Quantum Information Theory, Spring 2019

1. (2 points) Maximal mutual information I: In class, we proved that $I(X: Y) \leq 2 \log d$ for every state $\rho_{X Y} \in D(\mathcal{X} \otimes \mathcal{Y})$ with $\mathcal{X}=\mathcal{Y}=\mathbb{C}^{d}$. Show that $I(X: Y)=2 \log d$ if and only if $\rho_{X Y}$ is a pure state with $\rho_{X}=\rho_{Y}=I / d$ (such quantum states are called maximally entangled). Write down the Schmidt decomposition of a general state of this form.
2. (2 points) Maximal mutual information II: In the exercises, we proved that $I(X: Y) \leq \log d$ for every distribution $p_{X Y} \in \mathcal{P}(\Sigma \times \Gamma)$ with $|\Sigma|=|\Gamma|=d$. Show that $I(X: Y)=\log d$ if and only if $p_{X Y}$ is maximally correlated, i.e., of the form $p_{X Y}(x, y)=\frac{1}{d} \delta_{f(x), y}$ for a bijection $f: \Sigma \rightarrow \Gamma$.
Hint: In the exercise class we characterized the distributions with $H(X Y)=H(X)$.
3. (8 points) Entropic uncertainty relation: In this problem, you will prove another uncertainty relation. Let $\rho \in D\left(\mathbb{C}^{2}\right)$ and denote by $p_{\text {std }}$ and $p_{\text {Had }}$ the probability distributions of outcomes when measuring ρ in the standard basis and Hadamard basis, respectively. You will show that:

$$
\begin{equation*}
H\left(p_{\text {std }}\right)+H\left(p_{\text {Had }}\right) \geq H(\rho)+1 \tag{1}
\end{equation*}
$$

(a) Why is it appropriate to call (1) an uncertainty relation?
(b) Find a state ρ for which the uncertainty relation is saturated (i.e., an equality).

To start, recall the Pauli matrices $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(c) Show that $\frac{1}{2}(\rho+Z \rho Z)=\left(\begin{array}{cc}\langle 0| \rho|0\rangle & 0 \\ 0 & \langle 1| \rho|1\rangle\end{array}\right)$ and deduce that $H\left(p_{\text {std }}\right)=H\left(\frac{1}{2}(\rho+Z \rho Z)\right)$.
(d) Show that, similarly, $H\left(p_{\text {Had }}\right)=H\left(\frac{1}{2}(\rho+X \rho X)\right)$.

Now consider the following three-qubit state,

$$
\omega_{A B C}=\frac{1}{4} \sum_{a=0}^{1} \sum_{c=0}^{1}|a\rangle\langle a| \otimes X^{a} Z^{c} \rho Z^{c} X^{a} \otimes|c\rangle\langle c|,
$$

where we denote the three subsystems by A, B, C (to avoid confusion with the Pauli matrices) and abbreviate $X^{0}=I, X^{1}=X$ and $Z^{0}=I, Z^{1}=Z$. Note that subsystems A, C are classical.
(e) Show that $H(A B C)=2+H(\rho)$. Use parts (c) and (d) to verify that $H(A B)=1+H\left(p_{\text {std }}\right)$, $H(B C)=1+H\left(p_{\text {Had }}\right)$, and $H(B)=1$ in state $\omega_{A B C}$.
(f) Use part (e) and the strong subadditivity inequality to deduce (1).
4. (4 points) 贯 Practice: In this problem you can verify an instance of the Holevo bound. Consider the ensemble $\left\{p_{x}, \rho_{x}\right\}_{x \in\{0,1\}}$ where $p_{0}=p_{1}=\frac{1}{2}$ and $\rho_{0}=|0\rangle\langle 0|, \rho_{1}=0.2|+\rangle\langle+|+0.8|-\rangle\langle-|$.
(a) Compute the Holevo χ-quantity for this ensemble.
(b) Let $\mu:\{0,1\} \rightarrow \operatorname{Pos}(\mathcal{X})$ denote the pretty good measurement for $\left\{\rho_{x}\right\}$ defined in Problem 4.1. Compute $I(X: Z)$ for $p_{X Z}(x, z)=p_{x} \operatorname{Tr}\left[\rho_{x} \mu(z)\right]$. Verify that $I(X: Z) \leq \chi$.

