈ {0,∞}.
(b) Find a state ρ and a channelΦ such that H(Φ[ρ]) < H(ρ).
(c) Compute the relative entropyD(ρ‖σ) for ρ = 1

2 |0〉〈0|+
1
2 |1〉〈1| and σ = 1

4 |+〉〈+|+ 34 |−〉〈−|.

2. Matrix logarithm: Recall that the logarithm of a positive definite operator with eigende-
composition Q =

∑
i λi|ei〉〈ei| is defined as log(Q) =

∑
i log(λi)|ei〉〈ei| (as always, our

logarithms are to base 2). Verify the following properties:

(a) log(cI) = log(c)I for every c > 0.
(b) log(Q⊗ R) = log(Q)⊗ IB + IA⊗ log(R) for all positive definiteQ ∈ L(HA), R ∈ L(HB).
(c) log(

∑
x∈Σ px|x〉〈x| ⊗ ρx) =

∑
x∈Σ log(px)|x〉〈x| ⊗ IB +

∑
x∈Σ|x〉〈x| ⊗ log(ρx) for every

ensemble {px, ρx}x∈Σ of positive definite operators ρx ∈ D(HB).

Warning: It is in general not true that log(QR) = log(Q) + log(R)!

3. From relative entropy to entropy and mutual information: Use Problem 2 to verify the
following claims from class:

(a) D(ρ‖ Id) = logd−H(ρ) for every ρ ∈ D(H), where d = dimH.
(b) D(ρAB‖ρA ⊗ ρB) = I(A : B)ρAB for every ρAB ∈ D(HA ⊗HB), where ρA = TrB[ρAB]

and ρB = TrA[ρAB]. You may assume that all three operators are positive definite.

4. Entropy and ensembles: In this problem, you will prove the upper bound on the Holevo
information that we discussed in class: For every ensemble {px, ρx},

χ({px, ρx}) 6 H(p) or, equivalently, H(
∑
x

pxρx) 6 H(p) +
∑
x

pxH(ρx).

Moreover, show that equality holds if and only if the ρx with px > 0 have pairwise
orthogonal image.
In terms of the cq-state corresponding to the ensemble, the above inequality can also be
written as H(XB) > H(B). This confirms our claim in Lecture 7. In Homework Problem 6.4
you showed that H(XB) > H(X), but since the situation is not symmetric (X is classical but
B is not) we now need a different argument.

(a) First prove these claims assuming that each ρx is a pure state, i.e., ρx = |ψx〉〈ψx|.
Hint: Consider the pure state |Φ〉 =

∑
x

√
px|x〉 ⊗ |ψx〉 and compare the entropy of the first

system before and after measuring in the standard basis.
(b) Now prove the claims for general ρx.

Hint: Apply part (a) to a suitable ensemble obtained from the eigendecompositions of the ρx.
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Quantum Information Theory, Spring 2020

Practice problem set #9

You do not have to hand in these exercises, they are for your practice only.

1. Warmup:

(a) Show that every classical state ρXY is separable.
(b) Let |ψAB〉 be a pure state. Show that the following are equivalent: (i) |ψAB〉 is

separable, (ii) its Schmidt rank is one, (iii) its entanglement entropy is zero. Recall from
Lemma 2.12 that the Schmidt rank is the number of non-zero coefficients in the Schmidt
decomposition.

(c) In the lecture we defined separable operators to be those that can be written as∑
i

PA,i ⊗QB,i

where PA,i andQB,i are positive semidefinite. Show that the restriction of this definition
to density matrices coincides with the definition of separable states from the lecture.
Show that restricting this further to pure states also coincides with the definition from
the lecture.

(d) Recall that the four Bell states are defined by

|Φzx〉 = (ZzXx ⊗ I)|Φ+〉

where z, x ∈ {0, 1} and |Φ+〉 is the canonical two-qubit maximally entangled state. Verify
that

|Φ00〉 = 1√
2
(|00〉+ |11〉), |Φ01〉 = 1√

2
(|01〉+ |10〉),

|Φ10〉 = 1√
2
(|00〉− |11〉), |Φ11〉 = 1√

2
(|01〉− |10〉).

Verify also that
|Φzx〉 = (I⊗ XxZz)|Φ+〉.

2. Maximally entangled state tricks: Let HA = HB = CΣ and

|Φ+
AB〉 =

1√
|Σ|

∑
x∈Σ

|x〉 ⊗ |x〉.

a maximally entangled state.

(a) Show that, for anyM ∈ L(HA),

(M⊗ I)|Φ+〉 = (I⊗MT)|Φ+〉.

(b) Show that forM,N ∈ L(HB)

Tr(M†N) = |Σ|〈Φ+|M⊗N|Φ+〉.
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3. Two-qubit pure states (product vs entangled): Let

|ψ〉 =


ψ00
ψ01
ψ10
ψ11

 ∈ C4.
be an arbitrary pure state on two qubits. Define

∆(|ψ〉) = ψ00ψ11 −ψ01ψ10.

The goal of this exercise is to show that ∆(|ψ〉) = 0 if and only if |ψ〉 is a product state.

(a) Assume that |ψ〉 is a product state, i.e., |ψ〉 = |α〉 ⊗ |β〉, for some single-qubit states

|α〉 =
(
α0
α1

)
, |β〉 =

(
β0
β1

)
.

Show that in such case ∆(|ψ〉) = 0.
(b) Conversely, let |ψ〉 be an arbitrary two-qubit state and assume that ∆(|ψ〉) = 0. Find two

single-qubit states |α〉 and |β〉 such that |ψ〉 = |α〉 ⊗ |β〉.

The quantity ∆(|ψ〉) can not only be used to determine if a pure two-qubit state is entangled
or not but is also a meaningful measure of the amount of entanglement.

4. Pauli matrices and the swap: Let Σ = {0, 1} and HA = HB = CΣ. The two-qubit swap
operationW ∈ L(HA ⊗HB) is defined on the computational basis states as follows:

W|a, b〉 = |b, a〉,

for all a, b ∈ {0, 1}. Recall that the four Pauli matrices are

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

(a) Verify that

W =
1

2
(I⊗ I+ X⊗ X+ Y ⊗ Y + Z⊗ Z).

(b) Verify that

W =
1

2

∑
z,x∈{0,1}

ZzXx ⊗ XxZz.
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Quantum Information Theory, Spring 2020

Practice problem set #10

You do not have to hand in these exercises, they are for your practice only.

1. Vectorization:

(a) LetHA = CΣ,HB = CΓ , andM = |b〉〈a| ∈ L(HA,HB), for somea ∈ Σ andb ∈ Γ . Recall
from Definition 10.2 that the vectorization ofM is given by |MAB〉 = |a, b〉 ∈ HA ⊗HB.
Prove the vectorization identity

(A⊗ B)|M〉 = |BMAT〉

when A = |c〉〈a| and B = |d〉〈b|, for some standard basis states |c〉 and |d〉.
(b) Argue why this implies the same identity for arbitraryA ∈ L(HA,HC), B ∈ L(HB,HD),

M ∈ L(HA,HB).

2. Separable maps:

(a) Let Ξ ∈ CP(HA ⊗HB,HC ⊗HD). Show that Ξ ∈ SepCP(HA,HC : HB,HD) if and
only if there exist Ax ∈ L(HA,HC) and Bx ∈ L(HB,HD) such that

Ξ(X) =
∑
x∈Σ

(Ax ⊗ Bx)X(Ax ⊗ Bx)†,

for all X ∈ L(HA ⊗HB).
(b) Let Ξ1 ∈ SepCP(HA,HC : HB,HD) and Ξ2 ∈ SepCP(HC,HE : HD,HF). Show that

their composition is also separable:

Ξ2 ◦ Ξ1 ∈ SepCP(HA,HE : HB,HF).

3. Examples of separable maps: Show that the following maps jointly implemented by Alice
and Bob are separable:

(a) Alice and Bob share a random variable distributed according to p ∈ P(Σ× Γ), where Σ
labels Alice’s register and Γ labels Bob’s register. Moreover, Alice has a quantum register
A and Bob has a quantum register B. They both observe their halves of the random
variable. If Alice’s value is x ∈ Σ, she applies a channelΦx on her register A. Similarly,
if Bob’s value is y ∈ Γ , he applies a channel Ψy on his register B.

(b) Alice has a registerA that shemeasures in the standard basis. She sends themeasurement
outcome x ∈ Σ to Bob who applies a channel Ψx on his register B.

(c) Any LOCC channel.

4. Instruments: Recall from Definition 10.7 that an instrument is a collection {Φω : ω ∈
Ω} ⊂ CP(HA,HB) such that

∑
ω∈ΩΦω ∈ C(HA,HB). When applied to a state ρ ∈

D(HA), it produces outcome ω ∈ Ω with probability Tr[Φω[ρ]] and changes ρ to ρω =
Φω[ρ]/Tr[Φω[ρ]]. Show that any instrument can be implemented by a quantum channel,
followed by an orthonormal measurement.
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Quantum Information Theory, Spring 2020

Practice problem set #11

You do not have to hand in these exercises, they are for your practice only.

1. Majorization examples:

(a) Let p = (0.1, 0.7, 0.2) and q = (0.3, 0.2, 0.5). Determine whether p ≺ q or q ≺ p.
(b) Find a sequence of Robin Hood transfers that converts one distribution into the other.
(c) Express this sequence as a single stochastic matrix and verify that this matrix is in fact

doubly stochastic.
(d) Express this matrix as a convex combination of permutations.
(e) Find a pair of probability distributions p and q such that neither p ≺ q nor q ≺ p.

2. Alternative definitions of majorization: Let u = (u1, . . . , un) be a vector and let r denote
reverse sorting and s denote sorting:

r1(u) > r2(u) > · · · > rn(u),
s1(u) 6 s2(u) 6 · · · 6 sn(u),

such that {ri(u) : i = 1, . . . , n} = {si(u) : i = 1, . . . , n} = {ui : i = 1, . . . , n} as multisets.
Let u and v be two probability distributions over Σ = {1, . . . , n}, i.e., ui > 0, vi > 0, and∑n
i=1 ui =

∑n
i=1 vi = 1. Show that the following ways of expressing v ≺ u are equivalent:

(a)
∑m
i=1 ri(v) 6

∑m
i=1 ri(u), for allm ∈ {1, . . . , n− 1}.

(b)
∑m
i=1 si(v) >

∑m
i=1 si(u), for allm ∈ {1, . . . , n− 1}.

(c) ∀t ∈ R :
∑n
i=1max(vi − t, 0) 6

∑n
i=1max(ui − t, 0).

3. Vectorization and partial trace:

(a) Show that, for all L, R ∈ L(HA,HB),

TrA
[
|L〉〈R|

]
= LR†.

(b) Let Ξ ∈ SepC(A : B) be given by

Ξ(M) =
∑
a∈Σ

(Aa ⊗ Ba)M(Aa ⊗ Ba)†,

for allM ∈ L(HA ⊗HB). Show that, for all X ∈ L(HA,HB),

TrA
[
Ξ
(
|X〉〈X|

)]
=
∑
a∈Σ

BaXA
T
aĀaX

†B†a.
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Quantum Information Theory, Spring 2020

Practice problem set #12

You do not have to hand in these exercises, they are for your practice only.

1. Maximally entangled states: A pure state |ΨAB〉 ∈ HA ⊗HB is maximally entangled if

TrB
[
|Ψ〉〈Ψ|

]
=

IA
dim(HA)

and TrA
[
|Ψ〉〈Ψ|

]
=

IB
dim(HB)

.

(a) Show that it must be the case that dim(HA) = dim(HB).
(b) Let |ΨAB〉, |Ψ ′AB〉 ∈ HA ⊗HB be two maximally entangled states. Show that there exist

local unitaries UA ∈ U(HA) and VB ∈ U(HB) such that (UA ⊗ VB)|ΨAB〉 = |Ψ ′AB〉.
(c) Let |ΨAB〉 ∈ HA ⊗HB and |ΦA ′B ′〉 ∈ HA ′ ⊗HB ′ be maximally entangled. Show that

|ΨAB〉 ⊗ |ΦA ′B ′〉 is also maximally entangled with respect to the partition HA ⊗HA ′ :
HB ⊗HB ′ .

(d) Let |ΨAB〉 ∈ HA ⊗HB be a maximally entangled state with dim(HA) = dim(HB) = d,
and let

|Φ+
AB〉 =

|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B√
2

be the canonical two-qubit maximally entangled state. Show that an exact copy of |ΨAB〉
can be obtained by LOCC from |Φ+

AB〉
⊗n, for some large enough n. What is the smallest

value of n for which this holds?

2. Fidelity and composition of channels: Let τ1 ∈ D(H), σ ∈ D(K), τ2 ∈ D(L) be quantum
states and let Φ ∈ C(H,K) and Ψ ∈ C(K,L) be quantum channels. Assuming that

F
(
Φ(τ1), σ

)
> 1− ε, F

(
Ψ(σ), τ2

)
> 1− ε, (A.2)

for some ε > 0, show that
F
(
(Ψ ◦Φ)(τ1), τ2

)
> 1− 4ε, (A.3)

where Ψ ◦Φ denotes the composition of the two channels.
Hint: Recall from Homework Problem 4.1 that fidelity is monotonic under any quantum channel.
Moreover, you will show in Homework Problem 12.1 that F(ρ1, σ)2 + F(ρ2, σ)2 6 1+ F(ρ1, ρ2),
for any states ρ1, ρ2, σ ∈ D(H).

3. From any state to any other: Let ρ ∈ D(HA ⊗HB) and σ ∈ D(HA ′ ⊗HB ′) be two arbitrary
pure states. How many copies of the state σ can be distilled per copy of ρ by LOCC?
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Quantum Information Theory, Spring 2020

Practice problem set #13

You do not have to hand in these exercises, they are for your practice only.

1. Symmetric subspace:

(a) Write out Π2 and Π3.
(b) In class we wrote down a basis for Sym2(C2). Write down bases of Sym2(Cd)

and Sym3(C2).
(c) Verify that RπRτ = Rπτ and R†π = Rπ−1 , for all π, τ ∈ Sn.
(d) Verify thatΠn = 1

n!
∑
π∈Sn Rπ is the orthogonal projection onto the symmetric subspace.

2. Integral formula: In this exercise you can prove the integral formula:

Πn =

(
n+ d− 1

n

) ∫
|ψ〉⊗n〈ψ|⊗ndψ =: Π̃n

(a) Show that Π̃n = ΠnΠ̃n.
(b) Recall the following important fact from Lemma 13.10: If A ∈ L(H⊗n) is an operator such

that [A,U⊗n] = 0 for all unitaries U ∈ U(H), then A is a linear combination of permutation
operators Rπ, π ∈ Sn. Use this fact to show that Π̃n =

∑
π cπRπ for suitable cπ ∈ C.

(c) Use parts (a) and (b) to prove the integral formula. That is, show that Π̃n = Πn.

3. Haar measure: There is a unique probability measure dU on the unitary operators U(H)
that is invariant under U 7→ VUW for every pair of unitaries V,W. It is called the Haar
measure. Its defining property can be stated as follows: For every continuous function f on
U(H) and for all unitaries V,W ∈ U(H), it holds that

∫
f(U)dU =

∫
f(VUW)dU. Now let

A ∈ L(H).

(a) Argue that
∫
UAU†dU commutes with all unitaries.

(b) Deduce that
∫
UAU†dU =

Tr[A]
d I, where d = dimH.

4. � De Finetti theorem and quantum physics (optional): Given a Hermitian operator h
on Cd ⊗ Cd, consider the operator H = 1

n−1

∑
i 6=j hi,j on (Cd)⊗n, where hi,j acts by h on

subsystems i and j and by the identity on the remaining subsystems (e.g., h1,2 = h⊗I⊗(n−2)).

(a) Show that E0n 6 1
n〈ψ

⊗n|H|ψ⊗n〉 = 〈ψ⊗2|h|ψ⊗2〉 for every pure state ψ on Cd.

Let E0 denote the smallest eigenvalue of H and |E0〉 a corresponding eigenvector. If the
eigenspace is one-dimensional and n > d then |E0〉 ∈ Symn(Cd) (you do not need to show
this).

(b) Use the de Finetti theorem to show that E0n ≈ min‖ψ‖=1〈ψ⊗2|h|ψ⊗2〉 for large n.

Interpretation: The Hamiltonian H describes a mean-field system. Your result shows that in the
thermodynamic limit the ground state energy density can be computed using states of form ψ⊗n.
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Homework Problems
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Quantum Information Theory, Spring 2020

Homework problem set #1 due February 10, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Trace distance between pure states: Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be two pure
states on an arbitrary Hilbert spaceH. Show that

1

2
‖ρ− σ‖1 =

√
1− |〈ψ|φ〉|2.

Here, ‖·‖1 denotes the trace norm, which for a Hermitian operator Awith eigenvalues (ai) is
defined by ‖A‖1 :=

∑
i |ai|.

Hint: Argue that the eigenvalues of ρ− σ are of the form (λ,−λ, 0, . . . , 0) for some λ ∈ R. Compute
‖ρ− σ‖1 and Tr[(ρ− σ)2] in terms of λ. Can you relate the latter to |〈ψ|φ〉|2?

2. (4 points) Uncertainty relation: Given a measurement µ : {0, 1} → PSD(H) with two out-
comes and a state ρ ∈ D(H), define the bias by

β(ρ) =
∣∣Tr[µ(0)ρ] − Tr[µ(1)ρ]

∣∣.
(a) Show that β ∈ [0, 1], that β = 1 iff the measurement outcome is certain, and that β = 0

iff both outcomes are equally likely (for the given measurement and state).

In class, we discussed how to measure a qubit in the standard basis |0〉,|1〉 and in the
Hadamard basis |+〉, |−〉. Let βStd and βHad denote the bias for these two measurements.

(b) Compute βStd(ρ) and βHad(ρ) in terms of the Bloch vector of the qubit state ρ.
(c) Show that β2Std(ρ) + β

2
Had(ρ) 6 1. Why is this called an uncertainty relation?

3. (4 bonus points)P Practice: In the exercise class, you discussed how to estimate an unknown
qubit state ρ by performing the following measurement on many copies of ρ:

µ : {x, y, z}× {0, 1}→ PSD(C2), µ(a, b) =
I+ (−1)bσa

6
,

where σx = X, σy = Y, and σz = Z are the Pauli matrices.
The file 01-outcomes.txt on the course homepage contains N = 100 000 measurement
outcomes produced in this way (one per row). Give an estimate for the unknown state ρ.

157



158



Quantum Information Theory, Spring 2020
Homework problem set #2 due February 17, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points)Nayak’s bound: Alicewants to communicatem bits to Bob by sendingnqubits. She
chooses one state ρ(x) ∈ D(H), whereH = (C2)⊗n, for each possible message x ∈ {0, 1}m

that she may want to send. Bob uses a measurement µ : {0, 1}m → PSD(H) to decode the
message.

(a) Write down a formula for the probability that Bob successfully decodes Alice’s message,
assuming the latter is drawn from a known probability distribution p(x) on {0, 1}m.

(b) Show that if the message is drawn uniformly at random, then the probability that Bob
successfully decodes the bitstring is at most 2n−m.

2. (4 points) Trace distance and Helstrom’s theorem: The (normalized) trace distance between
two quantum states ρ, σ on a Hilbert space H is defined as

T(ρ, σ) :=
1

2
‖ρ− σ‖1,

in terms of the trace norm ‖·‖1, which you know from the lecture and the previous homework.

(a) Show that T(ρ, σ) ∈ [0, 1].
(b) Show that T(ρ, σ) = max06Q6I Tr[Q(ρ − σ)], and that the maximum can be achieved

by a projection Q. Hint: Consider the spectral decomposition of ρ− σ.

Now suppose we want to distinguish ρ and σ by a measurement µ : {0, 1}→ PSD(H). By
convention, outcome ‘0’ corresponds to state ρ, while outcome ‘1’ corresponds to state σ.
Assuming both states occur with 50% probability, the probability of success using µ is given
by

psuccess =
1

2
Tr[ρµ(0)] + 1

2
Tr[σµ(1)].

(c) Use (b) to prove Helstrom’s theorem, which states that the maximal probability of success
(over all possible measurements) is 12 + 1

2T(ρ, σ) and can be achieved by a projective
measurement.

3. (4 points) Extensions of pure states: LetHA, HB, and HC be arbitrary Hilbert spaces.

(a) LetMA ∈ L(HA) andNBC ∈ L(HB ⊗HC). Then, TrC[MA ⊗NBC] =MA ⊗ TrC[NBC].
(b) Let ρAB ∈ D(HA ⊗HB) such that ρA is pure. Then, ρAB = ρA ⊗ ρB.

Hint: In class we proved this when ρAB is pure. Use a purification to reduce to this case.
(c) Let ρABC ∈ D(HA ⊗ HB ⊗ HC) such that ρAB is pure. Then, ρAC = ρA ⊗ ρC and

ρBC = ρB ⊗ ρC.
(d) Let ρABC ∈ D(HA ⊗ HB ⊗ HC) such that ρAB and ρAC are pure. Then, ρABC =

ρA ⊗ ρB ⊗ ρC.

Notation: Just like in class, if ρAB is a state then we write ρA and ρB for its reduced states obtained
by taking suitable partial traces (likewise for ρABC and its reduced states).
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Quantum Information Theory, Spring 2020

Homework problem set #3 due February 24, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (3 points) Pretty good measurement: Let ρ1, . . . , ρn be a collection of quantum states on
some Hilbert spaceH with the property that I ∈ span {ρ1, . . . , ρn}.

(a) Show that Q :=
∑n
i=1 ρi is positive semidefinite and invertible. Hint: For the latter,

assumeQ has an eigenvector |ψ〉 with eigenvalue 0. Use the span property to get a contradiction.
(b) Define µ : {1, . . . , n}→ L(H) by µ(i) = Q−1/2ρiQ

−1/2. Show that µ is a measurement.

2. (3 points) Properties of the fidelity: Use Uhlmann’s theorem to prove the following
properties of the fidelity. As always,HA and HB denote arbitrary Hilbert spaces.

(a) Monotonicity: F(ρAB, σAB) 6 F(ρA, σA) for any two states ρAB, σAB ∈ D(HA ⊗HB).
(b) Joint concavity:

∑n
i=1 piF(ρi, σi) 6 F(

∑n
i=1 piρi,

∑n
i=1 piσi), where (pi)ni=1 is an arbi-

trary probability distribution and ρ1, . . . , ρn and σ1, . . . , σn are states in D(HA).

Hint: For both (a) and (b), try to find suitable purifications.

3. (3 points) Quantum channels: Show that the following mapsΦ are quantum channels by
verifying that they are completely positive and trace-preserving:

(a) Mixture of unitaries: Φ[M] =
∑n
i=1 piUiMU

†
i , where (pi)ni=1 is an arbitrary probability

distribution and U1, . . . , Un arbitrary unitaries.
(b) State replacement: Φ[M] = Tr[M]σ, where σ is an arbitrary state.
(c) Measure and prepare: Φ[M] =

∑
x∈Σ〈x|M|x〉σx, where |x〉 denotes the standard basis of

CΣ and σx is an arbitrary state for each x ∈ Σ.

4. (3 points)No cloning: In this problem, you will show that it is not possible to perfectly clone
an unknown state – even if we restrict to classical or to pure states. LetH = C2 be a qubit.
We say that a channelΦ ∈ C(H,H ⊗H) clones a state ρ ∈ D(C2) ifΦ[ρ] = ρ⊗ ρ.

(a) Show that there exists no channel that clones all classical states ρ.
(b) Show that there exists no channel that clones all pure states ρ.
(c) Which states are both pure and classical? Find a channel Φ that clones all of them.

Hint: For (a) and (b), use that channels are linear to arrive at a contradiction.

5. (2 bonus points) P Practice: Here you can verify that the measurement from Problem 1
is ‘pretty good’ at distinguishing the states ρ = |0〉〈0| and σ(t) = (1 − t)|0〉〈0| + t|1〉〈1|.
Assuming both states are equally likely, plot the following two quantities as functions of
t ∈ (0, 1]:

(a) The optimal probability of distinguishing ρ and σ(t). Hint: Helstrom’s theorem.
(b) The probability of distinguishing ρ and σ(t) by using the measurement from Problem 1.
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Quantum Information Theory, Spring 2020

Homework problem set #4 due March 2, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (2 points)Monotonicity of distancemeasures: Use the Stinespring representation to deduce
the following monotonicity properties. For all states ρA, σA and channels ΦA→B,

T(ΦA→B[ρA], ΦA→B[σA]) 6 T(ρA, σA) and F(ΦA→B[ρA], ΦA→B[σA]) > F(ρA, σA).

2. (3 points)Depolarizing channel: Consider the following trace-preserving superoperator on
L(H), where dimH = d and λ ∈ R is a parameter:

Dλ[M] = λM+ (1− λ)Tr[M]
I

d

(a) Compute the Choi operator of Dλ for any value of λ.
(b) For which values of λ is Dλ a quantum channel?

3. (5 points) Kraus and Stinespring: Find Kraus and Stinespring representations for the
following quantum channels:

(a) Partial trace: Φ[MAE] = TrE[MAE]
(b) Add state: Φ[MA] =MA ⊗ σB for a state σB.
(c) Measure and prepare: Φ[M] =

∑
x∈Σ〈x|MA|x〉σB,x, where |x〉 denotes the standard basis

ofHA = CΣ and σB,x is an arbitrary state for each x ∈ Σ.

4. (2 points) Quantum to classical channels: LetHA be an arbitrary Hilbert space andHX =
CΩ. Assume that ΦA→X is a quantum channel such that ΦA→X[ρA] is classical for every
state ρA. Show that there exists a measurement µA : Ω→ PSD(HA) such that

ΦA→X[ρA] =
∑
x∈Ω

Tr
[
µA(x)ρA

]
|x〉〈x| ∀ρA.

Hint: Use Practice Problem 4.1.
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Quantum Information Theory, Spring 2020

Homework problem set #5 due March 9, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (2 points) Fidelity between classical-quantum states: Show that the fidelity between two
classical-quantum states ρXB =

∑
x∈Σ p(x) |x〉〈x|⊗ ρB,x and σXB =

∑
x∈Σ q(x) |x〉〈x|⊗σB,x

is

F(ρXB, σXB) =
∑
x∈Σ

√
p(x)q(x) F(ρB,x, σB,x).

2. (3 points) Gentle measurement lemma: This useful technical result states that if ρ ∈ D(H)
is a state and 0 6 Q 6 I an operator such that Tr[Qρ] > 1− ε, then the following inequalities
hold:

F
(
ρ,

√
Qρ
√
Q

Tr[Qρ]

)
>
√
1− ε and T

(
ρ,

√
Qρ
√
Q

Tr[Qρ]

)
6
√
ε (B.1)

(a) Prove that Tr
√√

ρ
√
Qρ
√
Q
√
ρ = Tr[

√
Qρ] and

√
Q > Q.

Hint: The square root
√
A of a PSD operator A is the unique PSD operator that squares to A.

(b) Prove the first inequality in Eq. (B.1) using part (a), and deduce the second inequality
from the first by using a result from the practice problems.

3. (4 points) Properties of the Shannon entropy: Given a joint distribution, we write H(XY)
for its Shannon entropy and H(X), H(Y) for the entropies of its marginal distributions.

(a) Monotonicity: Show that H(XY) > H(Y).
(b) Subadditivity: Show that H(X) +H(Y) > H(XY).
(c) Can you interpret the two inequalities in the context of compression?

Hint: For both (a) and (b), write the left-hand side minus the right-hand side of the inequality as a
single expectation value. For (b), use Jensen’s inequality.

4. (3 points)Optimality of the Shannon entropy: In this problem, you will prove the converse
part of Shannon’s source coding theorem which states that it is impossible to compress at
rates below the entropy of the source. Given a probability distribution p on a finite set Σ,
recall that an (n, R, δ)-code consists of functions E : Σn → {0, 1}bnRc and D : {0, 1}bnRc → Σn

such that
∑
xn∈Σn:D(E(xn))=xn p(x1) · · ·p(xn) > 1− δ. Show that:

(a) For any (n, R, δ)-code, there are at most 2nR many strings xn such that D(E(xn)) = xn.
(b) For fixed δ ∈ (0, 1) and R < H(p), (n, R, δ)-codes can only exist for finitely many n.

Hint: Distinguish between typical and atypical sequences.

5. (2 bonus points)P Practice: A binary image of size r× s can be represented by a bitstring of
length rs, where we list the pixel values (0=black pixel, 1=white pixel) row by row, starting
with the top row. We can thus compress the image in the following lossless fashion: First,
compute thenumberkof ones in thebitstring. Next, compute the indexm ∈ {0, 1, . . . ,

(
rs
k

)
−1}
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of the bitstring in the lexicographically sorted list of all bitstrings of length rs that contain
k ones. The quadruple (r, s, k,m) defines the compression of the image.
For example, the 2× 3-image corresponds to the bitstring 000100. There are six strings
with k = 1 ones. In lexicographic order: 000001, 000010, 000100, 001000, 010000, and
100000. The index of our bitstring in this list is m = 2. Thus, we would compress this
picture by (2, 3, 1, 2).

(a) What is the bitstring corresponding to the following image? What is its compression?

(b) Can you decompress the image given by (r, s, k,m) = (7, 8, 8, 243185306)?
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Quantum Information Theory, Spring 2020

Homework problem set #6 due March 16, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (3 points) Compression and correlations: Let ρ =
∑
x∈Σ p(x)ρx, where p ∈ P(Σ) is a

probability distribution and ρx a state for each x ∈ Σ. In class, we showed that if E and D

are channels such that F(D ◦ E, ρ⊗n) > 1− δ then∑
xn

p(x1) · · ·p(xn) F
(
D
[
E[ρx1 ⊗ · · · ⊗ ρxn ]

]
, ρx1 ⊗ · · · ⊗ ρxn

)
> 1− δ.

Show that the converse is not necessarily true.
Hint: There are even counterexamples for n = 1 and δ = 0. Consider measure-and-prepare channels.

2. (2 points) Non-monotonicity of the von Neumann entropy: Given a quantum state ρAB,
we write H(AB) for its entropy and H(A), H(B) for the entropies of its reduced states.

(a) Find a state ρAB such that H(AB) > H(B).
(b) Find a state ρAB such that H(AB) < H(B).

Thus, the von Neumann entropy does not satisfy the same monotonicity as the Shannon
entropy.

3. (3 points) Subadditivity of the von Neumann entropy: Use Schumacher’s theorem to show
that, for all states ρAB,

H(A) +H(B) > H(AB),

where we use the same notation as in the previous problem. Thus, subadditivity still holds.
Hint: You may use the following ‘triangle inequality’ for the fidelity (without proof): For any three
states α,β, γ ∈ D(H), if F(α,β) > 1− δ and F(β, γ) > 1− δ then F(α, γ) > 1− 4δ.

4. (4 points)Classical-quantumstates and concavity: Given a probability distributionp ∈ P(Σ)
and states ρx ∈ D(H) for x ∈ Σ, we can consider the cq state ρXB =

∑
x∈Σ p(x) |x〉〈x|⊗ ρx

in D(HX ⊗HB), whereHX = CΣ andHB = H.

(a) Show that H(XB) = H(p) +
∑
x∈Σ p(x)H(ρx).

(b) Conclude that H(XB) > H(X). When does equality hold?
(c) Show that the von Neumann entropy is a concave function on D(H).

Hint: Evaluate the subadditivity inequality from Problem 3 for a classical-quantum state.
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Quantum Information Theory, Spring 2020

Homework problem set #7 due March 23, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (2 points) Quantum mutual information: From class, we know that I(A : B) 6 2 logd for
every state ρAB ∈ D(HA ⊗HB) with HA = HB = Cd. Show that I(A : B) = 2 logd if and
only if ρAB is a pure state with ρA = ρB = I/d (such states are called maximally entangled).
Write down the Schmidt decomposition of a general state of this form.
Hint: In the exercise class you gave simple proof of the above inequality.

2. (2 points)Classical mutual information: From class, we know that I(X : Y) 6 logd for every
distribution pXY ∈ P(ΣX × ΣY) with |ΣX| = |ΣY | = d. Show that I(X : Y) = logd if and only
if pXY(x, y) = 1

dδf(x),y for a bĳection f : ΣX → ΣY (such pXY are called maximally correlated).
Hint: In the exercise class you characterized the probability distributions with H(XY) = H(X).

3. (8 points) Entropic uncertainty relation: Here you can prove another uncertainty relation.
Let ρ ∈ D(C2) and denote by pStd and pHad the probability distributions of outcomes when
measuring ρ in the standard basis and Hadamard basis, respectively. You will show:

H(pStd) +H(pHad) > H(ρ) + 1 (B.2)

(a) Why is it appropriate to call (B.2) an uncertainty relation?
(b) Find a state ρ for which the uncertainty relation is saturated (i.e., an equality).

To start, recall the Pauli matrices X =
(
0 1
1 0

)
and Z =

(
1 0
0 −1

)
.

(c) Verify that 12(ρ+ ZρZ) =
(
〈0|ρ|0〉 0
0 〈1|ρ|1〉

)
and deduce that H(pStd) = H(12(ρ+ ZρZ)).

(d) Show that, similarly, H(pHad) = H(
1
2(ρ+ XρX)). Hint: |±〉 is the eigenbasis of X.

Now consider the following three-qubit state,

ωABC =
1

4

1∑
a=0

1∑
b=0

|a〉〈a|⊗ |b〉〈b|⊗ XaZbρZbXa,

where we denote X0 = I, X1 = X, Z0 = I, Z1 = Z. Note that subsystems A & B are classical.

(e) Show thatH(ABC) = 2+H(ρ). Use parts (c) and (d) to verify thatH(AC) = 1+H(pStd),
H(BC) = 1+H(pHad), and H(C) = 1 in stateωABC.

Hint: Use the formula for the entropy of classical-quantum states that you proved last week.
(f) Use part (e) and the strong subadditivity inequality to deduce (B.2).
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4. (2 bonus points) P Practice: In this problem, you can explore the properties of typical
subspaces. Consider the qubit state ρ = 1

2 |0〉〈0|+
1
2 |+〉〈+|, where |+〉 = 1√

2
(|0〉+ |1〉).

(a) Compute the largest eigenvalue λ as well as the von Neumann entropy H(ρ) of ρ.
(b) Plot the following functions of k ∈ {0, 1, . . . , n} for n = 100 as well as for n = 1000:

d(k) =

(
n

k

)
, r(k) =

1

n
log
(
n

k

)
, q(k) =

(
n

k

)
λk(1− λ)n−k

(c) Plot the following functions of n ∈ {1, . . . , 1000} for ε = 0.1 as well as for ε = 0.01:

r(n) =
1

n
log dimSn,ε, p(n) = Tr[Πn,ερ⊗n],

where Πn,ε denotes the orthogonal projection onto the typical subspace Sn,ε of ρ.
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Quantum Information Theory, Spring 2020

Homework problem set #8 due March 30, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Measurements and trace distance: In this problem, you will revisit how to
distinguish quantum states by using measurements. Given states ρ, σ ∈ D(H) and a
measurement µ : Ω → PSD(H), let p, q ∈ P(Ω) denote the corresponding probability
distributions of measurement outcomes.

(a) Prove that T(p, q) 6 T(ρ, σ).
(b) Show that, for any ρ and σ, there exists a measurement µ such that equality holds.

Hint: Recall Helstrom’s theorem. You can chooseΩ.

2. (4 points) Holevo χ-quantity: Alice wants to communicate a classical message to Bob by
sending a quantum state. She chooses one state ρx ∈ D(H) for each possible message x ∈ Σ
that she may want to send, and Bob chooses a measurement µ : Σ→ PSD(H) that he uses to
decode.

(a) Write down a formula for the probability that Bob successfully decodes the message if
the message is drawn according to an arbitrary probability distribution p ∈ P(Σ).

In class, we used the Holevo bound to prove that if this probability is 100% then, necessarily,
the Holevo χ-quantity of the ensemble {px, ρx}must be equal to H(p).

(b) Show that this condition is also sufficient: If χ({px, ρx}) = H(p) then there exists a
measurement µ such that Bob decodes the message with 100% probability of success.

Hint: In Practice Problem 8.4 you discussed when an ensemble satisfies χ({px, ρx}) = H(p).

3. (4 points) Applications of monotonicity: Prove the following two inequalities by using the
monotonicity of the quantum relative entropy:

(a) Entropy increase: H(Φ[ρ]) > H(ρ) for every ρ ∈ D(H) and unital channel Φ ∈ C(H,H ′).
Recall that a channel is unital if Φ[IH] = IH ′ .

(b) Joint convexity of relative entropy: D(
∑
x∈Σ pxρx‖

∑
x∈Σ pxσx) 6

∑
x∈Σ pxD(ρx‖σx),

where (px)x∈Σ is an arbitrary finite probability distribution and (ρx)x∈Σ, (σx)x∈Σ
families of states in D(H). You may assume that the operators ρx and σx are positive
definite.

Hint: In the exercise class, we computed the logarithm of a cq-state.
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Quantum Information Theory, Spring 2020

Homework problem set #9 due April 6, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Teleportation and entanglement swapping:

(a) Let |ψ〉 ∈ C2 be an arbitrary pure single-qubit state. Verify the teleportation identity

|ψ〉 ⊗ |Φ00〉 = 1

2

∑
z,x∈{0,1}

|Φzx〉 ⊗ XxZz|ψ〉,

where |Φzx〉 are the four Bell states and X and Z are the Pauli matrices.
Hint: Some identities from the exercise class might be handy.

(b) Consider the following generalization of the teleportation identity involving three
friends Alice, Bob and Charlie who share four qubits: Alice has two qubits in systems A
and A ′, Bob has a qubit in system B, while Charlie has a qubit in system C. Their joint
state is

|Ψ〉CA ⊗ |Φ00〉A ′B

where |Ψ〉CA ∈ C4 is an arbitrary pure two-qubit state. This can be depicted as follows:

Charlie Alice Bob
C A A ′ B

|Ψ〉 |Φ00〉

Show that

|Ψ〉CA ⊗ |Φ00〉A ′B =
1

2

∑
z,x∈{0,1}

|Φzx〉AA ′ ⊗ (I⊗ XxZz)|Ψ〉CB.

Note that pictorially the right-hand side looks as follows:

1

2

∑
z,x∈{0,1}

Charlie Alice Bob
C A A ′ B

|Φzx〉

(I⊗ XxZz)|Ψ〉

(c) Using the equation from the previous part, explain what happens if Alice and Bob
perform the usual teleportation protocol. More specifically, what are the probabilities of
outcomes if Alice measures her two qubits in the Bell basis? For each outcome, what is
the corresponding post-measurement state for Bob and Charlie? What Pauli correction
operation should Bob apply at the end of the protocol?

(d) What could be a potential application of the protocol performed by Alice, Bob and
Charlie?
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2. (3 points) Superdense coding: Assume that Alice and Bob share the Bell state |Φ00〉AB.
Assume that Alice wants to send two bits z, x ∈ {0, 1} to Bob. They perform the following
protocol: (i) Alice applies some unitary operation on her qubit, (ii) sends her qubit to Bob,
and (iii) Bob performs an orthogonal measurement to recover z and x.

(a) What operation should Alice apply?
(b) What measurement should Bob perform?
(c) Formulate this procedure as a resource trade-off.

3. (5 points) Partial transpose test: Let Σ be an alphabet, n = |Σ|, and HA = HB = CΣ. Let

|Φ+〉AB =
1√
n

∑
a∈Σ

|a〉A ⊗ |a〉B

be an n-dimensional maximally entangled state on registers AB. Let t ∈ [0, 1] and define
ρ0, ρ1, ρ(t) ∈ L(HA ⊗HB) as follows:

ρ0 = |Φ+〉〈Φ+|, ρ1 =
I⊗ I− ρ0
n2 − 1

, ρ(t) = (1− t)ρ0 + tρ1.

(a) Show that ρ(t) is a quantum state when t ∈ [0, 1].
(b) Let T ∈ L(L(HA),L(HA)) be the transpose map defined as T[X] = XT, for all X ∈ L(HA).

Show that
(TA ⊗ IB)[ρ0] =

1

n
W,

whereW ∈ L(HA ⊗HB) is the swap operator defined as

W(|x〉 ⊗ |y〉) = |y〉 ⊗ |x〉,

for all x, y ∈ Σ.
(c) Compute (TA ⊗ IB)[ρ(t)].
(d) For what range of t can we say that ρ(t) is entangled?

4. (2 bonus points) P Practice In this problem, you will play around with the partial transpose
test (part a) and the entanglement entropy (part b).

(a) In the files A.txt, B.txt and C.txt, you will find density matrices of the following
dimensions:

A ∈ D(C2 ⊗ C2), B ∈ D(C2 ⊗ C3), and C ∈ D(C2 ⊗ C4).

For each of the states A, B and C, compute its partial transpose (where the transpose
is applied to the second register) and output the smallest eigenvalue of the resulting
matrix. For each state, output whether the state is entangled or separable, or whether
the partial transpose test was inconclusive.
Hint: Recall that the partial transpose test is always conclusive when the total dimension is at
most 6.

(b) In the file D.txt, you will find the pure stateD ∈ D(C2⊗C2). Calculate its entanglement
entropy.
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Quantum Information Theory, Spring 2020

Homework problem set #10 due April 13, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (2 points) Discriminating Bell states by LOCC: Recall that the Bell states are given by

|Φ00〉 = 1√
2
(|00〉+ |11〉), |Φ01〉 = 1√

2
(|01〉+ |10〉),

|Φ10〉 = 1√
2
(|00〉− |11〉), |Φ11〉 = 1√

2
(|01〉− |10〉).

Assume that Alice holds the first qubit of a Bell state and Bob holds the second qubit.

(a) Find an LOCC protocol that can perfectly discriminate between |Φ00〉 and |Φ01〉.
(b) Find an LOCC protocol that can perfectly discriminate between |Φ00〉 and |Φ10〉.

2. (6 points) One-way LOCC struggle: Let |+〉 = (|0〉 + |1〉)/
√
2 and |−〉 = (|0〉 − |1〉)/

√
2.

Consider a two-qubit system where Alice holds the first qubit and Bob holds the second
qubit. These two qubits are initialized in one of the following four states:

|Ψ1〉 = |0〉 ⊗ |0〉,
|Ψ2〉 = |0〉 ⊗ |1〉,
|Ψ3〉 = |1〉 ⊗ |+〉,
|Ψ4〉 = |1〉 ⊗ |−〉.

(a) Show that if µ is a separable measurement, and µ perfectly distinguishes an orthonormal
basis, then this basis must consist of product states.

(b) Write down a measurement that perfectly distinguishes the above four states and show
that it is separable.

(c) Find a one-way LOCC measurement from Alice to Bob that perfectly determines which
of the four states they share.

(d) Show that there is no one-way LOCC measurement from Bob to Alice that can perfectly
determine which of the four states they share.
Hint: Show that the choice of measurement for Alice can not depend on the outcome of Bob if she
wants to perfectly distinguish the remaining states on her qubit.

3. (4 points)OperationsonPPTstates: Recall fromCorollary 9.9 that a stateρAB ∈ D(HA⊗HB)
has positive partial transpose (PPT) if (TA ⊗ IB)[ρAB] > 0 where T[X] = XT is the transpose
map. Suppose that Alice and Bob share such PPT state.

(a) Show that if they apply a separable channel Ξ, the resulting state Ξ[ρAB] is again PPT.
(b) Show that they cannot get a maximally entangled state

|Φ+
AB〉 =

1√
|Σ|

∑
a∈Σ

|a〉A ⊗ |a〉B

with any |Σ| > 1 by applying an LOCC operation on a PPT state ρAB.
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Quantum Information Theory, Spring 2020

Homework problem set #11 due May 11, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Entanglement entropy and separable maps: Let |Ψ1〉AB be a pure state on
registersA and B, and assume that it can be perfectly transformed to another state |Ψ2〉AB by
a separable operation. Show that such transformation cannot make the state more entangled
in the sense of increasing its entanglement entropy. That is, show that

H(ρ1) > H(ρ2),

where ρi = TrB
[
|Ψi〉〈Ψi|AB

]
denotes the reduced state of |Ψi〉AB on Alice and H(ρ) denotes

the von Neumann entropy of ρ. Hint: Entropy is a concave function.

2. (4 points) Local conversion with no communication: Show that a pure state |Ψ1〉AB shared
by Alice and Bob can be converted to another pure state |Ψ2〉AB using only local unitary
operations (and no communication) if and only if

ρ1 ≺ ρ2 and ρ2 ≺ ρ1

where ρi = TrB
[
|Ψi〉〈Ψi|AB

]
denotes the reduced state of |Ψi〉AB on Alice. Show both

directions of the implication.

3. (4 points) Nielsen’s theorem in action: According to Nielsen’s theorem, a maximally
entangled state |Ψ1〉AB shared between Alice and Bob can be transformed to any other
shared pure state |Ψ2〉AB of the same local dimensions by a one-way LOCC protocol from
Bob to Alice. For each case below, devise an explicit one-way LOCC protocol that transforms
|Ψ1〉AB to |Ψ2〉AB and succeeds with 100% probability. Write down the Kraus operators of
Bob’s instrument and the unitary corrections that Alice must apply after she receives Bob’s
measurement outcome.

(a) Let p ∈ [0, 1] and

|Ψ1〉AB =
1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉,

|Ψ2〉AB =
√
p |0〉 ⊗ |0〉+

√
1− p |1〉 ⊗ |1〉.

(b) Let p ∈ P(Zd) be an arbitrary probability distribution over Zd = {0, . . . , d− 1} and

|Ψ1〉AB =
∑
i∈Zd

1√
d
|i〉 ⊗ |i〉,

|Ψ2〉AB =
∑
i∈Zd

√
p(i) |i〉 ⊗ |i〉.

Hint: Let S : CZd → CZd denote the cyclic shift operator that acts as S|i〉 = |i+ 1〉 where “+”
denotes addition modulo d. Notice that 1d

∑
a∈Zd S

ap = u where p is the original probability
distribution and u = (1, . . . , 1)/d is the uniform distribution on Zd.
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4. (2 bonus points)P Practice: Implement a subroutine that, given two probability distributions
p and q (not necessarily of the same length) determines whether p ≺ q.

(a) The file abc.txt contains three probability distributions: a, b, and c. Compare
the distributions a and b using your subroutine and output "a < b", "b < a", or
"incomparable".

(b) Use your subroutine to compare the distributions a⊗ c and b⊗ c.
Output "a*c < b*c", "b*c < a*c", or "incomparable".

(c) How can you interpret this outcome?
(d) The files psi1.txt and psi2.txt contain bipartite pure states

|Ψ1〉AB ∈ C5 ⊗ C7 and |Ψ2〉AB ∈ C5 ⊗ C9,

where Alice’s dimension is 5 and Bob’s dimensions are 7 and 9, respectively. Output the
eigenvalues of the reduced states on Alice’s system A and determine whether |Ψ1〉AB
can be perfectly transformed into |Ψ2〉AB by LOCC.
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Quantum Information Theory, Spring 2020

Homework problem set #12 due May 18, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Fidelity inequality: LetH be a Hilbert space with dim(H) > 2.

(a) Let |u1〉, |u2〉, |v〉 ∈ H be arbitrary pure quantum states. Show that

|〈u1|v〉|2 + |〈u2|v〉|2 6 1+ |〈u1|u2〉|.

Hint: Upper bound the left-hand side by the largest eigenvalue of some rank-2 matrix. Compute
this eigenvalue to get the right-hand side.

(b) Let ρ1, ρ2, σ ∈ D(H) be arbitrary states. Show that

F(ρ1, σ)
2 + F(ρ2, σ)

2 6 1+ F(ρ1, ρ2).

2. (4 points) Entanglement cost using compression and teleportation:
In this exercise you will give an alternative proof for the fact that the entanglement cost is at
most the entanglement entropy for a pure state. Let ρAB ∈ D(HA ⊗HB) be a pure state.

(a) Let ρA and ρB be its reduced density matrices and let α > H(ρA) = H(ρB). Show, using
compression, that for all δ > 0 and all but finitely many n there exists an LOCC protocol
which converts φ⊗bαnc into a state ρ̃n with F(ρ⊗nAB, ρ̃n) > 1− δ.
Hint: Use teleportation!

(b) Use (a) to show that EC(ρAB) 6 H(ρA), for every pure state ρAB ∈ D(HA ⊗HB).

3. (4 points) Entanglement rank and the fidelity with the maximally entangled state:
LetHA = HB = C⊗n and φn ∈ D(HA ⊗HB) be the canonical maximally entangled state
of dimension n, i.e., φn = |Φ+

n〉〈Φ+
n |where

|Φ+
n〉 =

1√
n

n∑
i=1

|i〉 ⊗ |i〉.

Show that F(σ,φn)2 6 r/n, for any (mixed) state σ ∈ D(HA ⊗HB) of entanglement rank r.
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Quantum Information Theory, Spring 2020

Homework problem set #13 due May 27, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Rényi-2 entropy: In this problem you will study a new entropy measure called
the Rényi-2 entropy. It is defined by H2(ρ) := − log Tr[ρ2] for any quantum state ρ ∈ D(Cd).

(a) Find a formula for H2(ρ) in terms of the eigenvalues of ρ.
(b) Show that H2(ρ) 6 H(ρ) by using Jensen’s inequality.
(c) Show that Tr[ρ2] = Tr[Fρ⊗2], where F : |i〉 ⊗ |j〉 7→ |j〉 ⊗ |i〉 for all i, j ∈ {1, . . . , d}, is the

swap operator.

2. (4 points) Average entanglement: In this exercise you will study the average entanglement
of a random pure state inHA⊗HB drawn from the uniform distribution dψAB discussed in
class. Recall that the entanglement entropy of a pure state |ψAB〉 is given byH(ρA) = H(ρB),
where ρA and ρB are the reduced states of |ψAB〉.

(a) Let FAA, FBB denote the swap operators on H⊗2A , H⊗2B and let dA = dimHA, dB =
dimHB. Use the integral formula for the symmetric subspace to deduce that∫

|ψAB〉⊗2〈ψAB|⊗2 dψAB =
1

dAdB(dAdB + 1)
(IAA ⊗ IBB + FAA ⊗ FBB) .

(b) Verify that
∫
Tr[ρ2A]dψAB = dA+dB

dAdB+1
.

(c) Show that the average Rényi-2 entropy H2(ρA) for a random pure state |ψAB〉 is at
least log(min(dA, dB)) − 1. Conclude that the same holds for the entanglement entropy.

Hint: Use Problem 1 and Jensen’s inequality.

3. (4 points) Haar measure: In the exercise class, we discussed the Haar measure on U(H),
which is the unique probability measure dU with the following property: For every
continuous function f on U(H) and for all unitaries V,W ∈ U(H), it holds that

∫
f(U)dU =∫

f(VUW)dU.

(a) Argue that, for any operator A ∈ L(H⊗n), the so-called twirl
∫
U⊗nAU†⊗n dU can

always be written as a linear combination of permutation operators Rπ, π ∈ Sn.
(b) Deduce that

∫
U⊗2AU†⊗2 dU = αI + βF for every A ∈ L(H⊗2), where F is the swap

operator on H⊗2, α = d
d3−d

Tr[A] − 1
d3−d

Tr[FA], and β = d
d3−d

Tr[FA] − 1
d3−d

Tr[A].
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