Quantum Information Theory, Spring 2019

Problem Set 3

due February 25, 2019

- 1. (4 points) Vectorization: Recall that if $\mathcal{X} = \mathbb{C}^{\Sigma}$ and $\mathcal{Y} = \mathbb{C}^{\Gamma}$ then vec : $L(\mathcal{Y}, \mathcal{X}) \to \mathcal{X} \otimes \mathcal{Y}$ is defined as $vec(|i\rangle\langle j|) = |i\rangle \otimes |j\rangle$, for all $i \in \Sigma$ and $j \in \Gamma$, and then extended by linearity.
 - (a) Let $\mathcal{X}, \mathcal{X}', \mathcal{Y}, \mathcal{Y}'$ be complex Euclidean spaces and let $A \in L(\mathcal{X}, \mathcal{X}')$, $B \in L(\mathcal{Y}, \mathcal{Y}')$, and $X \in L(\mathcal{Y}, \mathcal{X})$. Show that

$$(A \otimes B) \operatorname{vec}(X) = \operatorname{vec}(AXB^{\mathsf{T}}).$$

(b) Let $\mathcal{X} = \mathbb{C}^{\Sigma}$ and $\sigma \in D(\mathcal{X})$. Recall that the standard purification of σ is given by

$$|\psi\rangle = (\sqrt{\sigma} \otimes I_{\mathsf{X}}) \cdot \sum_{x \in \Sigma} |x\rangle \otimes |x\rangle.$$

Show that $|\psi\rangle = \operatorname{vec}(\sqrt{\sigma})$.

- 2. (2 points) Quantum channels: Show that the following maps Φ are quantum channels by directly verifying that they are trace-preserving and completely positive.
 - (a) (Mixed unitary): Let (p_1, \ldots, p_n) be a probability distribution, let $U_1, \ldots, U_n \in U(\mathcal{X})$ be a set of unitary matrices, and let $\Phi \in T(\mathcal{X})$ be defined as follows:

$$\Phi(X) = \sum_{i=1}^{n} p_i U_i X U_i^*.$$

(b) (State preparation): Let $\sigma \in D(\mathcal{X})$ and let $\Phi \in T(\mathcal{X})$ be defined as follows:

$$\Phi(X) = \operatorname{Tr}[X] \sigma. \tag{1}$$

3. (2 points) Kraus vs Choi: Recall that the Kraus representation of a superoperator $\Phi \in T(\mathcal{X}, \mathcal{Y})$ is given by

$$\Phi(X) = \sum_{a \in \Gamma} A_a X B_a^*$$

for some operators $\{A_a : a \in \Gamma\}, \{B_a : a \in \Gamma\} \subset L(\mathcal{X}, \mathcal{Y})$. Show that the Choi representation of the same superoperator is given by

$$J(\Phi) = \sum_{a \in \Gamma} \operatorname{vec}(A_a) \operatorname{vec}(B_a)^*.$$

- 4. (4 points) Kraus operators: Derive a Kraus representation for the following quantum channels:
 - (a) (Discarding the input): Let $\mathcal{X} = \mathbb{C}^{\Sigma}$ and $\Phi \in C(\mathcal{X}, \mathbb{C})$ be the quantum channel that discards the input. That is, for all $X \in L(\mathcal{X})$,

$$\Phi(X) = \operatorname{Tr}[X].$$

(b) (State preparation): Let $\mathcal{X} = \mathbb{C}^{\Sigma}$ and $\Phi \in C(\mathcal{X}, \mathcal{X})$ be the quantum channel that discards the input and replaces it by some fixed state $\sigma \in D(\mathcal{X})$, see Eq. (1).

5. (4 points) **Practice:** The files pset3-A1.txt, pset3-A2.txt, pset3-A3.txt contain the entries of three 5×5 matrices $A_1, A_2, A_3 \in L(\mathcal{X})$ where $\mathcal{X} = \mathbb{C}^5$. These matrices define a superoperator $\Phi \in T(\mathcal{X})$ that acts as

$$\Phi(X) = \sum_{i=1}^{3} A_i X A_i^*.$$

- (a) Compute the eigenvalues of the Choi matrix $J(\Phi)$.
- (b) Verify that Φ is a quantum channel (explain what you did).

Hint: On the course homepage you can find instructions for loading a complex matrix.