Quantum Information Theory, Spring 2019

1. (4 points) Vectorization: Recall that if $\mathcal{X}=\mathbb{C}^{\Sigma}$ and $\mathcal{Y}=\mathbb{C}^{\Gamma}$ then vec : $\mathrm{L}(\mathcal{Y}, \mathcal{X}) \rightarrow \mathcal{X} \otimes \mathcal{Y}$ is defined as $\operatorname{vec}(|i\rangle\langle j|)=|i\rangle \otimes|j\rangle$, for all $i \in \Sigma$ and $j \in \Gamma$, and then extended by linearity.
(a) Let $\mathcal{X}, \mathcal{X}^{\prime}, \mathcal{Y}, \mathcal{Y}^{\prime}$ be complex Euclidean spaces and let $A \in \mathrm{~L}\left(\mathcal{X}, \mathcal{X}^{\prime}\right), B \in \mathrm{~L}\left(\mathcal{Y}, \mathcal{Y}^{\prime}\right)$, and $X \in \mathrm{~L}(\mathcal{Y}, \mathcal{X})$. Show that

$$
(A \otimes B) \operatorname{vec}(X)=\operatorname{vec}\left(A X B^{\top}\right) .
$$

(b) Let $\mathcal{X}=\mathbb{C}^{\Sigma}$ and $\sigma \in \mathrm{D}(\mathcal{X})$. Recall that the standard purification of σ is given by

$$
|\psi\rangle=\left(\sqrt{\sigma} \otimes I_{\mathrm{X}}\right) \cdot \sum_{x \in \Sigma}|x\rangle \otimes|x\rangle .
$$

Show that $|\psi\rangle=\operatorname{vec}(\sqrt{\sigma})$.
2. (2 points) Quantum channels: Show that the following maps Φ are quantum channels by directly verifying that they are trace-preserving and completely positive.
(a) (Mixed unitary): Let $\left(p_{1}, \ldots, p_{n}\right)$ be a probaility distribution, let $U_{1}, \ldots, U_{n} \in \mathrm{U}(\mathcal{X})$ be a set of unitary matrices, and let $\Phi \in \mathrm{T}(\mathcal{X})$ be defined as follows:

$$
\Phi(X)=\sum_{i=1}^{n} p_{i} U_{i} X U_{i}^{*}
$$

(b) (State preparation): Let $\sigma \in \mathrm{D}(\mathcal{X})$ and let $\Phi \in \mathrm{T}(\mathcal{X})$ be defined as follows:

$$
\begin{equation*}
\Phi(X)=\operatorname{Tr}[X] \sigma . \tag{1}
\end{equation*}
$$

3. (2 points) Kraus vs Choi: Recall that the Kraus representation of a superoperator $\Phi \in \mathrm{T}(\mathcal{X}, \mathcal{Y})$ is given by

$$
\Phi(X)=\sum_{a \in \Gamma} A_{a} X B_{a}^{*}
$$

for some operators $\left\{A_{a}: a \in \Gamma\right\},\left\{B_{a}: a \in \Gamma\right\} \subset \mathrm{L}(\mathcal{X}, \mathcal{Y})$. Show that the Choi representation of the same superoperator is given by

$$
J(\Phi)=\sum_{a \in \Gamma} \operatorname{vec}\left(A_{a}\right) \operatorname{vec}\left(B_{a}\right)^{*} .
$$

4. (4 points) Kraus operators: Derive a Kraus representation for the following quantum channels:
(a) (Discarding the input): Let $\mathcal{X}=\mathbb{C}^{\Sigma}$ and $\Phi \in \mathrm{C}(\mathcal{X}, \mathbb{C})$ be the quantum channel that discards the input. That is, for all $X \in \mathrm{~L}(\mathcal{X})$,

$$
\Phi(X)=\operatorname{Tr}[X] .
$$

(b) (State preparation): Let $\mathcal{X}=\mathbb{C}^{\Sigma}$ and $\Phi \in \mathrm{C}(\mathcal{X}, \mathcal{X})$ be the quantum channel that discards the input and replaces it by some fixed state $\sigma \in \mathrm{D}(\mathcal{X})$, see Eq. (1).
5. (4 points) 肼 Practice: The files pset3-A1.txt, pset3-A2.txt, pset3-A3.txt contain the entries of three 5×5 matrices $A_{1}, A_{2}, A_{3} \in \mathrm{~L}(\mathcal{X})$ where $\mathcal{X}=\mathbb{C}^{5}$. These matrices define a superoperator $\Phi \in \mathrm{T}(\mathcal{X})$ that acts as

$$
\Phi(X)=\sum_{i=1}^{3} A_{i} X A_{i}^{*} .
$$

(a) Compute the eigenvalues of the Choi matrix $J(\Phi)$.
(b) Verify that Φ is a quantum channel (explain what you did).

Hint: On the course homepage you can find instructions for loading a complex matrix.

