Quantum Information Theory, Spring 2020

Practice problem set \#10

You do not have to hand in these exercises, they are for your practice only.

1. Vectorization:

(a) Let $\mathcal{H}_{A}=\mathbb{C}^{\Sigma}, \mathcal{H}_{B}=\mathbb{C}^{\Gamma}$, and $M=|b\rangle\langle a| \in L\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)$, for some $a \in \Sigma$ and $b \in \Gamma$. Recall from Definition 10.2 that the vectorization of M is given by $\left|M_{A B}\right\rangle=|a, b\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Prove the vectorization identity

$$
(A \otimes B)|M\rangle=\left|B M A^{\top}\right\rangle
$$

when $A=|c\rangle\langle a|$ and $B=|d\rangle\langle b|$, for some standard basis states $|c\rangle$ and $|d\rangle$.
(b) Argue why this implies the same identity for arbitrary $A \in L\left(\mathcal{H}_{A}, \mathcal{H}_{C}\right), B \in L\left(\mathcal{H}_{B}, \mathcal{H}_{D}\right)$, $M \in L\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)$.

2. Separable maps:

(a) Let $\Xi \in \operatorname{CP}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}, \mathcal{H}_{C} \otimes \mathcal{H}_{D}\right)$. Show that $\Xi \in \operatorname{SepCP}\left(\mathcal{H}_{A}, \mathcal{H}_{C}: \mathcal{H}_{B}, \mathcal{H}_{D}\right)$ if and only if there exist $\mathrm{A}_{\mathrm{x}} \in \mathrm{L}\left(\mathcal{H}_{\mathrm{A}}, \mathcal{H}_{\mathrm{C}}\right)$ and $\mathrm{B}_{\chi} \in \mathrm{L}\left(\mathcal{H}_{\mathrm{B}}, \mathcal{H}_{\mathrm{D}}\right)$ such that

$$
\Xi(X)=\sum_{x \in \Sigma}\left(A_{x} \otimes B_{x}\right) X\left(A_{x} \otimes B_{x}\right)^{\dagger}
$$

for all $\mathrm{X} \in \mathrm{L}\left(\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}\right)$.
(b) Let $\Xi_{1} \in \operatorname{SepCP}\left(\mathcal{H}_{A}, \mathcal{H}_{C}: \mathcal{H}_{B}, \mathcal{H}_{D}\right)$ and $\Xi_{2} \in \operatorname{SepCP}\left(\mathcal{H}_{C}, \mathcal{H}_{E}: \mathcal{H}_{D}, \mathcal{H}_{F}\right)$. Show that their composition is also separable:

$$
\Xi_{2} \circ \Xi_{1} \in \operatorname{SepCP}\left(\mathcal{H}_{A}, \mathcal{H}_{E}: \mathcal{H}_{B}, \mathcal{H}_{F}\right) .
$$

3. Examples of separable maps: Show that the following maps jointly implemented by Alice and Bob are separable:
(a) Alice and Bob share a random variable distributed according to $p \in \mathrm{P}(\Sigma \times \Gamma)$, where Σ labels Alice's register and Γ labels Bob's register. Moreover, Alice has a quantum register A and Bob has a quantum register B. They both observe their halves of the random variable. If Alice's value is $x \in \Sigma$, she applies a channel Φ_{χ} on her register A. Similarly, if Bob's value is $y \in \Gamma$, he applies a channel Ψ_{y} on his register B.
(b) Alice has a register A that she measures in the standard basis. She sends the measurement outcome $x \in \Sigma$ to Bob who applies a channel Ψ_{x} on his register B.
(c) Any LOCC channel.
4. Instruments: Recall from Definition 10.7 that an instrument is a collection $\left\{\Phi_{\omega}: \omega \in \Omega\right\} \subset$ $\mathrm{CP}\left(\mathcal{H}_{A}, \mathcal{H}_{\mathrm{B}}\right)$ such that $\sum_{\omega \in \Omega} \Phi_{\omega} \in \mathrm{C}\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)$. When applied to a state $\rho \in \mathrm{D}\left(\mathcal{H}_{A}\right)$, it produces outcome $\omega \in \Omega$ with probability $\operatorname{Tr}\left[\Phi_{\omega}[\rho]\right]$ and changes ρ to $\rho_{\omega}=\Phi_{\omega}[\rho] / \operatorname{Tr}\left[\Phi_{\omega}[\rho]\right]$. Show that any instrument can be implemented by a quantum channel, followed by an orthonormal measurement.
