Quantum Information Theory, Spring 2019

1. (4 points) Compression and correlations: In this problem, you will show that the definition of an (n, R, δ)-quantum code is more stringent than demanding that the average fidelity is high for any particular source. Consider a qubit source that emits states $\rho_{0}=|0\rangle\langle 0|$ and $\rho_{1}=|1\rangle\langle 1|$ with 50% probability each. Let $\rho \in D(\mathcal{X})$ denote the average output state of the source $\left(\mathcal{X}=\mathbb{C}^{2}\right)$. Find channels $\mathcal{E}_{n} \in C\left(\mathcal{X}^{\otimes n},\left(\mathbb{C}^{2}\right)^{\otimes n}\right), \mathcal{D}_{n} \in C\left(\left(\mathbb{C}^{2}\right)^{\otimes n}, \mathcal{X}^{\otimes n}\right)$ such that

$$
\sum_{x_{1}, \ldots, x_{n}} 2^{-n} F\left(\mathcal{D}_{n}\left[\mathcal{E}_{n}\left[\rho_{x_{1}} \otimes \ldots \otimes \rho_{x_{n}}\right]\right], \rho_{x_{1}} \otimes \ldots \otimes \rho_{x_{n}}\right)=1
$$

but $F\left(\mathcal{D}_{n} \mathcal{E}_{n}, \rho^{\otimes n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Hint: Choose both \mathcal{E}_{n} and \mathcal{D}_{n} to be measure-and-prepare channels.
2. (4 points) Monotonicity properties: We already know that the trace distance and fidelity are monotone with respect to tracing out subsystems. In this problem, you will extend these properties to arbitrary quantum channels $\Phi \in C(\mathcal{X}, \mathcal{Y})$. Thus, show that:
(a) $\|\Phi[A]\|_{1} \leq\|A\|_{1}$ for all $A \in L(\mathcal{X})$, and hence $\|\Phi[\rho]-\Phi[\sigma]\|_{1} \leq\|\rho-\sigma\|_{1}$ for all $\rho, \sigma \in D(\mathcal{X})$,
(b) $F(\Phi[\rho], \Phi[\sigma]) \geq F(\rho, \sigma)$ for all $\rho, \sigma \in D(\mathcal{X})$.

Hint: First prove that $\left\|V A V^{*}\right\|_{1}=\|A\|_{1}$ for every $A \in L(\mathcal{X})$ and isometry $V \in L(\mathcal{X}, \mathcal{W})$.
3. (4 points) Subadditivity: Use Schumacher's theorem to prove the following inequality, which is known as the subadditivity property of the quantum entropy:

$$
H\left(\rho_{X}\right)+H\left(\rho_{Y}\right) \geq H(\rho)
$$

for every $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ with reduced states $\rho_{X}=\operatorname{Tr}_{Y}[\rho]$ and $\rho_{Y}=\operatorname{Tr}_{X}[\rho]$.
Hint: You are allowed to use the following 'triangle inequality' for the fidelity (without proof): For any three states $\alpha, \beta, \gamma \in D(\mathcal{Z})$, if $F(\alpha, \beta) \geq 1-\delta$ and $F(\beta, \gamma) \geq 1-\delta$ then $F(\alpha, \gamma) \geq 1-4 \delta$.
4. (4 points) 吕 Practice: In this problem, you can explore the behavior of the typical subspaces. Consider the state $\rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|+\rangle\langle+|$, where $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
(a) Compute the largest eigenvalue p of ρ and the quantum entropy $H(\rho)$.
(b) Plot the following functions for $n=100$ and $n=1000$:

$$
d(k)=\binom{n}{k}, \quad r(k)=\frac{1}{n} \log \binom{n}{k}, \quad q(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for $k \in\{0,1, \ldots, n\}$.
(c) Plot the following functions for $\varepsilon=0.1$ and $\varepsilon=0.01$:

$$
r(n)=\frac{1}{n} \log \operatorname{dim} S_{n, \varepsilon}, \quad p(n)=\operatorname{Tr}\left[\Pi_{n, \varepsilon} \rho^{\otimes n}\right],
$$

for $n \in\{1, \ldots, 1000\}$, where $\Pi_{n, \varepsilon}$ denotes the orthogonal projection onto the typical subspace $S_{n, \varepsilon}$ of ρ.

