Quantum Information Theory, Spring 2020

Practice problem set \#7

You do not have to hand in these exercises, they are for your practice only.

1. Mutual information upper bound: From class we know that $I(A: B) \leqslant \log d_{A}+\log d_{B}$, where $d_{A}=\operatorname{dim} \mathcal{H}_{A}$ and $d_{B}=\operatorname{dim} \mathcal{H}_{B}$. Give a simple proof of this fact.
2. Weak monotonicity: Use a purification to deduce the weak monotonicity inequality $\mathrm{H}(\mathrm{AC})+$ $H(B C) \geqslant H(A)+H(B)$ from the strong subadditivity inequality, and vice versa.
3. Strict concavity of the von Neumann entropy: In Homework Problem 6.4 you proved that $\mathrm{H}(\rho)$ is a concave function of $\rho \in \mathrm{D}(\mathcal{H})$. Revisit your proof and show that it is strictly concave using the equality condition for the subadditivity inequality from today's lecture.
4. Equality condition for monotonicity: In Homework Problem 5.3, you proved that the Shannon entropy satisfies the following monotonicity inequality: $\mathrm{H}(X Y) \geqslant \mathrm{H}(X)$ for any probability distribution $p_{X Y}$. (Warning: This inequality is in general false for quantum states!) Show that equality holds if and only if $p_{X Y}(x, y)=p_{X}(X) \delta_{f(x), y}$ for a function $f: \Sigma_{X} \rightarrow \Sigma_{Y}$. In terms of random variables, this means that $\mathrm{Y}=\mathrm{f}(\mathrm{X})$, i.e., the second is a function of the first!
5. Binary entropy function: The Shannon entropy of a probability distribution with two possible outcomes is given by the so-called binary entropy function:

$$
h(p):=H(\{p, 1-p\})=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p},
$$

(a) Sketch this function.
(b) Does there exists a constant $L>0$ such that $|h(p)-h(q)| \leqslant L|p-q|$ for all $0 \leqslant p, q \leqslant 1$? That is, is h Lipschitz continuous?

