Quantum Information Theory, Spring 2020

Practice problem set #7

You do **not** have to hand in these exercises, they are for your practice only.

- 1. Mutual information upper bound: From class we know that $I(A : B) \leq \log d_A + \log d_B$, where $d_A = \dim \mathcal{H}_A$ and $d_B = \dim \mathcal{H}_B$. Give a simple proof of this fact.
- 2. Weak monotonicity: Use a purification to deduce the weak monotonicity inequality $H(AC) + H(BC) \ge H(A) + H(B)$ from the strong subadditivity inequality, and vice versa.
- 3. Strict concavity of the von Neumann entropy: In Homework Problem 6.4 you proved that $H(\rho)$ is a concave function of $\rho \in D(\mathcal{H})$. Revisit your proof and show that it is strictly concave using the equality condition for the subadditivity inequality from today's lecture.
- 4. Equality condition for monotonicity: In Homework Problem 5.3, you proved that the Shannon entropy satisfies the following monotonicity inequality: $H(XY) \ge H(X)$ for any probability distribution p_{XY} . (Warning: This inequality is in general *false* for quantum states!) Show that equality holds if and only if $p_{XY}(x, y) = p_X(x)\delta_{f(x),y}$ for a function f: $\Sigma_X \to \Sigma_Y$.

In terms of random variables, this means that Y = f(X), *i.e.*, the second is a function of the first!

5. **Binary entropy function:** The Shannon entropy of a probability distribution with two possible outcomes is given by the so-called *binary entropy function*:

$$h(p) := H(\{p, 1-p\}) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p},$$

- (a) Sketch this function.
- (b) Does there exists a constant L > 0 such that $|h(p) h(q)| \le L|p q|$ for all $0 \le p, q \le 1$? That is, is h Lipschitz continuous?