Quantum Information Theory, Spring 2020

Practice problem set \#11

You do not have to hand in these exercises, they are for your practice only.

1. Majorization examples:

(a) Let $\mathrm{p}=(0.1,0.7,0.2)$ and $\mathrm{q}=(0.3,0.2,0.5)$. Determine whether $\mathrm{p} \prec \mathrm{q}$ or $\mathrm{q} \prec \mathrm{p}$.
(b) Find a sequence of Robin Hood transfers that converts one distribution into the other.
(c) Express this sequence as a single stochastic matrix and verify that this matrix is in fact doubly stochastic.
(d) Express this matrix as a convex combination of permutations.
(e) Find a pair of probability distributions p and q such that neither $p \prec q$ nor $q \prec p$.
2. Alternative definitions of majorization: Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a vector and let r denote reverse sorting and s denote sorting:

$$
\begin{aligned}
& r_{1}(u) \geqslant r_{2}(u) \geqslant \cdots \geqslant r_{n}(u), \\
& s_{1}(u) \leqslant s_{2}(u) \leqslant \cdots \leqslant s_{n}(u),
\end{aligned}
$$

such that $\left\{r_{i}(u): \mathfrak{i}=1, \ldots, n\right\}=\left\{s_{\mathfrak{i}}(u): \mathfrak{i}=1, \ldots, n\right\}=\left\{u_{i}: \mathfrak{i}=1, \ldots, n\right\}$ as multisets. Let u and v be two probability distributions over $\Sigma=\{1, \ldots, n\}$, i.e., $u_{i} \geqslant 0, v_{i} \geqslant 0$, and $\sum_{i=1}^{n} u_{i}=\sum_{i=1}^{n} v_{i}=1$. Show that the following ways of expressing $v \prec u$ are equivalent:
(a) $\sum_{i=1}^{m} r_{i}(v) \leqslant \sum_{i=1}^{m} r_{i}(u)$, for all $m \in\{1, \ldots, n-1\}$.
(b) $\sum_{i=1}^{m} s_{i}(v) \geqslant \sum_{i=1}^{m} s_{i}(u)$, for all $m \in\{1, \ldots, n-1\}$.
(c) $\forall \mathrm{t} \in \mathbb{R}: \sum_{i=1}^{n} \max \left(v_{i}-\mathrm{t}, 0\right) \leqslant \sum_{i=1}^{n} \max \left(\mathrm{u}_{\mathrm{i}}-\mathrm{t}, 0\right)$.

3. Vectorization and partial trace:

(a) Show that, for all $\mathrm{L}, \mathrm{R} \in \mathrm{L}\left(\mathcal{H}_{\mathrm{A}}, \mathcal{H}_{\mathrm{B}}\right)$,

$$
\operatorname{Tr}_{\mathcal{A}}[|\mathrm{L}\rangle\langle\mathrm{R}|]=\mathrm{LR}^{\dagger} .
$$

(b) Let $\Xi \in \operatorname{SepC}(A: B)$ be given by

$$
\Xi(M)=\sum_{a \in \Sigma}\left(A_{a} \otimes B_{a}\right) M\left(A_{a} \otimes B_{a}\right)^{\dagger}
$$

for all $M \in \mathrm{~L}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)$. Show that, for all $X \in \mathrm{~L}\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)$,

$$
\operatorname{Tr}_{A}[\Xi(|X\rangle\langle X|)]=\sum_{a \in \Sigma} B_{a} X A_{a}^{\top} \bar{A}_{a} X^{\dagger} B_{a}^{\dagger} .
$$

