Quantum Information Theory, Spring 2019

1. (4 points) Rényi-2 entropy: In this problem you will study a new entropy measure called the Rényi-2 entropy. It is defined by $H_{2}(\rho):=-\log \operatorname{Tr}\left[\rho^{2}\right]$ for any quantum state $\rho \in \mathrm{D}(\mathcal{X})$.
(a) Find a formula for $\mathrm{H}_{2}(\rho)$ in terms of the eigenvalues of ρ.
(b) Show that $H_{2}(\rho) \leq H(\rho)$ by using Jensen's inequality.
(c) Show that $\operatorname{Tr}\left[\rho^{2}\right]=\operatorname{Tr}\left[F \rho^{\otimes 2}\right]$, where F is the swap operator sending $\left|x_{1}, x_{2}\right\rangle \mapsto\left|x_{2}, x_{1}\right\rangle$.
2. (4 points) Average entanglement: In this exercise you will study the average entanglement of a random pure state in $\mathcal{X} \otimes \mathcal{Y}$ drawn from the probability distribution $d \psi_{X Y}$ discussed in class. Recall that the entanglement entropy of a pure state $\psi_{X Y}$ is given by $H\left(\psi_{X}\right)=H\left(\psi_{Y}\right)$.
(a) Let $F_{X X}, F_{Y Y}$ denote the swap operators on $\mathcal{X}^{\otimes 2}, \mathcal{Y}^{\otimes 2}$ and let $d_{X}=\operatorname{dim} \mathcal{X}, d_{Y}=\operatorname{dim} \mathcal{Y}$. Use the integral formula for the symmetric subspace to deduce that

$$
\int\left|\psi_{X Y}\right\rangle^{\otimes 2}\left\langle\left.\psi_{X Y}\right|^{\otimes 2} d \psi_{X Y}=\frac{1}{d_{X} d_{Y}\left(d_{X} d_{Y}+1\right)}\left(I_{X X} \otimes I_{Y Y}+F_{X X} \otimes F_{Y Y}\right) .\right.
$$

(b) Verify that $\int \operatorname{Tr}\left[\psi_{X}^{2}\right] d \psi_{X Y}=\frac{d_{X}+d_{Y}}{d_{X} d_{Y}+1}$.
(c) Show that the average Rényi-2 entropy $H_{2}\left(\psi_{X}\right)$ for a random pure state $\psi_{X Y}$ is at least $\log \left(\min \left(d_{X}, d_{Y}\right)\right)-1$. Conclude that the same holds for the entanglement entropy.

Hint: Use Problem 1 and Jensen's inequality.
3. (3 points) Haar measure: In the exercise class, we discussed the Haar measure on $\mathrm{U}(\mathcal{X})$, which is the unique probability measure $d U$ with the following property: For every continuous function f on $\mathrm{U}(\mathcal{X})$ and for all unitaries $V, W \in \mathrm{U}(\mathcal{X})$, it holds that $\int f(U) d U=\int f(V U W) d U$.
(a) Argue that, for any operator $A \in L\left(\mathcal{X}^{\otimes n}\right)$, the so-called twirl $\int U^{\otimes n} A U^{\dagger, \otimes n} d U$ can always be written as a linear combination of permutation operators $R_{\pi}, \pi \in S_{n}$.
(b) Deduce that $\int U^{\otimes 2} A\left(U^{\dagger}\right)^{\otimes 2} d U=\alpha I+\beta F$ for every $A \in L\left(\mathcal{X}^{\otimes 2}\right)$, where F is the swap operator on $\mathcal{X}^{\otimes 2}, \alpha=\frac{d}{d^{3}-d} \operatorname{Tr}[A]-\frac{1}{d^{3}-d} \operatorname{Tr}[F A]$, and $\beta=\frac{d}{d^{3}-d} \operatorname{Tr}[F A]-\frac{1}{d^{3}-d} \operatorname{Tr}[A]$.
4. (5 points) 眉 Practice: In the exercises, we discussed an application of de Finetti theorem in quantum physics. Let us numerically verify our results for the following operator on $\left(\mathbb{C}^{2}\right)^{\otimes n}$:

$$
H=-\frac{1}{n-1} \sum_{i \neq j} Z_{i} Z_{j}-\sum_{i=1}^{n} X_{i}
$$

where $Z_{i}=I^{\otimes(i-1)} \otimes Z \otimes I^{\otimes(n-i)}$ and likewise for X_{i}. As usual, $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(a) Compute the smallest eigenvalue $E_{0}(n)$ of H for $n=2, \ldots, 10$ (or as high as you can go), and plot the corresponding energy densities $E_{0}(n) / n$.
(b) Find an operator h on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ such that $H=\frac{1}{n-1} \sum_{i \neq j} h_{i, j}$ (notation as in exercise class), minimize $\left\langle\psi^{\otimes 2}\right| h\left|\psi^{\otimes 2}\right\rangle$ over all unit vectors $|\psi\rangle$ (in any way you like), and compare with (a).

Python hint: You can use numpy.kron to compute the tensor product of operators.

