Quantum Information Theory, Spring 2019

Exercise Set 9
 in-class practice problems

1. Warmup:

(a) Show that every classical state $\rho_{X Y} \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable.
(b) Show that a pure state $|\psi\rangle_{\mathrm{XY}} \in \mathcal{S}(\mathcal{X} \otimes \mathcal{Y})$ is separable if and only if its entanglement entropy is zero.
(c) In the lecture we defined separable operators to be those of the form

$$
\sum_{i} P_{X}^{i} \otimes Q_{Y}^{i}
$$

for $P_{\mathrm{X}}^{i}, Q_{\mathrm{Y}}^{i}$ positive. Show that the restriction of this definition to density matrices coincides with the definition of separable states from the lecture.
(d) Recall that the four Bell states are defined by

$$
\left|\Phi^{z x}\right\rangle=\left(Z^{z} X^{x} \otimes I\right)\left|\Phi^{+}\right\rangle .
$$

where $\left|\Phi^{+}\right\rangle$is the canonical two-qubit maximally entangled state. Verify that

$$
\begin{array}{ll}
\left|\Phi^{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), & \left|\Phi^{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\
\left|\Phi^{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), & \left|\Phi^{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{array}
$$

Verify also that

$$
\left|\Phi^{z x}\right\rangle=\left(I \otimes X^{x} Z^{z}\right)\left|\Phi^{+}\right\rangle .
$$

2. Two-qubit pure states (product vs entangled): Let

$$
|\psi\rangle=\left(\begin{array}{l}
\psi_{00} \\
\psi_{01} \\
\psi_{10} \\
\psi_{11}
\end{array}\right) \in \mathbb{C}^{4} .
$$

be an arbitrary pure state on two qubits. Define

$$
\Delta(|\psi\rangle)=\psi_{00} \psi_{11}-\psi_{01} \psi_{10} .
$$

The goal of this exercise is to show that $\Delta(|\psi\rangle)=0$ if and only if $|\psi\rangle$ is a product state.
(a) Assume that $|\psi\rangle$ is a product state, i.e., $|\psi\rangle=|\alpha\rangle \otimes|\beta\rangle$, for some single-qubit states

$$
|\alpha\rangle=\binom{\alpha_{0}}{\alpha_{1}}, \quad|\beta\rangle=\binom{\Phi^{0}}{\Phi^{1}} .
$$

Show that in such case $\Delta(|\psi\rangle)=0$.
(b) Conversely, let $|\psi\rangle$ be an arbitrary two-qubit state and assume that $\Delta(|\psi\rangle)=0$. Find two single-qubit states $|\alpha\rangle$ and $|\beta\rangle$ such that $|\psi\rangle=|\alpha\rangle \otimes|\beta\rangle$.
3. Pauli matrices and the swap: Let $\Sigma=\{0,1\}$ and $\mathcal{X}=\mathcal{Y}=\mathbb{C}^{\Sigma}$. The two-qubit swap operation $W \in \mathrm{~L}(\mathcal{X} \otimes \mathcal{Y})$ is defined on the computational basis states as follows:

$$
W|a, b\rangle=|b, a\rangle,
$$

for all $a, b \in\{0,1\}$. Recall that the four Pauli matrices are

$$
I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Verify that

$$
W=\frac{1}{2}(I \otimes I+X \otimes X+Y \otimes Y+Z \otimes Z) .
$$

(b) Verify that

$$
W=\frac{1}{2} \sum_{z, x \in\{0,1\}} Z^{z} X^{x} \otimes X^{x} Z^{z}
$$

4. Superdense coding: Assume that Alice and Bob each have one qubit and their joint state is $\left|\Phi^{00}\right\rangle$. Assume that Alice wants to send two bits $z, x \in\{0,1\}$ to Bob. They perform the following protocol: (i) Alice applies some unitary operation on her qubit, (ii) sends her qubit to Bob, and (iii) Bob performs an orthogonal measurement to recover z and x.
(a) What operation should Alice apply?
(b) What measurement should Bob perform?
(c) Formulate this procedure as a resource trade-off.
