Quantum Information Theory, Spring 2019

1. (4 points) Fidelity and measurements: Recall that the fidelity between two states $\rho, \sigma \in \mathrm{D}(\mathcal{X})$ is defined as $F(\rho, \sigma)=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}$. We can similarly define the fidelity (or Bhattacharyya coefficient) between two probability distributions $p, q \in \mathcal{P}(\Sigma)$ by $F(p, q)=\sum_{x \in \Sigma} \sqrt{p(x)} \sqrt{q(x)}$.
(a) Show that $F(\rho, \sigma) \leq F(p, q)$ for every measurement $\mu: \Sigma \rightarrow \operatorname{Pos}(\mathcal{X})$, where p and q denote the probability distribution of outcomes when measuring on ρ and σ, respectively.
(b) Show that there exists a measurement such that equality holds in part (a).

Hint: You may assume that ρ is invertible. Consider the measurement in the eigenbasis of the operator $M:=\rho^{-1 / 2} \sqrt{\rho^{1 / 2} \sigma \rho^{1 / 2}} \rho^{-1 / 2}$, which satisfies $M \rho M=\sigma$. See also Problem 4 .
2. (4 points) Fuchs-van de Graaf inequalities: The fidelity and trace distance are related by

$$
1-\frac{1}{2}\|\rho-\sigma\|_{1} \leq F(\rho, \sigma) \leq \sqrt{1-\frac{1}{4}\|\rho-\sigma\|_{1}^{2}}
$$

known as the Fuchs-van de Graaf inequalities. You proved the second inequality in Exercise 5.2. You will now prove the first inequality.
(a) Show that $|a-b| \geq(\sqrt{a}-\sqrt{b})^{2}$ for all $a, b \in[0,1]$.
(b) Conclude that $1-\frac{1}{2}\|\rho-\sigma\|_{1} \leq F(\rho, \sigma)$ holds for any pair of states $\rho, \sigma \in \mathrm{D}(\mathcal{X})$.

Hint: Use Problem 1 to reduce the claim to probability distributions.
3. (6 points) Proof of the decoupling theorem: In this problem you will prove the decoupling theorem that we used in class. It states that, for every state $\rho_{A R} \in \mathrm{D}(\mathcal{A} \otimes \mathcal{R}), \mathcal{A}=\mathcal{A}_{1} \otimes \mathcal{A}_{2}$,

$$
\begin{equation*}
\int\left\|\operatorname{Tr}_{A_{1}}\left[\left(U_{A}^{\dagger} \otimes I_{R}\right) \rho_{A R}\left(U_{A} \otimes I_{R}\right)\right]-\frac{I_{A_{2}}}{d_{A_{2}}} \otimes \rho_{R}\right\|_{1}^{2} d U_{A} \leq \frac{d_{A} d_{R}}{d_{A_{1}}^{2}} \operatorname{Tr}\left[\rho_{A R}^{2}\right] \tag{1}
\end{equation*}
$$

Here, $d U_{A}$ denotes the Haar measure on $\mathrm{U}(\mathcal{A})$ from last week's homework, and $d_{A}=\operatorname{dim} \mathcal{A}$ etc.
(a) Show that $\int U_{A}^{\otimes 2}\left(I_{A_{1} A_{1}} \otimes F_{A_{2} A_{2}}\right) U_{A}^{\dagger, \otimes 2} d U_{A}=\alpha I_{A A}+\beta F_{A A}$ for constants $\alpha \leq \frac{1}{d_{A_{2}}}, \beta \leq \frac{1}{d_{A_{1}}}$.
(b) Deduce that $\int \operatorname{Tr}\left[\operatorname{Tr}_{A_{1}}\left[\left(U_{A}^{\dagger} \otimes I_{R}\right) \rho_{A R}\left(U_{A} \otimes I_{R}\right)\right]^{2}\right] d U_{A}=\alpha \operatorname{Tr}\left[\rho_{R}^{2}\right]+\beta \operatorname{Tr}\left[\rho_{A R}^{2}\right]$.
(c) Conclude the proof of the decoupling theorem, i.e., show that Eq. (1) holds.

Hint: For (a) and (b), you can build on results from last week's homework. For (c), start with the bound $\|M\|_{1}^{2} \leq d_{X}\|M\|_{2}^{2}=d_{X} \operatorname{Tr}\left[M^{\dagger} M\right]$ which holds for any operator $M \in L(\mathcal{X})$.
4. (2 points) 曾 Practice: Let Alice, Bob, and a reference system share many copies of a pure state $\Psi_{A B R}$. Using quantum state merging, by sending qubits at rate $I(A: R) / 2$, Alice can approximately transfer her part of the state to Bob and simultaneously 'distill' Bell pairs $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ at rate $I(A: B) / 2$ between herself and Bob. Show that, for the state $\left|\Psi_{A B R}\right\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$, this can in fact be done exactly by using only two copies.
Hint: Let Alice apply the unitary $U=\operatorname{CNOT}(H \otimes I)$ to her two qubits and send her second qubit to Bob. You do not need to find Bob's decoding isometry explicitly.

